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r é s u m é

Le présent article donne une brève description du processus de formation de motifs 
et du phénomène de coarsening ; il met l’accent sur les développements expérimentaux 
et théoriques récents dans ces domaines. Il tient lieu d’introduction à la cinétique de 
croissance d’ordre dans le dossier « Dynamique de coarsening » des Comptes rendus Physique, 
coordonné par Federico Corberi et Paolo Politi.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

When a parameter in a macroscopic homogeneous system is changed, the homogeneous state often becomes unstable 
and the system evolves into a time-dependent inhomogeneous configuration with growth of order. There are two major al-
ternatives. One is the asymptotic selection of a persistent length associated with a given pattern. The other one is coarsening, 
with an increase in the length scale with time only arrested by the full homogenisation of the sample.

Problems of this kind are found in, essentially, all branches of science. Phase ordering kinetics occur at very different 
scales. Clustering dynamics occurred in the early universe. Coarsening and pattern formation are observed in solids as well 
as in fluids. In social sciences, models for, e.g., opinion dynamics involve coarsening phenomena. In developmental biology, 
pattern formation describes the mechanism whereby initially equivalent cells in a developing tissue in the embryo assume 
complex forms and functions. Bacterial colonies grow into fancy spatial patterns depending on the surrounding conditions. 
Many other examples could be used to illustrate these phenomena.

Our understanding of coarsening and pattern formation has progressed following two main routes. One is theoretical and 
the main actors have been mathematicians, mostly specialised in probability methods, theoretical physicists and theoretical 
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chemists. The other one is experimental, with important contributions made by the applied physics community. Indeed, 
in the latter field of research, the interest in phase-ordering kinetics is due to the fact that material properties usually 
depend upon the morphology of the phase separating sample. In metallurgy, a rather old domain of material science, 
the motivation for blending immiscible components is to create materials with interpenetrating domains that can have 
better properties than their components. In more recent material engineering, creating micro-patterns and nano-patterns of 
polymeric materials is of great interest for microdevice fabrication.

Phase-ordering kinetics occur in systems relaxing to equilibrium, but it also exists under external drive. The dynamics 
could follow microscopic physical rules and respect a detailed balance allowing the system to reach thermal equilibrium 
asymptotically, or they could go beyond this limitation, in other physical situations or in models for social sciences, economy 
or other non-physical branches of science.

Coarsening often occurs after crossing a phase transition. A well-known case is the temperature quench through a critical 
point that separates the disordered high temperature phase from an ordered low-temperature phase. The dynamics across 
such (standard) phase transitions are rather well understood qualitatively, although a full quantitative description of specific 
cases is hard to develop. Different mechanisms for pattern formation and coarsening exist and have been studied in great 
detail; let us mention a few of them here.

We focus first on the freely relaxing case with dynamics allowing for equilibration. In the late stages of coarsening, the 
configurations within domains of, say, two equilibrium phases have already reached equilibrium and the excess free energy 
of the system, which is now localised at the interface between the two phases, decreases with time.

In systems with non-conserved scalar order parameter (see the main text for the precise definition of these and other 
technical terms employed in the introduction) as realised, for instance, in magnetic systems, our analytical understanding of 
phase-ordering kinetics is based on the dynamics of these interfaces, and the driving force behind coarsening is just surface 
tension. This kind of dynamics is often referred to as curvature driven.

The simplest example of dynamics with conserved order parameter is Ostwald ripening, the phenomena whereby smaller 
particles in solution dissolve and deposit on larger particles in order to reach a more thermodynamically stable state in 
which the surface to volume ratio is minimised. As the larger particles grow, the area around them is depleted of smaller 
particles. This phenomenon was originally observed in solid solutions, but is also common in emulsions, such as the oil-in-
water one, and many others.

In phase separating mixtures, another realisation of conserved order parameter dynamics, two possible mechanisms for 
the initial domain formation exist:

– if the quench ends at a point outside the spinodal curve, the system is stable against small fluctuations. Rare large 
fluctuations of thermally activated origin create “critical droplets” (nucleation) that subsequently coarsen (growth);

– if the quench ends at a point inside the spinodal curve, the system is unstable against small fluctuations, leading to 
phase separation by unstable growth.

In the late stages of growth, both mechanisms give rise to qualitatively similar coarsening motifs. Depending upon the rela-
tive density of the two components, one can find isolated droplets of the minority phase immersed in the majority one, with 
their further evolution following Ostwald ripening, or a bi-continuous structure with domains of the two kinds percolating 
across the sample. In these systems, the curvature sets up a gradient in the chemical potential that causes molecules to 
diffuse from regions of high positive curvature to regions of low or negative curvature. This is an evaporation–condensation 
mechanism. This mechanism operates in binary alloys, while segregation in binary fluids is drastically modified by flow 
fields.

