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Granular materials are one of a class of materials which undergo a transition from 
mechanically unstable to mechanically stable states as key system parameters change. 
Pioneering work by Liu and Nagel and O’Hern et al. focused on models consisting of 
frictionless grains. In this case, density, commonly expressed in terms of the packing 
fraction, φ, is of particular importance. For instance, O’Hern et al. found that there is a 
minimum φ = φ J , such that below this value there are no jammed states, and that above 
this value, all stress-isotropic states are jammed. Recently, simulations and experiments 
have explored the case of grains with friction. This case is more subtle, and φ does not 
play such a simple role. Recently, several experiments have shown that there exists a range 
of relatively low φ’s such that at the same φ it is possible to have jammed, unjammed, and 
fragile states in the sense of Cates et al. This review discusses some of this recent work, 
and contrasts the cases of jamming for frictionless and frictional granular systems.
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r é s u m é

Les matériaux granulaires appartiennent à une classe de matériaux qui subissent une 
transition d’instabilité mécanique à stabilité tandis que les paramètres du système 
changent. Les travaux novateurs de Liu et Nagel et O’Hern et al. ont considéré des 
grains sans frottement. Dans ce cas, la densité, qui est caractérisée comme d’habitude 
par la fraction volumique des solides φ, revêt une importance particulière. Par exemple, 
O’Hern et al. ont trouvé qu’il existe un minimum φ = φ J tel que, en dessous de cette 
valeur, il n’existe pas de blocage et que, au-dessus, tous les états où la contrainte est 
isotropique sont bloqués. Recemment, des simulations et des expériences ont exploré le 
cas de grains frottants, qui est à la fois plus subtil et où φ n’a plus un rôle aussi simple. 
Dernièrement, plusieurs expériences ont montré qu’il existe un domaine de petites valeurs 
de φ où coexistent des états bloqués, libres ou fragiles au sens de Cates et al. Cette revue 
aborde une partie de ces récents travaux, et compare les cas de blocage pour les systèmes 
granulaires frottants ou non.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The concept of jamming, which characterizes how disordered particle systems transition from fluid-like to solid-like 
states, has attracted significant recent interest, in no small part due to the fact that a range of different systems undergo a 
jamming transition and/or exhibit glassy behavior. In some cases, the particles forming the system are truly macroscopic, as 
in the case of foams and granular materials. Smaller particles can occur in emulsions and colloids, and of course molecular 
glasses are truly microscopic. All these systems have certain features in common, such as spatial disorder and hindered 
motion when they are densely packed and “cold”. Several reviews of jamming are available [1–3], as well as extensive 
reviews of glassy systems [4].

Until recently, it was thought that systems as diverse as colloids, foams, emulsions and granular materials could be 
unified into a single picture through a jamming diagram, involving thermodynamic temperature, T , packing fraction, φ, and 
shear stress, τ , as proposed by Liu and Nagel [5]. This proposal was intensively investigated, chiefly by numerical simulations 
[6–9] that modeled frictionless particles interacting via normal contact forces. Such systems can be realized experimentally 
as foams [3] or emulsions [10]. In this case, there is a lowest packing fraction, φ J , which may depend on system preparation, 
below which states are always unjammed, and above which jammed states exist for a range of shear stresses, 0 ≤ τ < τY , 
where τY (φ) is the yield stress. Much of that work has been reviewed recently [1–3].

The present review focuses on the nature of jamming in a particular class of macroscopic particle systems, granular 
materials. This term has been used broadly to label collections of macroscopic particles for which there is no mutual 
exchange of energy with a heat bath. For granular materials, dissipation during particle interactions injects heat into the 
surroundings, but the motion of grains is not affected in any substantive way by thermally heating them.

Everyday materials such as sand, salt, food grains, pharmaceutical powders or lumps of coal all qualify as ‘granular 
materials’. All of these systems interact by contact forces: grains interact only when their surfaces are in contact, and 
the interaction forces are either normal to the plane of contact, or in the plane of contact, due to friction. Typically, the 
repulsive normal forces involve elastic deformation of the contacting particles and are conservative for slow strains, but 
not for fast strains. Some granular models only use conservative normal forces, i.e. the model particles are frictionless. The 
characteristics of jamming for frictionless and frictional particles differ in several respects, including relatively simple shifts 
of parameters at jamming. However, there are also much more significant differences in the types of near-jamming states 
for the case of frictional vs. frictionless particles.

Mechanical stability and response: At a naive level, the idea of jamming is simple: typically, disordered solid-like particle 
systems respond to applied strains by deforming, but without flowing; thus, jammed systems have non-zero compressional 
and shear moduli. Unjammed systems respond to shear strain by flowing, although, damping, e.g., viscosity or friction, may 
act to limit the flow.

A necessary condition for a system of particles to be jammed is that particles are mechanically stable, i.e. that they are 
in force and torque balance. If a system of particles is in a mechanically stable state, it is generally referred to as jammed. 
There may be a small set of particles, called rattlers, which are not subject to any forces. Rattlers can be removed without 
otherwise affecting the system. There also exist states which satisfy force and torque balance, but are not stable to particular 
small strains. These are fragile states, and they were first proposed by Cates et al. [11] in the context of sheared colloidal 
systems.

