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In this paper, we report our recent progress towards a solid-state ring laser gyroscope 
(RLG), where mode competition is circumvented by active control of differential losses, 
and nonlinear effects are mitigated by longitudinal vibration of the gain medium. The 
resulting dynamics is significantly different from that of a classical helium–neon RLG, 
owing in particular to parametric resonances that occur when the Sagnac frequency is an 
integer multiple of the crystal vibration frequency. We describe the main experimental and 
theoretical results obtained so far, and the prospects of practical applications in the near 
future.

Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Nous décrivons dans cet article nos récents progrès vers la réalisation d’un gyrolaser à 
état solide. Dans ce dispositif, le problème de la compétition entre modes est résolu 
par un contrôle actif des pertes différentielles, et les effets non linéaires sont fortement 
atténués par la mise en vibration du milieu à gain. La dynamique d’un tel système est 
significativement différente de celle d’un gyrolaser à hélium–néon classique, en particulier 
à cause des résonances paramétriques qui surviennent lorsque la fréquence Sagnac est 
un multiple entier de la fréquence de vibration du cristal. Nous décrivons les principaux 
résultats expérimentaux et théoriques obtenus jusqu’ici et discutons les perspectives 
d’applications pratiques à court et moyen termes.

Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

A century after Sagnac pioneering experiments [1,2] and more than fifty years after the first demonstration of a ring laser 
gyroscope by Macek and Davis [3], optical rotation sensing is still a remarkably active field of research. It includes integrated 
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Fig. 1. Basic principle of the solid-state ring laser gyroscope. The double arrow relates to the vibration of the Nd–YAG crystal, which will be discussed in 
Sections 3 and 4. (Color online.)

optics [4–6], slow and fast light [7–14], hollow core fibers [15–17] and large instruments for fundamental science [18–21]. 
From an industry perspective, two solutions have emerged and are routinely used for guidance, navigation and control: the 
ring laser gyroscope (RLG) [22] and the interferometric fiber-optic gyroscope (IFOG) [23]. Although the two devices can be 
shown to be equivalent in theory (in the sense that they have the same shot-noise limit for equal size and optical power, 
under the additional hypothesis that the number of fiber turns in the IFOG is equal to the finesse of the cavity in the 
RLG [24,14]), they differ by their practical implementation: the IFOG is shot-noise limited, but more sensitive to external 
perturbations (especially time-dependent temperature gradients [25]), while the RLG is more robust to its environment, but 
has an additional source of noise resulting from mechanical dither (which is the best known solution so far to circumvent 
the lock-in phenomenon [26,27]).

A key requirement common to all kinds of optical gyroscopes is reciprocity, which means that the two counter-
propagating beams must share the same optical path, in order to make the variations of the latter common-mode. For 
the RLG, which is an active device, this implies that the two counter-propagating modes must also share the same gain 
medium, and are thus subject to mode competition, which tends to hinder bidirectional emission. This problem is classi-
cally solved by using a gaseous gain medium for the RLG, typically a helium–neon mixture. The trick is to tune the cavity 
out of resonance with the atoms at rest, such that the two counter-propagating modes are resonant, owing to the Doppler 
effect, with two different classes of atoms (corresponding to opposite classes of velocity), ensuring stable bidirectional emis-
sion. From a practical point of view, it would be a strong asset to be able to replace the gaseous mixture with a solid-state 
component, taking advantage of the recent progress in cost reduction, lifetime and reliability driven by markets much big-
ger than inertial sensing. In this case, however, the Doppler trick cannot be used anymore, and one has to implement new 
techniques to circumvent mode competition and nonlinear couplings.

In this manuscript, we report our recent progress towards the achievement of a diode-pumped neodymium-doped yt-
trium aluminium garnet (Nd–YAG) RLG. We will first describe the technique of active control of the differential losses that 
we have implemented on this device, enabling bidirectional emission and rotation sensing. We will then discuss the non-
linearity of the resulting frequency response curve, which is mostly due to the existence of a population inversion grating 
in the amplifying medium. Based on theoretical predictions from a semiclassical model and on experimental results, we 
will show how the grating can be washed out by vibrating the gain crystal along the laser axis, significantly improving 
the linearity of the frequency response. We will also describe the residual nonlinearities, due for the most part to a para-
metric resonance between the Sagnac frequency and the crystal vibration frequency. Finally, we will discuss the expected 
performance of this novel rotation sensor, and prospects for future applications.