The excess free energy in a quenched system with scalar order parameter is stored in sharp domain walls. In cases in 
which the order parameter is a vector, other kinds of topological defects exist. During the ordering process, the system 
has to eliminate some of them to reach configurations typical of equilibrium over larger and larger scales. This occurs, 
for instance, in the 2d xy model quenched below its Kosterlitz–Thouless temperature, with the progressive annihilation of 
vortex–antivortex pairs in the course of time.

The mechanisms mentioned above are not the only ones leading to coarsening. In problems in which microscopic dy-
namics do not necessarily respect a detailed balance, the evolution may lead to absorbing states via a coarsening process 
in which the interfaces are of totally different natures and do not have surface tension. This is the case of, e.g., the voter 
model.

I do not intend to write here a complete overview of the theoretical description of pattern formation and coarsening 
phenomena, as several excellent review articles, e.g., [1–6], and textbooks [7–10] treating these topics already exist, and 
many technical aspects will be covered in the following articles. I will, instead, start by giving a very short survey of the 
main features of phase-ordering kinetics referring the reader to already published references and the relevant chapters 
in this volume for further details. I will then describe some open questions and recent methods that are currently being 
explored and that I personally find interesting and promising.



L.F. Cugliandolo / C. R. Physique 16 (2015) 257–266 259
2. Experiments

Traditionally, coarsening systems are studied in the lab with scattering methods. These give access to the time-dependent 
structure factor, S(k, t), and the dynamic scaling assumption was formulated to describe the time and wave-vector depen-
dence of this observable. More subtle features, such as the Porod tails characterising the long wave-vector dependence of S , 
were also uncovered from this kind of experimental measurement [3,5]. In spite of the success of Fourier-space methods, 
real-space techniques are better suited to give direct access to the microscopic mechanisms for coarsening and, therefore, a 
more detailed understanding of these phenomena. Indeed, a variety of visualisation methods that are currently being devel-
oped should allow one to observe different aspects of coarsening systems in much more detail than what has been done so 
far.

Direct imaging of the domain structure is easier to achieve in two-dimensional systems. For instance, temperature-
controlled polarising microscopy was used in [11,12] to study the chiral domain structure in electric-field-driven deracem-
ization of an achiral liquid crystal. Optical microscopy is commonly used to study domain growth in polymer thin films [13]. 
Magnetic force microscopy, photoemission electron microscopy and Lorentz transmission electron microscopy are used to 
visualise the magnetic moment configurations in artificial magnetic materials, such as the 2d spin-ice samples [14,15] that 
undergo two kinds of order–disorder phase transitions across which stripe magnetic ordering develops [16–19].

New experimental techniques make now possible the direct visualisation of the domain structure of three-dimensional
coarsening systems as well. In earlier studies, the domain structure was usually observed post mortem at a given age, and 
only on two-dimensional slices of the samples with optic or electronic microscopy. Nowadays, it is possible to observe the 
full 3d micro structure in situ, in the course of evolution.

Three-dimensional images give, in principle, access to a complete topological characterisation of the interfaces via the 
calculation of quantities such as the Euler characteristics and the local mean and Gaussian curvatures. On top of these very 
detailed analyses, one can also extract the evolution of the morphological domain structure on different planes across the 
samples and investigate up to which extent the third dimension has an effect on what occurs in strictly two dimensions. 
These methods, and the study of the structures in real space, are becoming more and more popular. We here mention just 
a few applications to different kinds of domain growth systems.

In the context of soft-matter systems, laser scanning confocal microscopy was applied to phase separating binary liq-
uids [20] and polymer blends [21–23]. For example, from images at a very late stage of phase separating bicontinuous 
polymer blend made of 50% polybutadiene and 50% polyisoprene, Jinnai et al. [24] observed saddle-shaped surfaces with 
the statistical averages, KM � 0 for the mean curvature, and KG � −6.2 × 10−2 μm2 for the Gaussian curvature. There-
fore, the interfaces resemble, on average, minimal surfaces (where KM = 0 at each surface point), although considerable 
deviations were also reported.

X-ray tomography, a way to observe slices of the sample in a progressive and non-destructive manner, was used to 
quantify phase separating glass-forming liquid binary mixtures [25]. Among many other interesting features, this study 
showed that, unexpectedly, this system evolves in a diffusive hydrodynamic regime.