A key parameter which controls whether a system is jammed or not is the average number of contacts per particle, Z . 
One way to understand the role of Z is to count degrees of freedom associated with vector forces at contacts, and con-
straints associated with force and torque balance. For example, a system of N frictionless spheres in dimension d has N Z/2
independent forces, and dN force balance constraints. (Note that by Newton’s third law, there are half as many independent 
forces as there are force-bearing contacts.) Thus, for such a system to be mechanically stable, there must be at least Z = 2d
contacts on average per particle. A system can have more contacts and be stable, but not less. The marginal or isostatic state 
exactly satisfies Z iso = 2d. A similar argument for ‘ideal’ frictional particles (i.e. large static friction coefficient, μ) yields an 
isostatic condition, Z iso = d + 1. In fact, numerical simulations [12,13] for d = 2 show that Z at jamming depends on μ, 
with a smooth variation of Z iso between the frictionless case, where Z iso = 4 and the large-friction case where Z iso = 3.

Although the value of Z is crucial for determining whether a static state is jammed or not, it is conventional to consider 
the states of a system in terms of the packing fraction, φ and the shear stress, τ , perhaps in part because the latter two 
quantities are easily measured. If φ is too low, it is not possible for Z to reach the isostatic value. However, unlike Z , there 
is no theoretical argument which determines a critical value of φ for jamming. In general, φ J depends on such system 
properties as dimension, particle shape and polydispersity.

By applying large enough shear stress, it is usually possible to cause a jammed state to flow. Typically, the limiting yield 
stress, τ = τY (φ), needed to cause an otherwise jammed system to flow increases with φ. In a state space of φ and τ , 
low density states are unjammed, high density states are jammed. But for τ ’s lying above τY (φ), flow occurs in response 
to shear. This scenario is encapsulated in a jamming diagram by Liu and Nagel [5], and substantiated through numerical 
simulations of frictionless systems [6–9]. Fig. 1a shows a sketch of the zero-temperature plane of the Liu–Nagel (L–N) 
jamming diagram. A key feature of this jamming diagram is a lowest φ = φ J , such that a) all static states with φ < φ J are 
unjammed and hence stress-free, b) φ J is the terminus of the yield stress curve; c) the yield stress vanishes at φ J .
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Fig. 1. Jamming diagrams in a space of shear stress, τ , and packing fraction, φ. These diagrams pertain to T = 0 systems, which include granular materials. 
(a) is a sketch of the Liu–Nagel diagram [5], in which states at high enough φ and low enough τ exist in a jammed state, the darker region. (b) is the 
diagram that characterizes frictional particles, as seen by Bi et al. [14]. In addition to the jammed region of the Liu–Nagel diagram, there is a region 
below φ J , extending to a lowest density, φS , where it is possible to start from a stress-free state, apply shear strain, and arrive at a jammed state, i.e. the 
green region marked shear jammed. There is an intermediate region between the φ-axis and the shear jammed region where fragile states can exist. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1.1. Jamming for frictionless grains

Numerical studies by O’Hern et al. [6] involved frictionless particles, and a particular protocol which involved growing 
the model particles, and then relaxing the system to an energy minimum. These simulations lead to several specific ob-
servations which are consistent with the L–N jamming diagram: 1) below a critical φ, called variously φc or φ J , there are, 
by construction no force-bearing contacts, so Z = 0; 2) above φ J , Z = Z iso + A(φ − φ J )

α , where α = 1/2; 3) below φ J

necessarily P = 0; 4) above φ J , the pressure increases as a power law in φ − φ J with an exponent, ψ that derives from the 
contact force law. Typically, the inter-particle force is assumed to vary with the ‘overlap’ at contacts: F ∝ δψ . The overlap 
is defined in terms of the center-to-center distance di, j of a pair of interacting particles: δ = Ri + R j − di, j . The repulsive 
normal force in these models vanishes when di. j exceeds the sum of the particle radii. When δ > 0 for a pair of particles, 
typical force models are either linear, in which case there is a repulsive force at the contact F ∝ δ, or Hertzian, in which 
case the repulsive F ∝ δ3/2. The latter is expected for ideal spherical elastic particles.

Two other important issues for granular systems near jamming concern the response of the system to very small strains, 
particularly shear strain, and whether the contacts and stresses are isotropic or anisotropic. Recently, Dagois-Bohy et al. [15]
have shown that certain protocols for preparing nominally isotropic jammed states of frictionless spheres can produce states 
near jamming, with finite pressure, that are unstable to small shear strains in certain directions. Hence, previous simulation 
protocols can produce states with negative shear modulus, G . These authors have developed alternative approaches to 
preparing jammed states that are stable to shear strain in all directions. They report states that are weakly anisotropic in 
terms of contacts, but that can have strongly anisotropic G , suggesting a connection to the fragile states considered by Cates 
et al. [11]. More recently, Goodrich et al. [16] have extensively investigated anisotropy, scaling and finite size effects, where 
they take care to produce states for which G does not vanish.