2. Circumventing mode competition in the solid-state ring laser

Our basic setup is sketched in Fig. 1. It is made of a four-mirror ring cavity, containing a diode-pumped Nd–YAG crystal 
as the gain medium. The readout system combines the beams emitted from the two counter-propagating modes to form a 
beat signal on a photodiode.

The issue of mode competition is addressed by an active control of the differential losses between the counter-
propagating modes [28–30]. The basic idea is to measure independently the intensity of the two beams, and to make 
the differential losses proportional to the intensity difference using a feedback loop, with the appropriate sign such that 
the more intense mode gets the higher losses at any time. In practice, the differential losses are created by polarization 
effects, based on the combination of a nonreciprocal rotation (obtained by Faraday effect in the YAG crystal placed inside 
a solenoid), a reciprocal rotation (obtained by a slight non-planarity of the cavity) and a polarizing effect (obtained by an 
appropriate coating on one of the mirrors). The amount of differential losses is proportional (in the limit of small rotations) 
to the current flowing in the solenoid, which is controlled by the feedback loop as described above.

The experimental frequency response curve of the solid-state ring laser with active stabilization of the differential losses 
is shown in Fig. 2. Below a critical rotation rate on the order of 10 deg/s, nonlinear couplings in the gain medium dominate 
and no stable signal is observed. Above this critical rotation rate, the feedback loop becomes efficient and a stable beat 
signal is obtained. As can be seen in Fig. 2, the frequency response curve of the solid-state RLG is nonlinear, with an upwards 
deviation from the ideal Sagnac line. The main reason for this nonlinearity is the presence of a population inversion grating 
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Fig. 2. Typical (experimental) frequency response of the solid-state ring laser gyroscope without crystal vibration. (Color online.)

in the gain medium [30], which couples the two counter-propagating modes. This grating results from the inhomogeneous 
saturation of the gain by the interfering counter-propagating modes. Its effect on the frequency response decreases for 
increasing rotation rates, because it becomes more and more difficult for the population inversion density, which has a 
finite response time (about 230 μs in our case), to follow the variations of the light pattern.

Based on the latter observation, we have introduced in the laser cavity a mechanical device to vibrate the gain crystal 
along the light propagation axis [31], with a view to washing out the population inversion grating. As will be discussed in 
the following, this can significantly improve the linearity of the frequency response curve at low rotation rates provided the 
appropriate choice of experimental parameters is made. This requires a careful description of the laser dynamics including 
crystal vibration [32], which will be presented in the next sections.

3. Semiclassical description of the solid-state RLG with crystal vibration

In order to describe the electric field inside the ring cavity, we assume that there is only one laser mode in each 
direction of propagation, something which is experimentally obtained owing to crystal vibration, which counteracts spatial 
hole burning effects [33,34]. We furthermore assume that the two modes have the same polarization state. This eventually 
leads, in the plane wave approximation, to the following expression for the electric field:

E(x, t) = �
[

2∑
p=1

Ẽ p(t)ei(ωct+μpkx)

]

where μp = (−1)p and where ωc and k are respectively the angular and spatial average frequencies of the laser, whose 
longitudinal axis is associated with the x coordinate. The dynamics of the solid-state RLG is then ruled, in the rotating wave 
approximation, by the following semiclassical equations [35]:

dẼ1,2

dt
= −γ1,2

2
Ẽ1,2 + i

m̃1,2

2
Ẽ2,1 − iμ1,2

Ω

2
Ẽ1,2 + σ

2T

(
Ẽ1,2

l∫
0

Nc dx + Ẽ2,1e2ikxc

l∫
0

Nce−2iμ1,2kx dx

)
(1)

where γ1,2 are the cavity losses associated with the counter-propagating modes, m̃1,2 are the backscattering coefficients, 
Ω is the (angular) frequency difference between the counter-propagating modes, σ is the laser cross section, T is the cavity 
round-trip time, l is the size of the gain medium, Nc is the population inversion density in the frame of the vibrating crystal 
and xc is the coordinate (in the laser frame) of a fixed point attached to the crystal, given by:

xc = xm

2
cos(2π fmt) (2)

where xm is the amplitude of the movement and fm = ωm/(2π) its frequency. The backscattering coefficients, which depend 
on the spatial inhomogeneities of the propagation medium, have the following expression [35]:

m̃1,2(t) = m̃ c
1,2e−2iμ1,2kxc(t) + m̃ m

1,2 (3)

where m̃ c
1,2 is the backscattering coefficient associated with the diffusion inside the YAG crystal, and m̃ m