In the realm of magnetic systems, the Talbot–Lau neutron tomography non-destructive method presented in [26] looks 
very promising.

3. Models

Phase ordering kinetics are modelled with kinetic Ising or Potts models [9]; they are studied numerically with lat-
tice Boltzmann [6,27] and Monte Carlo simulations, and, mostly analytically, with stochastic equations on coarse-grained 
fields [3,5]. These approaches give access to different aspects of the processes, and which one is easier to deal with analyti-
cally depends upon the issue to explore.

Interacting two-state systems were originally introduced to model magnetic phase transitions in easy axis magnets. The 
two-state variables, Ising spins, can be suitably transformed into occupation numbers and one can model with them, e.g., 
binary mixtures; they can be generalised to take many values and one can describe with them, e.g., soap froths; still, the 
updates between different states can be chosen in very different ways to capture various kinds of microscopic dynamics.

The conservation laws, if any, should be respected by the microscopic updates. The two main universality classes one 
encounters are:

– non-conserved order parameter dynamics, with its most prominent example being the ordering dynamics of a ferro-
magnet with scalar of vectorial order parameter;

– conserved order parameter dynamics, its typical example being the kinetics of phase separation of a binary mixture.

The master equation is the basic analytic tool to deal with the stochastic dynamics of discrete variables. This route was 
opened by R. Glauber in his analysis of the stochastic dynamics of the Ising chain and it has been followed by numerous 
authors in varied contexts [9,28–30]. However, in general, the master equations lead to a hierarchy of coupled equations for 
the correlation functions that can neither be disentangled nor solved analytically. Numerical simulations using Monte Carlo 
methods are, instead, easy to implement and provide us with valuable information.
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The other popular way to describe coarsening phenomena is phenomenological and it has proven to be very successful 
and quite complete. It is based on the identification of a coarse-grained order parameter, the definition of a deterministic 
force (that may or may not derive from a thermodynamic Landau free-energy density functional), and the proposal that 
the order parameter evolution is governed by a Langevin equation that respects the conservation laws. This leads to the 
time-dependent Ginzburg–Landau equation for non-conserved order parameter dynamics, the Cahn–Hilliard equation for 
the conserved order parameter case, and other stochastic differential equations.

This approach allows one to reach many interesting conclusions. For instance, with the field theory one proves that there 
is no pinching-off of protrusions in the 2d continuous-curvature-driven dynamics at zero temperature. Instead, an interface 
in 3d that has both convex and concave parts can undergo fission if the concave portion is thin enough [9]. However, a full 
solution to these problems is hard to develop as they are set into the form of a non-linear functional Langevin equation 
with no small parameter.

The microscopic discrete models as well as the field theoretical ones can be extended to include energy injection via 
non-conservative forces, or special microscopic dynamic rules.

A few completely or partially solvable models for coarsening exist, but they are confined to one dimension, as the 
Glauber Ising chain or the one-dimensional Ginzburg–Landau equation, or are mean-field approximations that can be very 
simple or quite refined as the large N limit of a vector field stochastic dynamics, see, e.g., [9,10]. The analysis of the effect 
of quenched disorder in the form of random fields can be done in 1d thanks to the strong disorder renormalisation group 
method [31]. In the more realistic finite space and internal dimension problem, one cannot find analytical solutions to the 
discrete or continuous variable models.

Several approximation schemes, including self-consistent approximations to the perturbation series and auxiliary field 
methods, have been developed over the years to characterise the correlation functions. These methods, notably the ones 
due to K. Kawasaki and collaborators and G. Mazenko and collaborators, are well explained in the literature, see, e.g., [3,5,7]. 
They are quite successful for non-conserved order parameter dynamics as they predict scaling functions for the space–time 
correlations that are very close to the ones obtained with numerical or experimental methods. They are, though, less precise 
for scalar conserved order parameters [7]. The problem of finding a good analytic approach to this phenomenon remains, 
thus, open.

4. Dynamic scaling

Domain growth [3,5] in systems with scalar order parameter is characterised by a patchwork of large domains, the interior 
of which is basically thermalised in one of the equilibrium phases while their boundaries slowly move and tend to become 
smoother due to their elastic energy. The patterned structure is not quiescent, ordered regions grow on average with a 
linear length R(t), but the time needed to fully order the sample diverges with the system size.