1.2. Jamming for frictional grains

When the particles interact by frictional as well as normal forces, the situation is more complicated. As noted, simula-
tions show that jamming occurs at lower packing fractions as the friction coefficient, μ, grows. Several recent experiments 
[14,17–25] using frictional particles indicate that the jamming diagram has additional features. In Couette experiments, 
Howell et al. [17,26] showed that it is possible to have anisotropic states, produced by shearing collections of disks or pen-
tagons, which have low values φ � 0.78 compared to φ J � 0.84 for similar frictionless particles. Majmudar [19] showed that 
systems of disks have significantly different force networks if they have been either sheared or isotropically compressed. In 
a rather different direction, several authors, including Scott, Onoda and Liniger, Ojha et al. and Jerkins et al. [20,27–29] (and 
references therein), have investigated the existence of gravitationally stable three-dimensional packings in the low density, 
or random loose packing (rlp) limit. These studies have used fluidization to create loose packings as low as φ � 0.55 for 
spheres, compared to φ J � 0.64, i.e. random close packing (rcp), for frictionless 3D spheres. In a different but related di-
rection, several groups [18,23,30–32] (see also references therein) have used more local perturbations to characterize the 
rigidity of granular systems. For instance, Metayer et al. [23] and Geng and Behringer [18] have probed the response to 
shear in 3D and 2D systems, respectively, with a particular focus on changes in rigidity as a function of φ. In both 3D and 
2D systems, there is a change in rigidity for φ’s that are below φ J for frictionless spheres.

Recently, Bi et al. [14] and Zhang et al. [22], have shown experimentally that it is possible to create a range of jammed 
states for φ’s below φ J for frictional spheres. Their results are shown schematically in Fig. 1b, which contains a region that 
is not present in the L–N diagram. These experiments have shown that for φS < φ ≤ φ J , it is possible to have states at the 
same φ, which are unjammed, fragile (in the sense of Cates et al. [11]), or robustly jammed (shear jammed). The packing 
fraction range for this effect to occur is φS ≤ φ ≤ φ J , where here φ J takes on a modified meaning, discussed below.

The experiments [14,22,24,25] involved applying shear strain, γ , to an initially stress-free state of 2D frictional bidisperse 
disks. With large enough strains, the systems reached jammed states which had Z > 3, positive stresses, and the ability to 
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resist small strains of any kind. Intermediate between the shear jammed states and the stress-free initial states were ‘fragile’ 
states in the sense of Cates et al. [11]. The resulting fragile states are anisotropic and can be unjammed easily by applying 
reverse strain. The lower-φ jammed states found in experiments have non-zero shear stress, τ . Bi et al. and Ren et al. 
identified φ J with the largest packing fraction for which, at the same φ, states ranging from stress-free to shear jammed 
occur. Their observed value, φ J � 0.84, is comparable to the jamming packing fraction determined by O’Hern et al. [6] for 
frictionless disks, and observed in experiments by Majmudar et al. [33]. The states generated by shear strain had anisotropic 
stresses and contact networks, which would be expected for systems that have been sheared. These experiments imply the 
jamming diagram of Fig. 1b, which below φ J , contains a region of fragile states at low τ , and a region of anisotropic shear 
jammed states at higher τ . The two points, φ J and φS in Fig. 1b have natural connections to random dense and random 
loose packings respectively.

Although the shear jammed states are obtained by applying shear strain to an otherwise stress-free state, shear strain 
is not a state variable. Rather, better descriptors [14] for characterizing states in φS < φ < � J include, besides φ, the 
shear stress, the pressure, P , or the fraction of non-rattler particles, fNR. Non-rattler particles have enough contacts to be 
mechanically stable, so at least two contacts in 2D, for frictional particles.

Before focusing specifically on jamming, it is worth noting several features of frictional granular materials in the jammed 
state. First, for cohesionless grains, the normal components of inter-grain contact forces point into the grain on which the 
force acts, and the tangential force at a contact can have a magnitude |Ft | < μ|Fn|. Unlike the case of frictionless grains, 
a precise knowledge of the particle positions is insufficient to know the force acting at contacts, due the range of admissible 
tangential friction forces, for a given Fn . Second, forces are carried non-uniformly on preferred networks of connected grains 
called force chains [34–36], whose properties are sensitive to material properties such as friction, and also to preparation 
protocol (see for instance, Majmudar [19] or Kondic et al. [37] for a discussion of network topology). The structure of 
these networks, and degree of anisotropy are reflected in the stress and fabric tensors [19] defined below. Third, when a 
granular system is deformed, particularly by shear strain, these networks evolve: they grow and fail, leading to substantial 
spatio-temporal fluctuations of forces. Finally, shear strain leads to dilation (i.e. expansion) of a granular system if it is at 
least moderately densely packed, as first discovered by Reynolds [38], This effect, known as Reynolds dilatancy, implies a 
correlation between reductions in φ and increases in anisotropy due to shear. Shear jamming and Reynolds dilatancy are 
related phenomena, as discussed recently by Tighe [39]. Reynolds dilatancy occurs when a system is free to expand under 
shear strain. Shear jamming occurs when a confined system is sheared, and attains non-zero stresses.

2. Experimental approaches to understand jamming of frictional systems

The rest of this review will focus on jamming in systems of frictional particles. The original discovery of shear jamming 
and additional work was carried out using systems of photoelastic quasi-two-dimensional particles. The following indicates 
key aspects of this approach.

A typical experiment [14,17,19,22,24,33,40–54] involves applying controlled stresses or strains to systems of particles. 
Although the use of photoelastic particles has a long history [49–52], beginning with Howell et al. [17], experiments yielded 
particle-scale force information, and Majmudar and Behringer [19] first showed that it was possible to determine the vector 
forces at inter-particle contacts.