1,2 is the backscat-
tering coefficient associated with any other source of diffusion inside the laser cavity, essentially the mirrors. The stabilizing 
coupling described in the previous section is modelled (neglecting finite-bandwidth effects) by taking losses of the form:
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Fig. 3. Beat frequency as a function of the amplitude of the crystal movement for θ̇ = 200 deg/s with the crystal vibrating at fm � 40 kHz. The ex-
perimental data (red circles) are in good agreement with numerical simulations (black crosses) obtained using the following measured parameters [38]: 
γ = 15.34 106 s−1, η = 0.21, |m̃c

1,2| = 1.5 104 s−1, |m̃m
1,2| = 8.5 104 s−1, arg(m̃c

1/m̃c
2) = arg(m̃m

1 /m̃m
2 ) = π/17, K = 107 s−1. Integration step is 0.1 μs, 

average values are computed between 8 and 10 ms. (Color online.)

γ1,2 = γ − μ1,2 Ka
(|Ẽ1|2 − |Ẽ2|2

)
(4)

where γ is the average loss coefficient, K > 0 represents the strength of the stabilizing coupling and a is the saturation 
parameter. The population inversion density function in the frame of the vibrating crystal Nc(x, t) is ruled by the following 
equation:

∂Nc

∂t
= W th(1 + η) − Nc

T1
− aNc|Ẽ1e−ik(x+xc) + Ẽ2eik(x+xc)|2

T1
(5)

where η is the relative excess of pumping power above the threshold value W th and T1 is the lifetime of the population 
inversion. The difference Ω between the eigenfrequencies of the counter-propagating modes is induced by the combined 
effects of rotation (Sagnac effect [36]) and crystal vibration (Fresnel–Fizeau drag effect [37]), resulting in the following 
expression:

Ω = Ωs − 4π ẋc(t)lc(n2 − 1)

λL
(6)

where Ωs = 8π Aθ̇/(λL) is the Sagnac angular frequency, A is the area enclosed by the ring cavity, L is the (optical) length 
of the cavity, θ̇ is the angular velocity of the cavity around its axis, λ = 2πc/ωc is the emission wavelength, and lc and n
are respectively the length and the refractive index of the crystal. In Eq. (6), we have neglected the effect of dispersion in 
the YAG crystal, which is much smaller than the Fresnel–Fizeau drag effect in our case.

To summarize, the dynamics of the solid-state RLG with crystal vibration is described by Eqs. (1), in conjunction with 
Eqs. (2), (3), (4), (5) and (6). Of course, this model is too complex to be solved analytically. However, it can be integrated 
numerically with realistic laser parameters, providing a good agreement with the experimental results. This is illustrated by 
the data shown in Fig. 3, where the beat frequency is plotted as a function of the amplitude of the crystal vibration xm for 
fm � 40 kHz. The experimental frequency response curve has in this case a non-trivial shape, which is well reproduced by 
the numerical simulation.

4. Dynamics of the solid-state RLG with high-frequency crystal vibration

The linearity of the solid-state RLG can be significantly improved by making the crystal vibration frequency ωm much 
bigger than all other frequencies involved in the laser dynamics, namely |Ωs|, |m̃m

1,2|, |m̃c
1,2| and the relaxation frequency 

ωr = √
γ η/T1 [35], as will be discussed in this section.

4.1. Analytical derivation of the beat frequency in the limit of high rotation rates

In this subsection, we furthermore assume that the rotation rate is high enough for the following conditions to be 
fulfilled:

ωm > |Ωs| �
∣∣m̃m

∣∣, ∣∣m̃c
∣∣,ωr (7)
1,2 1,2
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In this case, the nonlinearity of the frequency response of the solid-state RLG can be analytically estimated. To do so, we 
first introduce N0 and N1, respectively the mean and first spatial harmonics of the population inversion density function 
Nc(x, t), defined by:

N0 = 1

l

l∫
0

Nc(x, t) dx and N1 = 1

l

l∫
0

Nc(x, t)e2ikx dx

If we furthermore assume that the pumping rate is close to the threshold value (i.e. η � 1), then we can rewrite Eqs. (1)
and (5) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dẼ1,2

dt
=

(
Z

2
N0 − γ1,2

2

)
Ẽ1,2 + im̃1,2

2
Ẽ2,1 − iμ1,2Ω

2
Ẽ1,2 + Z

2
N1,2e−2iμ1,2kxc Ẽ2,1

dN0

dt
= W th(1 + η) − N0

T1
− a

2T1
Nth

(|Ẽ1|2 + |Ẽ2|2
)

dN1

dt
= − N1

T1
− a

2T1
Nthe−2ikxc Ẽ1 Ẽ∗

2

(8)

where Z = σ l/T , N2 = N∗
1 and Nth is the value of N0 at the laser threshold. It obeys the following relation:

W th = Nth

T1
� γ

Z T1
(9)

where the contribution of backscattering has been neglected in the expression of Nth. We will now derive an approximation 
of this system using the mathematical theory of averaging over nonlinear dynamical systems [39,40]. For simplicity, we 
neglect the Fresnel–Fizeau term introduced in Eq. (6), such that Ω = Ωs. Going into the rotating frame by setting:

Ẽ1 = eiΩst/2 F1 and Ẽ2 = e−iΩst/2 F2 (10)

the system (8) becomes:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dF1,2

dt
=

(
Z

2
N0 − γ1,2

2

)
F1,2 + Z

2
N1,2e−iμ1,2kxm cos(ωmt)eiμ1,2Ωst F2,1 + i

2

[
m̃ m

1,2 + m̃ c
1,2e−iμ1,2kxm cos(ωmt)]eiμ1,2Ωst F2,1

dN0

dt
= W th(1 + η) − N0

T1
− a

2T1
Nth

(|F1|2 + |F2|2)
dN1

dt
= − N1

T1
− a

2T1
Nthe−ikxm cos(ωmt)eiΩst F1 F ∗

2

Using the classical series involving the Bessel functions Jn:

eikxm cos(ωmt) = J0(kxm) +
+∞∑
n=1

in Jn(kxm)
(
einωmt + e−inωmt)

we can perform a first order averaging of the previous system of equations considering the fact that the frequencies nωm ±
Ωs are much larger than the other frequencies involved in the laser dynamics (see (7)). This provides the following model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d F̄1,2

dt
=

(
Z

2
N̄0 − γ̄1,2

2

)
F̄1,2

dN̄0

dt
= W − N̄0

T1
− a

2T1
Nth

(| F̄1|2 + | F̄2|2
)

dN̄1

dt
= − N̄1

T1

(11)

leading to the following equilibrium values for the averaged parameters:

γ̄1 = γ̄2 = γ , a|F1|2 = a|F2|2 = η, N̄0 = γ /Z and N̄1 = 0 (12)

Let us compute the second order correction for ( F̄1, F̄2, N̄0, N̄1) around the equilibrium of (11). The small fluctuations 
denoted with a δ around the average values (denoted with a bar) admit the following form:
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Fig. 4. Sketch of the optical standing wave inside and outside the YAG crystal. When the crystal is physically translated by λ/2, the relative position between 
the optical standing wave and a fixed point in the crystal is changed by λ/(2n). (Color online.)

δF1 = 1

2

[
−m̃ m

1 + m̃ c
1 J0(kxm)

Ωs
+ im̃ c

1 J1(kxm)

(
eiωmt

ωm − Ωs
− e−iωmt

ωm + Ωs

)]
e−iΩst F̄2

δF2 = 1

2

[
m̃ m

2 + m̃ c
2 J0(kxm)

Ωs
− im̃ c

2 J1(kxm)

(
eiωmt

ωm + Ωs
− e−iωmt

ωm − Ωs

)]
eiΩst F̄1

δN0 = 0

δN1 = i
aγ

2Z T1

[
J0(kxm)

Ωs
− i J1(kxm)

(
eiωmt

ωm + Ωs
− e−iωmt

ωm − Ωs

)]
eiΩst F̄1 F̄ ∗

2

where we have neglected the Jn terms with n ≥ 2 for simplicity. In order to compute the second-order approximation, 
we replace (F1, F2, N0, N1) by their first-order value ( F̄1 + δF1, F̄2 + δF2, N̄0 + δN0, N̄1 + δN1) in the second members of 
differential equations (11), and re-average the fast-oscillating terms. The second order approximation eventually leads to:

d F̄1,2

dt
=

(
Z N̄0 − γ̄1,2

2
+ i�1,2

)
F̄1,2 (13)

where:

�1 − �2 = γ η

2T1

[
J 2

0(kxm)

Ωs
+ 2Ωs J 2

1(kxm)

Ω2
s − ω2

m

]
+ m̃ c

1 m̃ c
2

2Ωs
J 2

0(kxm) + m̃ m
1 m̃ m

2

2Ωs

+ m̃ c
1 m̃ m

2 + m̃ m
1 m̃ c

2

2Ωs
J0(kxm) + m̃ c

1 m̃ c
2 Ωs J 2

1(kxm)

Ω2
s − ω2

m
(14)

The measured (angular) beat frequency Ωbeat is defined in this formalism by the time average of arg(Ẽ1/Ẽ2). Based on 
Eqs. (10) and (13), it is equal to Ωbeat = Ωs + �(�1 − �2), where �1 − �2 is given by Eq. (14).

4.2. Physical interpretation and comparison with experiment

In a first approximation, we neglect the J1 terms and keep only the dominant backscattering term m̃ c
1 m̃ c

2 in Eq. (14), 
leading to:

Ωbeat � Ωs + γ η

2ΩsT1
J 2

0(kxm) + �(m̃ c
1 m̃ c

2 )

2Ωs
J 2

0(kxm) (15)

Physically, the first correcting term is due to the residual effect of the population inversion grating, which goes to zero 
either for very high rotation rates or for a set of discrete values of the vibration amplitude corresponding to J0(kxm) = 0. 
The second correcting term, resulting from backscattering in the crystal, is also reduced by crystal vibration, owing to the 
Doppler effect, which makes the backscattered light from one mode non-resonant anymore with the counter-propagating 
mode. The two effects go simultaneously to zero when J0(kxm) = 0, corresponding to the situation where all the ions of 
the gain medium see on average the same intensity. The smallest value of xm for which this happens is kxm � 2.405, where 
k = 2π/λ is the wavevector outside the YAG crystal, and shall not be confused in this context with its counterpart inside 
the YAG crystal kc = n2π/λ, as illustrated in Fig. 4. With λ = 1.064 μm, this leads to the following requirement on the 
vibration amplitude: xm � 0.41 μm, which we typically achieve in practice using a resonant mechanical device excited by a 
piezoelectric ceramic.

The J 2
0 shape of the frequency response curve predicted in Eq. (15) is experimentally observed in Fig. 5, where the beat 

frequency is measured as a function of the amplitude of the crystal vibration for a fixed rotation rate of 55 deg/s and a 
crystal vibration frequency of fm � 168 kHz. This curve provides an experimental signal to tune the vibration amplitude 
such that J0(kxm) = 0.

When the latter condition is fulfilled, the frequency response curve of the solid-state RLG gets much closer to the 
ideal Sagnac line for |Ωs| � ωm, as illustrated in Fig. 6. Conversely, when the Sagnac frequency approaches the crystal 
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Fig. 5. Measured beat frequency as a function of the driving voltage of the vibrating device for θ̇ = 55 deg/s, with the crystal vibrating at fm � 168 kHz. 
The driving voltage is proportional to the amplitude of the vibration up to � 250 mV peak-to-peak (beyond this point, saturation occurs). The point where 
the curve is minimum corresponds to J0(kxm) = 0, hence xm � 0.41 μm.

Fig. 6. Experimental frequency response of the solid-state ring laser gyroscope with J0(kxm) = 0 and fm � 168 kHz. A phenomenon of parametric resonance 
is observed when the Sagnac frequency approaches the crystal vibration frequency. (Color online.)

vibration frequency, the nonlinearity of the frequency response significantly increases. To give a quantitative estimate of this 
parametric resonance phenomenon, we include the J1 terms in Eq. (14) while setting the J0 terms to zero, leading to:

Ωbeat � Ωs + γ ηΩs J 2
1(kxm)

T1(Ω
2
s − ω2

m)
+ �(m̃ m

1 m̃ m
2 )

2Ωs
+ �(m̃ c

1 m̃ c
2 )Ωs J 2

1(kxm)

Ω2
s − ω2

m
(16)

Since the value of kxm is deliberately chosen to be equal to the first zero of the J0 function, the J1 term becomes the 
dominant nonlinearity, with J 2

1(kxm) � 0.27. Eq. (16) is in good agreement with experimental data, as reported in Fig. 7, 
where the beat frequency is measured as a function of the pumping rate. The experimentally measured slope is −3.7 kHz, 
while the theoretical estimate from Eq. (16) leads to −γ J 2

1 (kxm)Ωs/[2π T1(ω
2
m − Ω2

s )] � −3.6 kHz (where we have used 
the following parameters: γ = 15.34 106 s−1, Ωs/(2π) � 117.3 kHz, T1 = 230 μs and ωm/(2π) � 168 kHz).