The dynamic scaling hypothesis states that at late times and in the scaling limit r � ξ (r is a distance and ξ the equi-
librium correlation length), the system is characterised by a single length-scale R(t) such that the domain structure looks 
similar at different times if one rescales lengths by R(t). In practice, this means that all time and space dependencies in cor-
relation functions appear as ratios between distances and R(t). The time-dependence of the length scale is not sensitive to 
microscopic details, but it is to the dimension of the order parameter, the conservation laws and the presence of quenched 
randomness. In clean systems the characteristic length grows algebraically in time, R(t) � t1/z , with z a dynamic exponent 
that defines the dynamic universality class [2,3]. In scalar systems with non-conserved order parameter dynamics, z = 2. In 
scalar systems with conserved order parameter dynamics, bulk diffusion dominates on long length scales and R(t) � t1/3

while surface diffusion can be important when the scales are small and R(t) � t1/4. Surface diffusion, negligible as t → ∞, 
often dominates in the experimental range of interest.

Hydrodynamic flows make the dynamics of liquids more complicated [7,27]. Indeed, in a phase-separating system, the 
mean local curvature of the interfaces induces a pressure difference that produces flow. Therefore, in a binary mixture, fluid 
flow also contributes to the transport of the order parameter. When diffusion dominates domain growth, the growth law 
reduces to the one of a binary alloy, R(t) � t1/3. In the low Reynolds number limit, a simple argument whereby the friction 
and Laplace pressure terms are asked to be of the same order yields R(t) � t (viscous hydrodynamic regime). For later 
times and/or large Reynolds numbers, inertial effects on the flow velocity can no longer be neglected and a different order 
of magnitude argument leads to R(t) � t2/3 (inertial hydrodynamic regime). The cross-over between these growth laws was 
checked with lattice Boltzmann simulations [27]. A discussion of the subtle cross-over between these regimes can be found 
in [4,6]. Coarsening in fluids will be further discussed in the chapter by S. Das, S. Roy, and J. Midya.

Hydrodynamic effects of this kind are especially important in polymer systems. In symmetric polymer blends, where 
constituent polymers have nearly identical molecular weights and viscoelastic properties, the hydrodynamic interaction 
eventually governs the late-stage phase separation in the same manner as in usual binary fluid mixtures. In asymmetric 
polymer blends, however, viscoelastic effects unique to polymers can drastically influence phase separation, see [7,32] for 
more details.

In systems with competing interactions, for instance, in problems in which a spin has ferromagnetic and antiferromagnetic 
exchanges with different spins in the same sample, the growth of R(t) can be much slower and logarithmic growth has been 
obtained in some of these cases. These models have been used to mimic the slow down in glassy systems [33,34].
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Weak quenched disorder slows down the dynamics of macroscopic systems with respect to their clean limit. Take, for 
instance, the random-field Ising model. For probabilistic reasons, the fields can be very strong and positive in some region 
of the sample and favour positive magnetisation, and very strong and negative in a neighbouring region and favour negative 
magnetisation. It will then be very hard to displace the phase boundary and let one of the two states conquer the full 
spatial region originally covered by the two phases. Indeed, in 2d the random fields destroy the finite T transition, while 
in 3d they just deplete the ordered phase. The probability of finding such rare regions can be quantified. The relaxation of 
a small perturbation that takes the system slightly away from equilibrium becomes slower than exponential, the dynamic 
counterpart of the Griffiths essential singularities of free energy. The assumption of a power-law dependence of free-energy 
barriers with size combined with an Arrhenius argument suggests R(t) � ln1/ψ t for the growing length.

Strong quenched disorder renders the dynamics still more complex. Spin-glasses are the archetype of such systems. Af-
ter a quench from high to low temperatures, they not only show very slow out of equilibrium relaxation, never reaching 
thermal equilibrium, but they also display very intriguing memory effects under complicated paths in parameter space [35]. 
Although it is not clear whether the dynamics occur via the growth of domains, scaling of dynamic correlation functions 
describe numerical data quite precisely and, somehow surprisingly, with a power law R(t) � t1/z . This fact is not compatible 
with mean-field predictions of a much complex time-dependence that could perhaps only establish at much longer time 
scales. The power-law growth of R(t) is not compatible either with the droplet picture predictions. In this model, static 
order is assumed to grow as in standard coarsening systems with two equilibrium states related by symmetry. The evolu-
tion at low-enough temperatures should then be dominated by thermal activation with the typical free-energy barrier to 
nucleate a droplet assumed to scale as Lψ with ψ a non-trivial exponent. Dynamical observables should then follow scaling 
laws in terms of a growing length R(t) � ln1/ψ t . Before drawing conclusions one must keep in mind that the analysis of 
experimental and numerical data is difficult given the limited range of time scales available in both cases. In [36], an effi-
cient strategy for data analysis with the goal of finding the best R(t) for dynamic scaling is discussed and might be of help 
in the future analysis of this question.