A basic photoelastic experiment involves placing a particle of uniform thickness, T , between crossed (typically circular) 
polarizers. A uniform beam of light of initial intensity Io that traverses the particle normally will have a transmitted intensity

I = Io sin2[(σ2 − σ1)πC T /λ] (1)

where the local shear stress in the plane of the particle is τ = σ2 − σ1. The σi are the principal stresses in the particle; 
C is the material-dependent stress optic coefficient; λ is the wavelength of the light. Note this effect is color/wavelength-
dependent, and photoelastic images typically show complex colored patterns, as in Figs. 2–3, if the light source is white. 
The pattern within an image of a particle reflects the contact forces acting on it. Majmudar and Behringer have shown [19]
that it is possible to solve a nonlinear inverse problem to obtain the individual contact forces acting on a particle, as also 
described elsewhere [55]. The method involves knowing the stress tensor inside the particle as a result of a set of contact 
forces, Fi acting on it. In the case of disks, the solution for the stress field is relatively simple, which then makes the de-
termination of contact forces correspondingly simple. Fig. 2 shows an original color photoelastic image and the gray-scale 
image produced by using the fit-determined forces to reproduce the ‘photoelastic’ image. Since the photoelastic response 
is color-sensitive, only one color is used by filtering the original color image. An actual experiment involves three different 
types of images for each state of the system, as in the lower portion of Fig. 3. This figure shows the same small region of 
experiment with, left-to-right, polarizers in place, no polarizers, and with UV illumination. The first type of image yields 
the contact forces, the second is used for finding the centers and edges of the particles, and the last is used for determining 
particle rotations. Each particle has been marked with a fluorescent bar, which then enables tracking of particle rotation.

The force/contact data yield key particle-scale measures: the fabric tensor, the force moment tensor, and the stress tensor. 
Each of these can be coarse grained or system averaged. The fabric is a geometric measure of the contact structure:

Rij = 1

N

N∑ ck∑
nc

iknc
jk (2)
k=1 c=1
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Fig. 2. (Color online.) Left: original color photoelastic image, and right: the image produced by the contact forces computed by the force-inverse algorithm 
for a color-filtered version of this image.

Fig. 3. (Color online.) Top: schematic of biaxial experiment; bottom: closeups showing typical experimental images. Left: photoelastic image obtained with 
crossed polarizers; middle: direct image without polarizers; right: imaged obtained with UV illumination, indicating the fluorescent bars used for tracking 
rotations.

The summation over k includes only the N non-rattler disks, ck is the number of contacts on disk k, and nc
lk is the lth 

component of the unit branch vector pointing from the center of the disk k to a contact c. (See Fig. 4.) A rattler disk, i.e. 
a disk that is not mechanically stable, and in a 2D frictional system, particles with less than two contacts are necessarily 
rattlers. In experiments, there is always a lower measurable force limit, which means that some contacts with non-zero force 
go undetected. Systems of photoelastic particles have an advantage in determining if a contact bears a force or not, since 
even very weak contact forces can be photoelastically detected. The average contact number, Z , is the trace of the fabric 
tensor Rij , averaged over all particles. The difference of the eigenvalues of R̂ , ρ = R2 − R1 characterizes the anisotropy of 
the force network. Information on the contact network properties for some of the present experiments is given in Zhang 
et al. [22].

The stress and force moment tensors, σi j and, σ̂i j , combine information on forces and contact structure. The local force 
moment tensor is

σ̂i j =
ck∑

c=1

f c
ikrc

jk (3)

and the system-averaged stress tensor is

σi j = 1

A

N∑
σ̂i j (4)
k=1
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Fig. 4. Sketch explaining the notation for definitions of the fabric, force-moment and stress tensors.

(A is the system area; N , ck , i, rc
jk and j are the same as in the expression of Rij and Fig. 4); here, f c

ik is the ith component 
of the contact force on particle k at contact c. The force-moment tensor is ‘extensive’ since it is obtained by summing over 
the values for all particles. The stress tensor is a ‘density’. Often, ‘stress’ is used to describe a coarse-grained or system-wide 
measure, although it is possible to also normalize the force moment tensor by the area associated to a single particle in 
order to produce a completely local stress measure. The eigenvalues of σ , are σ1 and σ2. The sum and difference of σ1 and 
σ2 divided by 2, are the pressure P = (σ2 +σ1)/2 and shear stress τ = (σ2 −σ1)/2. By assumption in the following σ1 ≤ σ2, 
so τ ≥ 0 (unless otherwise indicated).

Experiments using photoelastic particles must also involve additional apparatus which provides system-wide strains. 
Strains can involve Couette shear [17,26], isotropic compression [33], or shear over a limited range, which may be either 
pure shear [14,22] or simple shear [24,25]. The discussion below contains a brief description of the working principles for 
these different kinds of experiments.

3. Jamming of frictional materials

3.1. Isotropic jamming

For the photoelastic particle systems, it is possible to investigate jamming under isotropic conditions, as in Majmudar 
et al. [33]. In these experiments, photoelastic disks rested on a smooth Plexiglas sheet, and resided within rectangular 
boundaries, as sketched in Fig. 3 (top) or Fig. 5a. The experiments involved applying isotropic compression by changing the 
spacing between opposing pairs of boundary walls. Fig. 5d shows a typical jammed state from this type of experiment. In 
this case, the force chains form a dense isotropic ‘tangle’. In order to try to match to the model predictions, such as those of 
O’Hern et al. [6], the experiment was gently ‘massaged’ to relax the system to a minimal stress state, following each strain 
increment.