Keeping only the leading order in the small quantity Ωs/ωm, the frequency shift induced by the parametric resonance 
described above can be rewritten as − J 2

1(kxm)[ωr/ωm]2Ωs. In terms of gyroscope performance, this corresponds to a scale-
factor nonlinearity, which is typically (with ωr/(2π) � 20 kHz) on the order of 3 × 10−3. With this parameters, this means 
in particular that the pumping rate η has to be controlled at the 10−3 level in order to make the scale factor stable at the 
ppm level. A similar control on the amplitude of the crystal vibration xm is also required for the same reason. One way to 
relax the latter constraint would be to increase the vibration frequency fm beyond its actual value of 168 kHz.
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Fig. 7. Experimental frequency response of the solid-state ring laser gyroscope as a function of the pumping rate, with J0(kxm) = 0, fm � 168 kHz and 
θ̇ = 160 deg/s. The measured slope is in good agreement with analytical predictions (Eq. (16)). (Color online.)

Fig. 8. Experimental frequency response of the solid-state ring laser gyroscope at low rotation rates, with J0(kxm) = 0 and fm � 168 kHz. The dashed line 
is a fit of the experimental data by the typical frequency response curve of a helium–neon RLG [27]. (Color online.)

4.3. Case of low rotation rates

When the condition J0(kxm) = 0 is fulfilled, the nonlinearity of the frequency response curve is significantly reduced, 
and the deviation from the ideal Sagnac line at low rotation rates is downwards, as illustrated in Fig. 8. It is a remarkable 
fact that the shape of this frequency response curve is now similar to what would be expected from a helium–neon RLG, 
where the dominant coupling source is (linear) backscattering on the cavity mirrors. This similarity is confirmed by the 
numerical simulations shown in Fig. 9, where the frequency response curve of a high-performance helium–neon RLG is 
shown to be identical to that of a solid-state RLG with the same mirror backscattering coefficients m̃ m

1,2. Further numerical 
simulations [32] including mechanical dither also show that the two devices are expected to have the same level of angular 
random walk if identical mirrors are used. In other words, everything happens at low rotation rates as if all sources of 
nonlinear coupling from the Nd–YAG crystal were effectively suppressed by the crystal vibration.

5. Conclusion

The ultimate level of performance that can be expected from the solid-state RLG (in addition to the scale factor effect 
outlined in the previous section) is discussed in Ref. [41]. As already mentioned, the angular random walk resulting from 
mechanical dither is expected to be the same as for a helium–neon RLG, provided mirrors of equivalent quality are used. 
The Schawlow–Townes limit [42] should be slightly higher in the case of the solid-state RLG because the finesse of the 
cavity is a little bit lower, although this will be partly compensated by the possibility to use more power thanks to the high 
gain in the Nd–YAG crystal. In total, the solid-state RLG should be able to reach the 10−3 deg/

√
h range. As regards the 
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Fig. 9. Up: simulated frequency response curve of a solid-state RLG with crystal vibration at fm � 168 kHz and J0(kxm) = 0. All parameter values are taken 
from experimental measurements [38], except the mirror backscattering coefficients m̃m

1,2, which have the typical value of a high-performance helium–neon 
RLG. Low: simulated frequency response curve of a high-performance helium–neon RLG (obtained by numerical integration of the Adler equation [27] with 
the same value of m̃m

1,2 as for the upper curve). (Color online.)

ultimate bias stability, it is predicted to lay in the 10−2 deg/h range if the current flowing out of the feedback loop can be 
measured at the 10−3 level [41]. As discussed in this paper, the same precision will be required on the pumping rate and 
crystal vibration amplitude to reach the ppm level on the stability of the scale factor.

Experimental work is still ongoing at Thales to raise the Technology Readiness Level of the solid-state RLG (in particular 
by using high-quality mirrors at 1.064 μm and by improving the stability of the control electronics). Beyond industrial 
applications, this technology could also be an interesting platform to test more advanced schemes of rotation sensing, 
involving for example anomalous dispersion [14].
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