The chapter by Federico Corberi presents a discussion of quenched randomness effects on coarsening systems.
We have already stressed that the dynamics of coarsening systems with scalar order parameter is very much determined 

by the dynamics of the interfaces between domains. Coarsening is therefore closely related to the dynamics of elastic 
manifolds (with or without quenched disorder) [37–41]. The dynamics of directed manifolds is relevant, for instance, to the 
understanding of crystal or other surface growth and is also a problem of great interest. It will be discussed in the chapter 
by Chaouqi Misbah and Paolo Politi.

In systems with vector order parameter, spin waves are typically accompanied by topological defects and these may have 
an influence on the growing length [3,5]. The latter is identified from the scaling of the correlation functions. In the 2d xy
model with non-conserved order parameter, R(t) � (t/ ln t)1/2, and the logarithmic correction is due to the vortices, while 
in 3d the simple R(t) � t1/2 is recovered.

The time-dependent scaling properties of linear response functions at criticality [42] and in the ordering phase [43] have 
been investigated by many authors. The motivation for these studies was to compare their scaling behaviour to the one of 
the associated correlation functions and to analyse how the equilibrium fluctuation–dissipation relation is modified out of 
equilibrium [44]. The ultimate purpose being the comparison to the fluctuation–dissipation relations in glassy systems with 
no obvious coarsening process. I will not pursue the description of the scaling forms found as these have been reported in 
detail in the three review articles mentioned above.

5. Morphologies

The characterisation of coarsening in samples and models has been done, mostly, in terms of correlation functions. These 
are easy to access experimentally with different kinds of scattering methods. The more recent experimental techniques 
briefly listed in Section 2 give us access to the real-space structure, even in three dimensions. In parallel, an ensemble of 
numerical and analytic works focused recently on the geometry of the time-dependent mosaic domain structure in Ising 
models and the eventual metastable states reached at zero temperature. We here summarise the main questions posed and 
the results obtained. I give references to the original articles as these results have neither been collected nor explained in 
reviews yet.

Influence of the initial state Two kinds of initial conditions should be distinguished and have a different subsequent low-
temperature dynamics. Initial conditions drawn from equilibrium at super-critical temperature (T0 > Tc) have finite corre-
lation length. This correlation length diverges in the initial configurations that are typical of the critical point (T0 = Tc). 
The evolution of these states is rather different from the one of completely disordered high temperature initial configura-
tions. This difference can be quantified with the study of correlation functions [45], the time-dependent pattern of domains 
[46–48] and the probability of getting stuck in metastable states at zero temperature [49–53].

Percolation in the 2d kinetic Ising model It was shown in [46,47] that, after a very short time span (a few Monte Carlo steps 
for the simulated cell), the morphological and statistical properties of the large structures in a 2d Ising model quenched 
from high to low temperature (areas of domains, lengths of interfaces, etc.) look like the ones of site percolation at its 
threshold. As the occupation probability for up and down spins in a high-T equilibrium configuration is smaller than the 
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one at critical percolation, this fact suggests that the system must have reached critical percolation at some point. A careful 
study of this approach demonstrated that the time needed to reach critical percolation scales as tp(L) � Lαp with αp an 
exponent that is smaller than one, depends upon the lattice structure and, presumably, the microscopic dynamics [54]. This 
time-scale can be transformed into a length scale Lp � t1/z

p � Lαp/z , and with it a new scaling variable can be added to 
correct the scaling of correlation functions and other observables. This issue has been discussed in this work as well and 
should be important for the description of experimental data.

Zero-temperature metastable states In d = 1, both the kinetic Ising chain with Glauber dynamics and the time-dependent 
Ginzburg–Landau equation with non-conserved order parameter ultimately reach complete alignment in a time scale that 
grows algebraically with the system size in the former case and exponentially in the system size in the latter. However, in 
the absence of thermal fluctuations, the d ≥ 2 ferromagnetic coarsening may freeze into metastable states.

In d = 2 the discrete model reaches the ground state or a stripe state with probabilities that depend upon the initial 
condition (T0 > Tc or T0 = Tc) and are equal, with high numerical precision, to the ones of having a spanning cluster at 
critical percolation in the former case [49,52] and different kinds of critical spanning clusters in the latter case [53].

In a time scale of the order of L2, the continuous model may also reach a stripe state. However, this one will eventually 
disappear due to the domain–wall interaction, and the system will condense into the ground state. This second process takes 
place on a much longer time scale, which diverges exponentially with the system size and lies well beyond experimentally 
relevant time scales for typical sample sizes.