Fig. 6 shows resulting experimental data for Z and P . Here, the inset, shows Z over a broad range of φ. The data have 
been analyzed to include rattlers (stars) or to exclude rattlers (squares). Note that detecting contacts is made easier due to 
the fact that the particles are photoelastic, as indicated by Fig. 5b.

How do these experimentally determined results compare to simulations for frictionless particles? Z grows rapidly, 
but not discontinuously, near φc � 0.84, as the system jams isotropically. In the simulations, below jamming there are 
no contacts, by definition. However, in the experiments, for the very near-jamming states, it was difficult to remove all 
forces, as seen in Fig. 5e. For larger φ, Z(φ) with/without rattlers tend to merge. P (φ) as shown in Fig. 6 has a nearly flat 
background value below jamming, and then grows above φc. Neither P nor Z are identically zero below jamming due to 
experimental noise, and more importantly, to the fact that it was very difficult to completely relax all forces/force chains for 
φ very close to but slightly less than φ J . Note that these residual force chains, e.g., Fig. 5 (e), are anisotropic, which suggests 
that something different from isotropic jamming is coming into play.

Least squares fits of Z − Zc and P above φc to power laws in φ −φc yield values of φc, β , and ψ that are consistent with 
the frictionless 2D model results. We obtain, 0.494 ≤ β ≤ 0.564 excluding rattlers, and 0.363 ≤ β ≤ 0.525 when rattlers are 
included. Additional details are contained in Majmudar et al. [33]. The optimum choice for φc is φc = 0.84220. The values 
of β for the experimental data without rattlers is slightly larger than the value of 0.5 reported in [6–8], but smaller than 
the result of Donev et al. [9], who found 0.6 in 3D. Least squares fits of P − Pc above φc to P − Pc ∝ (φ − φc)

ψ , Fig. 6, 
yields ψ = 1.1 ± 0.05, where, Pc corresponds to the background P . This value of ψ is consistent with the measured inter-
particle interaction force, and the expected exponent based on the simulations (frictionless particles) of Silbert and O’Hern 
et al. [6–8].

Thus, the experiments described so far are generally consistent with the predictions for systems of frictionless grains 
on many, but not all, fronts. Agreement here is interesting, but not necessarily completely expected, due the differences 
between frictional and frictionless particles. In fact, the remnant force chains in Fig. 5 suggest that anisotropy plays a role 
near the jamming transition.
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Fig. 5. (Color online.) (a) Schematic indicating the working principles of the biaxial experiments of Majmudar et al. and Bi et al. [14,19,33]. (b–c) Close-ups 
showing how photoelastic response helps determine where particles have a force-bearing contact. (d) Typical photoelastic image of an isotropically jammed 
state. (e) Photoelastic image showing weak residual force chains.

Fig. 6. (Color online.) Data for the average contact number and pressure at the jamming transition. Top Z − Zc and bottom P vs. φ − φc . Symbols indicate: 
rattlers included (stars) or excluded (diamonds). Dashed and full curves in the top panel are power-law fits (φ − φc)

β with β = 0.495 and 0.561 (with and 
without rattlers, respectively). Lower panel: full curve gives the fit (φ − φc)

ψ with ψ = 1.1; dashed line shows a linear law for comparison. Inset: Z vs. φ
over a larger range in φ.

3.2. Jamming by shear

Recent experiments [14,22,24,25] have explored the behavior of materials in the shear jamming range of densities, 
φS ≤ φ ≤ φ J . A key characteristic of this range is that for a given density, it is possible to have states which are stress-free, 
fragile or robustly jammed. In these experiments, the fragile and shear jammed states were obtained by starting from a 
stress-free state, and by then applying shear strain. For the present purposes, it is useful to distinguish ‘pure shear’ and 
‘simple shear’ strains, as in Fig. 7. In 2D pure shear, a sample is compressed in one direction and expanded in the other, 
all at fixed area. In simple shear, a rectangular region is mapped into a parallelogram, also at fixed area. The two types of 
strain are similar, except that simple shear also involves rotation.

The experiments of Zhang et al. [22] and Bi et al. [14] used the same kind of biaxial approach for systems of photoelastic 
disks, as in Majmudar [19,33]. In this case, one pair of opposing walls of the experiment, e.g., Figs. 3 and 5, was moved 



R.P. Behringer / C. R. Physique 16 (2015) 10–25 17
Fig. 7. Sketch contrasting pure and simple shear strains. Note that in both cases, there is one direction that expands (dilates) under shear strain, and another 
that is compressed. In both cases, the area occupied by the material is constant.

Fig. 8. (Color online.) (a) Setup schematics. (b) The three close-up images that the camera captures at each step: particle positions (upper), force response 
under polariscope (middle), and particle orientation images under UV light (lower). These image types are similar to those of Fig. 3 (bottom). (c) The x-
and y-displacement of particles vs. their horizontal positions in the system, and (d) the coarse grained [56,57] density profile after 27% linear shear.

closer together, while the other pair was moved apart, all such that the system area remained constant. The result was pure 
shear strain. These experiments cleared showed the formation of fragile and strongly shear jammed states. But, during the 
course of shear strain, shear bands developed. As a result, there was a region of reduced density, a shear band, running 
diagonally across the system, with higher density regions surrounding it. This type of behavior is typical when shear is 
applied at the boundaries of a granular system.

In order to have a system which remains homogeneous under shear strain, Ren et al. [24] developed a new kind of ex-
periment in which the shear strain was applied uniformly (affinely) across the sample, not just at the boundary. Fig. 8 shows 
a sketch of the experimental principle. The particles, photoelastic disks, rested on a set of smooth Plexiglas slats of width 
roughly comparable to a particle diameter. The slats moved in synchrony with the side walls to produce uniform shear 
strain across the system. Friction of the particles with the slats was small, but sufficient that when the system was un-
jammed, particles still moved in a nearly affine motion in coordination with the walls. This process provides uniform simple 
shear strain γ = �y/L at constant packing fraction φ (Fig. 8a). These experiments also used systems of photoelastic disks, 
(Fig. 8b) which provided detailed particle scale information, including contact forces, and particle motion. Importantly, these 
experiments showed no sign of a shear band or permanent inhomogeneities, e.g., Fig. 8c–d.

Although this experiment does not show failure or shear bands, as most other sheared systems do, τ , which is the 
difference of the principal stresses, σi , does reach a maximum or a plateau with increasing strain, due to the fact that the
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Fig. 9. (Color online.) The principal stresses for several cycles of a symmetric shear experiment. The configuration of the shear experiment is sketched 
underneath the data. In this case, we allow σ1 to be greater than σ2 by continuously tracking the eigenvalues from step to step.

system becomes more isotropic when strongly sheared. Specifically, both of the σi increase monotonically with γ . For large 
enough γ the smaller of σi approaches the larger. Fig. 9 shows how the σi vary under cyclic shearing.

Both the pure shear and simple shear experiments involved the application of small quasi-static shear strain steps. 
Following each step, system images yielded particle positions, photo-elastic responses, and rotations.

The application of shear strain to a stress-free state for φS ≤ φ ≤ φ J leads to a series of states which are typified by 
the photoelastic images of Fig. 10 from Ren et al. [24]. The initial state, not shown, is free of force chains. As shear strain 
continues, a network for force chains first percolates from on boundary to the other in the compressive direction, as in the 
top figure. With continued strain, robust force chains propagate across the system in both directions, and with increasing 
strain, the strong force network becomes both stronger and more isotropic.

The response to shear strain involves the evolution of clusters of force chain particles, i.e. particles carrying average 
or above forces. A fragile state [11] occurs when the force network propagates from one boundary to the other in the 
compressive direction. Such a state resists continued forward shear by developing stronger force chains. But, it vanishes 
quickly for a small amount of shear reversal, where there are only weak contacts along the dilational direction. This is a 
fragile state, which is solid-like along the compressive direction, but ‘squishy’ along the dilational direction. By contrast, 
when force chains percolate in all directions, the system remains stable to small shear strain reversals. Fig. 11a shows 
images for the percolation of clusters across the experiment of Bi et al. [14] and the size of the clusters, as projected onto 
the compressive and dilational strain directions. Bi et al. [14] identify the point when the force chains percolate in the 
compressive direction as the onset of a fragile state, and the point where a force network first propagates in all directions 
as the transition to shear jamming. Fig. 11b from Bi et al. [14], summarizes the nature of many different experimental 
results, indicating whether they are unjammed, fragile or shear jammed.

The amount of shear strain needed to reach a shear jammed state depends on φ, where little shear strain is needed just 
below φ J , and an increasingly larger γ is required as φ decreases towards φS , where the necessary shear strain appears to 
diverge. Fig. 12 shows the amount of shear strain needed to reach a shear jammed state, vs. φ in the experiments of Bi et al. 
(Here, the shear strain was represented by ε .) As φ → φS , the amount of strain needed to obtain shear jamming grows, and 
eventually reaches a limit beyond with it is no longer possible to shear jam the system, at least for a given experimental 
apparatus.

The anisotropy in τ is necessarily correlated with anisotropy in the fabric. For instance, Fig. 13 shows the anisotropy in 
the fabric, defined as the difference in the principal eigenvalues of the fabric tensor, ρ , vs. τ for the data of Fig. 11.

The following argument indicates how friction facilitates this transition to shear jamming. Particles that are members of 
a force chain created by shear typically experience two strong, roughly diametric contacts. As a reasonable simplification, 
consider a force and torque balanced frictional particle, somewhere in the middle of a force chain, that experiences exactly 
two contacts, as sketched in Fig. 14. In a coordinate system where the x-axis bisects the angle between the two contacts, 
these contacts are inclined at an angle θ relative to the y-axis, as sketched. For force and torque balance, the contact 
forces are as sketched. The ratio of the tangential to normal components of any one of these two contact forces satisfies 
F t/Fn = tan(θ). The ratio F t/Fn is constrained by Coulomb friction: F t/Fn = tan(θ) ≤ μ. Thus, the smaller μ is, the more 
diametric the opposing contacts must be. Force chains for low friction particles must be nearly straight for pairwise contacts, 
whereas for higher friction particles, force chains can zigzag. In fact, force chains are buttressed by additional, often weaker, 
lateral contacts, which play a role in carrying force in the direction of the weaker principal stress.