For d = 3, the discrete model never reaches the ground state and several aspects of the metastable states have been 
discussed in [50,51]. In the continuous case, the Allen–Cahn equation implies that the long-lived metastable states are 
minimal surfaces (with vanishing local mean curvature) compatible with the boundary conditions.

For the Kawasaki spin-exchange dynamics, because of the conservation of the magnetisation, a system quenched to T = 0
always gets stuck.

Morphology of the time-dependent mosaic structure The distributions of domain lengths in Glauber Ising and Potts chains have 
been derived analytically [55–57,31]. The methods used in these papers are not adapted to be applied in higher dimensions. 
Still, many statistical and geometric properties of the hull-enclosed areas and domains in two-dimensional coarsening of 
Ising and Potts models with non-conserved and conserved-order-parameter dynamics have been elucidated [46–48,58,59]. 
The results for hull-enclosed areas in the non-conserved order scalar parameter universality class are, quite surprisingly, 
exact [46,47]. Similar studies of the ferromagnetic Ising universality class on two-dimensional slices of the 3d lattice are on 
their way [60]. Analysis of the full 3d structure obtained numerically appeared in [61,62] for non-conserved-order-parameter 
dynamics and in [63] for viscoelastic phase separation.

6. Cooling rate dependencies

In condensed-matter systems, most theoretical studies of phase ordering kinetics focus on the dynamics after infinitely 
rapid quenches, as finite quench timescales are expected to alter the dynamics only at short times and eventually become 
irrelevant. Cooling-rate dependencies in defect dynamics are, instead, central in cosmological theories as their time-scales 
are very different from the ones of the laboratory. Although the scenario whereby topological defects would act as seeds 
for matter clustering seems to be excluded by observation, the interest in predicting their density remains due to other 
possible effects of these objects. In the late 1980s, Zurek assumed that defect dynamics, once the systems has gone through 
the phase transition, are negligible and used critical scaling to derive a quantitative prediction for the density of defects; 
he also proposed to check these ideas in condensed-matter systems [64,65]. A large experimental and numerical activity 
followed with variable results, summarised in [66]. In two recent papers, we revisited the Kibble–Zurek mechanism in 
infinitely slow annealing across classical thermal second-order [67] and Kosterlitz–Thouless [68] phase transitions, and we 
elucidated the time and cooling-rate dependencies of the density of topological defects (domain walls or vortices) left over 
in the low-T phases. Our results proved that the dynamics in the low-T phase contribute significantly to the reduction of 
the density of topological defects in quenches with dissipative dynamics. Some other studies along these lines appeared 
recently in, e.g., [69,70].

7. External drive

The influence of an external drive such as an imposed shear flow, turbulence, gravity or temperature gradients have 
been the object of intensive study due to their relevance to applications. In spite of these efforts, basic questions about their 
effect on coarsening remain still open.

In binary fluids under an external shear flow, two interesting open questions are: which is the late-time behaviour and 
whether coarsening continues indefinitely or is ultimately arrested. This problem has been treated in some simplified cases. 
For example, it was shown that flow imposed by weak shear on two opposite surfaces of a two-dimensional binary fluid 
makes coarsening in the direction of flow more rapid. Instead, the behaviour of a binary fluid under strong shear is still an 
open question, and whether growth saturates in the transverse direction or not is still a matter of debate [4,7].
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Another externally driven system where coarsening effects appear are vibrated granular matter. Granular matter is a 
generic term that encompasses athermal systems of remarkable importance in industry and engineering. Grains can be 
actual sand grains but also pills, seeds or many other. In these athermal systems, a variation of the input energy as realised, 
for instance, by an external shake or tap, can change the internal ordering of the material. A common phenomenon studied 
in these systems is compaction, or the increase of the bulk density of, say, loosely packed sand under the effect of gravity 
when it is shaken at low amplitude. But compaction can be heterogeneous, with the formation and growth of grain clusters. 
Coarsening in granular matter will be discussed in the chapter by A. Baldassarri, A. Puglisi, and A. Sarracino.

The constituents of active matter [71] absorb energy from their environment or internal fuel tanks and use it to carry out 
motion. Energy is partially transformed into mechanical work and partially dissipated to the environment in the form of 
heat. The effect of the motors can be dictated by the state of the particle and/or its immediate neighbourhood and it is not 
necessarily fixed by an external field. The units interact directly or through disturbances propagated in the medium. Active 
matter exists at very different scales including bacterial suspensions and swarms of different animals.