As a system of frictional grains is sheared past the onset of fragility, force chains spread by developing segments in 
the dilational direction, thereby transmitting stress in all directions. Continued shear can distort these force chains, cause 
them to buckle [48], or cause individual contacts to fail. These processes can lead to added lateral contacts which make the 
system more homogeneous.

The anisotropy in the stress tensor, in particular, and perhaps to a lesser extent in the fabric tensor, is strongly correlated 
to the nearly opposing contacts that occur for grains in force chains. For the sketch of Fig. 14, a simple calculation shows 
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Fig. 10. Images showing the photoelastic response of disks that are subject to simple shear, after Ren et al. [24]. Top to bottom show states that are 
respectively fragile, near shear jamming, and well above shear jamming. In these experiments, a layer of particles is sheared, using a special apparatus that 
allows for uniform shear strain across the whole layer. The initial state is one that is stress free, and that has a parallelogram shape which is ‘tilted down’ 
at the lower left corner. The final state is one where the tilt is reversed. Note that throughout the shearing process, the density of the system remains 
constant.

that the force moment tensor for the central particle is ‘maximally anisotropic’ in the sense that one eigenvalue of the 
particle-scale force moment tensor is non-zero, and the other is zero. In this case, P = τ .

The fabric tensor associated with the central particle is diagonal for this coordinate system, with components 
R11 = 2 sin2(θ) and R22 = 2 cos2(θ). Hence, the difference, R22 − R11 = 2(cos2(θ) − sin2(θ) = 2 cos(2θ) is nonzero, indicating 
local anisotropy in the fabric.

An important question is, are there state variables which can characterize the shear jammed states? Note that neither 
φ nor shear strain γ are suitable. In fact, there is a large hysteresis in P , τ and Z vs. strain, as shown in representative 
data for τ vs. strain (here represented by ε) in Fig. 15, from Zhang et al. [22]. However, a very interesting finding, shown 
in Fig. 16, is that a large volume of data for P and τ , which scatter broadly when expressed as a function of φ, collapse 
onto a nearly common curve when expressed as a function of fNR, the fraction of non-rattler particles [14]. Likewise, data 
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Fig. 11. (Color online.) Shear jamming properties, after Bi al. [14]. (a) contrasts fragile and shear jammed states for which a strong force network percolates 
in respectively, only one and both directions. Also shows cluster size normalized by the box dimension vs. fNR for the fabric and strong force networks. 
The non-rattler fraction, fNR, is discussed below. (b) gives a compilation of a large number of measurements of the shear stress, τ vs. φ indicating whether 
the state is shear jammed, fragile, unjammed and at the yield stress.

Fig. 12. (Color online.) Amount of shear strain needed for a given φ to reach a shear jammed state, after Bi et al. [14]. Here, shear strain is represented by 
the symbol ε .

for Z vs. fNR for a broad range of φ in φS ≤ φ ≤ φ J collapse on a common curve, as shown in Fig. 17. Note that an essential 
feature of suitable state variables is the representation of the system anisotropy of shear jammed states.

3.3. Nonlinear response to shear

An interesting aspect of the shear jamming regime is the growth of all components of the stress tensor from 0 as γ is 
increased. Since τ = (σ2 −σ1)/2 and P = (σ2 +σ1)/2, where the signs of the σi can both be taken as positive, it follows that 
|P | ≥ |τ |. Thus, τ cannot increase without a corresponding increase in P . Since, P is a symmetric combination of principal 
stresses, it should not be sensitive to the direction of shear strain, and the experiments of Ren et al. [24] indicate that 
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Fig. 13. (Color online.) Anisotropy in shear stress and fabric, after Bi al. [14]. (a) is a scatter plot of ρ = R2 − R1, the fabric anisotropy, vs. τ for a large 
collection of measurements in the shear jamming regime, φS ≤ φ ≤ φ J . (b) gives ρ at the onset of shear jamming, here identified as the point where fNR

reaches fNR = 0.83.

Fig. 14. Sketch of possible force and torque balanced state for a disk that has exactly two contacts with two other disks, labeled ‘1’ and ‘2’. Note that the 
total force, i.e. the vector sum of the normal and tangential forces for each Fi , is along the y-axis.

P grows quadratically with γ as shown in Fig. 18a: P is a linear function of γ 2 to a good approximation. The ‘Reynolds 
coefficient’,

R = (∂2 P/∂γ 2|φ)/2 (5)

gives a quantitative measure of the strength of the coupling between γ and P . Note that in ordinary isotropic, linear 
elasticity, this coupling does not exist. In this regard, a very useful discussion of the Reynolds coefficient and its relation to 
dilatancy and the elastic moduli is given by Tighe [39].

The Reynolds coefficient, R , is a strong function of φ, with an apparent divergence at φ = φc � φ J . Fig. 18b and the inset, 
show R vs. �φ = φc − φ on log–log scales. R is consistent with a power-law fit: R = A(φc − φ)α , with α = −3.3 ± 0.1 and 
φc = 0.841 ± 0.004. Hence, φc cannot be distinguished from φ J . And, by comparison, φ J for the present experiments (as 
defined by the highest φ for which unjammed, fragile and shear jammed states can exist) is comparable to that for systems 
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Fig. 15. (Color online.) Shear stress vs. strain for cyclic shear, showing hysteresis in τ when the sense of shear strain is reversed. (From Zhang et al. [22]; 
here ε is used for the shear strain.)