Active matter displays out of equilibrium phase transitions that may be absent in their passive counterparts. Much 
theoretical effort has been recently devoted to the description of different aspects, such as the self-organisation of living 
microorganisms, the identification and analysis of states with spatio-temporal structure, and the study of the rheological 
properties of active particle suspensions.

A particularly interesting feature of active matter, in the context of this dossier, is the spatial phase separation into an 
aggregated phase and gas-like regions for sufficiently large packing fractions in the complete absence of attractive interac-
tions. The current research in phase separation in active fluids will be developed in the chapter by A. Tiribocchi, G. Gonnella, 
and D. Marenduzzo.

Stochastic Markov processes in which the noise acts multiplicatively on a function of the variable of interest are manifold. 
Examples of these processes appear in physics, chemistry and even economy: the diffusion of a colloidal particle close to a 
wall, the autocatalytic chemical reactions in which the production of a molecule is enhanced by the presence of the same 
molecules already produced, and the Black and Scholes model for option pricing. White multiplicative noise can induce highly 
nontrivial effects in one variable [72] as well as in extended systems. On the one hand, convective patterns are predicted by 
the Swift–Hohenberg equation near deterministic points where no pattern would exist without the external multiplicative 
white noise [73]. On the other hand, phase transitions in problems in which the deterministic part does not exhibit any 
symmetry breaking have also been exhibited [74,75]. Indeed, a short time instability is generated owing to the noise, and 
the generated nontrivial state is afterwards rendered stable by the spatial coupling. The transition shows a divergence of 
the correlation length, critical slowing down, and scaling properties, similarly to what occurs at a conventional second-order 
equilibrium phase transition. The dynamics display coarsening effects [75].

Godrèche and collaborators (see, e.g., [76] and refs. therein) have recently focused on the role played by spatial asymmetry
in the dynamics of phase ordering systems. In the context of Glauber dynamics, asymmetry means that the flipping spin 
is more influenced by some of its neighbours than by other ones. Such an asymmetric dynamics is therefore irreversible, 
because the principle of action and reaction is violated and detailed balance no longer holds. However, for some choices of 
the updating rules, the dynamics still take the system to the Gibbs–Boltzmann distribution function asymptotically and a 
coarsening process can establish below some critical value of the control parameter.

Coarsening arises also in the approach to condensation in driven diffusive systems. This phenomenon occurs in, e.g., 
zero-range processes, models in which equivalent particles hop from sites to sites on a lattice, with prescribed rates that 
only depend on the occupation of the departure site. The asymmetric Ising model, Urn models, models of mass transport, 
and other driven dissipative models also show this phenomenology [77]. The condensate manifests itself by the macroscopic 
occupation of a single site of a thermodynamically large system by a finite fraction of the whole mass in the first models 
mentioned, while for driven diffusive systems, the condensate manifests itself as a domain of macroscopic size.

8. Pattern formation

Pattern formation is the spontaneous formation of macroscopic spatial structures in open systems constantly driven far 
from equilibrium. Patterns can be stationary in time and periodic in space, periodic in time and homogeneous in space or 
periodic in both space and time. The keywords ‘dissipative structures’ or ‘self-organisation’ are also attached to this phe-
nomenon that was initially studied in fluid dynamics and chemical reactions but also appears in solid-state physics, soft 
condensed matter and nonlinear optics, and is now central to biology with, for instance, morphogenesis and the dynamics 
of active matter playing a predominant role. The traditional example is Rayleigh–Bénard convection: a fluid placed between 
two infinite horizontal plates that are perfect heat conductors at different temperatures. At a threshold value of the temper-
ature difference, the uniform state with a linear temperature profile becomes unstable towards a state with convective flow. 
In the context of chemistry the paradigm are systems with competition between temporal growth rates and diffusivity of 
the different species.

Systems that form patterns are usually described by over-damped dissipative deterministic partial differential equations. 
The exact form of the equations depends on the problem at hand, ranging from Navier–Stokes equations for fluid dynamics 
to reaction–diffusion equations for chemical systems. A well-studied case is the non-linear Schrödinger equation.

The spatio-temporal structures are found from the growth and saturation of modes that are unstable when a control 
parameter is increased beyond threshold. A parallel between the kind of bifurcation of fixed-point solutions and the order 
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of a phase transition can be established. Concretely, a linear stability analysis of the uniform state reveals the mechanism 
leading to the pattern formation. The analysis of non-linear effects is often realised numerically.