Fig. 16. (Color online.) Pressure, shear stress and the non-rattler fraction show scaling collapse. (a) P and τ as a function of φ for various shear experiments 
from Bi et al. [14]. (b) The same data plotted as a function of the non-rattler fraction, fNR.

Fig. 17. (Color online.) (a) Data for Z as a function of the non-rattler fraction, fNR. Note the collapse of Z when expressed as a function of fNR. (b) Distri-
bution of Z at the onset of shear jamming, taken here to be for fNR = 0.83 (from Bi et al. [14]).

of frictionless 2D particles. At the opposite extreme of density, for φ ≤ 0.75, percolating contact networks do not form for 
the largest strains available in the experiments, which are γ = 54%.

4. Conclusions and outlook

This work has focused in particular on jamming for systems of frictional particles with circular symmetry, that is disks 
in 2D. Recent work has shown that the possible jammed states for this type of particle differ substantially from what is 
observed for models of frictionless particles. An immediate question is: are there any practical issues associated with shear 
jamming? Let me conclude by suggesting two settings where shear jamming occurs, and where the difference in jammed 
states for frictional and frictionless particles may be very significant.

Often, when a granular material is sheared, a shear band develops, as in Zhang et al. and Bi et al. [14,22]. As another 
concrete example, consider the Couette experiments of Howell et al. [17,26]. In these experiments, a layer of photoelastic 
particles (either disks or pentagons) was sheared between an inner rotating wheel of radius R (A) and a fixed outer ring (B), 
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Fig. 18. (a) Reynolds pressure P (γ 2) observed in forward shear (see text) for φ = 0.691 − 0.816. (b) Reynolds coefficient R determined by appropriate 
least-squares fits, obtained from up to 54% forward shear (red squares), up to 27% forward shear (blue dots), and cyclic shear tests under limit cycle 
behavior (black triangles). The inset shows the same data on double logarithmic scales with φc = 0.841 ± 0.004. The error bar is smaller than the size 
of the symbols unless marked. The dashed line shows a fit to a power law. A line corresponding to an exponent −3.3 is also shown for reference. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. (Color online.) Schematic of Couette experiment, from Howell et al. [17,26].

as in the schematic of Fig. 19. An image of the resulting force network, at one instant, is superposed on the apparatus 
schematic.

Fig. 20 shows the packing fraction as a function of radial distance, (r − R)/d from the edge of the inner rotating wheel 
(here, normalized by the mean particle size, d). These data pertain to a shear jammed state. Immediately next to the 
shearing wheel, where (r − R)/d � 0, the mean packing fraction is very low. Right at the wheel, φ is lowered due to the 
fact that the wheel has a much smaller curvature than any one of the particles. However, for distances from the wheel of 
a particle diameter or more, this geometric effect is no longer relevant. But, for distances up to about 7 d, the density is 
still low, and in fact it can be surprisingly low. This is a shear band. Note in these experiments, the strains are very slow, 
and the system is always very close to force balance. Force balance requires that the system is jammed over the full radial 
range of the experiment. The shear jammed states at low φ and high τ and P in the nose of the shear jamming diagram, 
Fig. 1b, enable the presence of the low-φ region associated with the shear band region, which is in force balance with a 
much denser region at larger distances from the shearing wheel.

A second example where shear jamming is manifested is in hopper flow. For instance, grains inside a conical shaped 
hopper must be unjammed to flow out of an opening at the bottom. If the opening is large, jams do not occur; if they 
are very small, then the hopper is blocked. For intermediate hopper openings, there may be flow which terminates when a 
jam occurs. Fig. 21 shows an example of a 2D hopper flow experiment [58] where a jam has occurred. Before jamming, the 
flow was characterized by a high degree of shear strain, and when jamming occurred, the clearly visible long force chains 
are indicative of static shear stresses. In this experiment, the final jammed state has a low φ, in the middle of the shear 
jamming density regime. And, the flowing state has a density that is only slightly lower on average than the final shear 
jammed state. Hence, at least for the experiment of Fig. 21, where it is possible to observe the details of flow and force 
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Fig. 20. Packing fraction, φ vs. radial distance from inner shearing wheel, showing a deep shear band (from Veje et al. [26]).

Fig. 21. (Color online.) Photoelastic image of a state from a 2D hopper experiment, after jamming (from Tang et al. [58]).

networks, the transition between flowing and jammed occurs very rapidly because the density does not have to change very 
much to lead to a jammed state. Thus, the possibility that unjammed, fragile and jammed states can all exist for a single 
density in the range φS ≤ φ ≤ φ J has interesting potential consequences for granular flows. It is possible for a system to 
exist at one of these densities, where it is flowing, because the associated shear stress is too low for it to jam. However, 
it is then possible for the flowing system to jam with minimal or no density change if its shear stress increases.

In a different vein, the experiments discussed here showed that particles with friction, but that are spherical or circular 
have new and interesting jamming properties compared to frictionless particles. But this raises the question of how other 
particle properties might affect states near jamming, e.g., properties such as particle shape, perhaps coupled to friction. Of 
considerable interest are ways of differentiating states in the shear jamming region, since density alone is not sufficient. 
This has been explored in several recent studies, including Ren et al. [24] and a novel force tile representation in Sarkar 
et al. [59]. This is clearly an open and evolving set of issues.
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