Noisy fluctuations can interact with a system’s nonlinearities or effectively produce non-linearities to enhance regular 
behaviour. For simple, typically one-variable systems, this counterintuitive noise effect is well known. On the one hand, 
noise can induce a potential barrier crossing in a multi-stable system. If, for an optimal noise level, the stochastic crossing 
times statistically match a deterministic time scale either internal or external of the system, a more regular behaviour may 
arise, in the form of a higher periodicity, for instance. Realisations of this mechanism are stochastic resonance, coherence 
resonance and noise-induced transport. On the other hand, noise can destabilise existing steady states and induce new 
ones with, possibly, higher regularity, via noise-induced transitions. In extended systems, noise can induce phase transitions 
between disordered and ordered phases. Noise driven spatio-temporal order has been observed experimentally, mainly in 
chemical and electronic systems, but more recently also in the biophysical context, and numerically in many models [78].

The theory of pattern formation was reviewed in [1] and the noise effects in [78]. More recent developments in this field 
will be covered in the chapter by A. Nepomnyashchy.

9. Quantum fluctuations

In the last decade, quantum non-equilibrium phenomena have grown in importance. In condensed matter systems, trans-
port through ever-smaller nanostructures, even single molecules, has been realised. On a different front, significant advances 
in the field of ultra cold atoms have allowed one to engineer quantum many-body systems in almost perfect isolation from 
the environment. Thanks to the ability to rapidly tune different parameters, e.g. the interaction strength between the atoms 
or the creation of controlled excitations, the non-equilibrium many-body physics of isolated quantum systems has thus 
been accessed. Besides their current experimental relevance and their possible technological applications, the physical be-
haviour of dissipative and isolated quantum systems out of equilibrium is clearly a topic of fundamental interest, and its 
understanding is still at an early stage.

A quantum system can undergo a quantum phase transition as a function of a parameter (say, external field or pressure) 
at strictly zero temperature. This critical point can continue into a critical line in the temperature – parameter-of-choice 
phase diagram.

The relaxation dynamics of systems quenched to a quantum critical point were analysed in [79,80], where various spin 
chains were considered, and in [81] where a vector field theory was studied with renormalisation and large N methods.

An abrupt quench from the disordered into the ordered phase following some path in the, say, two-dimensional pa-
rameter space will set the system into a non-equilibrium initial condition and the equilibrium process can then occur via 
quantum coarsening. There is no reason to believe that the dynamic scaling hypothesis will not hold under quantum fluc-
tuations. The reasonable assumption whereby fluctuations within domains should be determined by quantum and thermal 
fluctuations while the dynamics of interfaces should be close to the ones of their classical counterparts has been demon-
strated in some solvable mean-field models [82,83]. A scenario for the time-dependence of a growing length with several 
crossovers, in the coarsening dynamics of 3d itinerant ferromagnets was put forward in [84].

Spin textures, ferromagnetic domains and vortices have been observed experimentally in situ in quenched Bose–Einstein 
condensates of atoms with non-zero internal angular momentum [85]. The temporal and spatial evolution of these structures 
was also reported in this reference. The dynamics of this system is usually described with a Gross–Pitaevskii equation, and 
numerical simulations confirm the domain growth observed experimentally.

10. Beyond physics

When modelling dynamical systems in fields of science other than physics, there is, basically, no constraint on the 
dynamic rules that can be used.

The voter model is a particular reaction model, used to describe the spatial spreading of opinions [86] or populations [87]
in terms of coarsening or segregation. A q-valued opinion variable is initially assigned, with some rule, to each site on a 
lattice or a graph. The variables have no conviction and the microscopic dynamics is very simple: at each time step, a 
variable chosen at random adopts the opinion of a randomly-chosen neighbour. This parameter free model approaches one 
of the q absorbing states with complete consensus in a time that depends on the spatial dimensionality, the value of q and 
the system’s size. The approach occurs via a coarsening process in d ≤ 2 and because of a large random fluctuation in d > 2. 
The coarsening process in d = 2 is very different from the curvature-driven one, demonstrating that symmetry alone does 
not specify the asymptotic dynamics. A large bubble does not shrink, but slowly disintegrates as its boundary roughens 
diffusively while the radius of the droplet remains statistically constant. These facts are associated with the absence of 
surface tension [88]. The evolution of a random initial condition shows the growth of ordered spatial regions leading to 
growing length R(t) � t1/2 and the coarsening process is driven by interfacial noise. In generalised versions of this models, 
with a temperature, a dynamic phase transition is defined as the critical line between a low-temperature region where 
clusters (or domains) grow indefinitely, and a high-temperature region where one only observes fluctuations at a finite 
scale [89].
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11. Wrap-up

I have presented a short description of various systems evolving through phase-ordering dynamics. In the rest of this 
volume, some of these problems will be discussed in more detail.
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