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The tests of the constancy of fundamental constants are tests of the local position 
invariance and thus of the equivalence principle, at the heart of general relativity. After 
summarising the links between fundamental constants, gravity, cosmology and metrology, 
a brief overview of the observational and experimental constraints on their variation is 
proposed.
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r é s u m é

Les tests de la variation des constantes fondamentales sont des tests de l’invariance de 
position locale et donc du principe d’équivalence, au cœur de la relativité générale. Après 
un résumé des liens entre constantes fondamentales, gravitation, cosmologie et métrologie, 
ce texte propose un état des lieux des contraintes expérimentales et observationnelles sur 
leur variation.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Fundamental constants are not determined by the theories in which they appear. They can only be measured, which 
is actually their most important property. This explains why metrology has engaged in the quest of measuring physical 
constants, fundamental or not, to the highest precision that is deeply entangled with the improvement of the definition and 
realisation of the standards of units [1].

These constants play an important role in physics since they set the order of magnitude of phenomena, allow one to forge 
new concepts and characterise the domain of validity of the theories in which they appear. They also play a central role in 
cosmology and astrophysics. Their value fixes the rate of local clocks (e.g., radioactive decay rates, atomic transitions, etc.) 
that allow one to perform datation of geophysical and astrophysical phenomena. There are a key to the reconstruction of the 
history of our Universe. The phenomena that can be observed in our local Universe, from big-bang nucleosynthesis time to 
now, rely mostly on general relativity, electromagnetism, and nuclear physics. The fact that we can understand the Universe 
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and its laws has an important implication in the structure of physical theories. At each step of their construction, we have 
been dealing with phenomena below a typical energy scale, for technological constraints, and it turned out (experimentally) 
that we have always been able to design a consistent theory valid in such a restricted regime. This is not expected a priori 
and is deeply rooted in the mathematical structure of the theories that describe nature. This property, called scale decoupling 
principle, refers to the fact that there exist energy scales below which effective theories are sufficient to understand a set of 
physical phenomena. Effective theories are the most fundamental concepts in the scientific approach to the understanding of 
nature and they always come with a domain of validity inside which they are efficient to describe all related phenomena. 
They are a successful explanation at a given level of complexity based on concepts of that particular level. For instance, we 
do not need to understand and formulate string theory to develop nuclear physics and we do not need to know anything 
about nuclear physics to develop chemistry or biology.

The set of theories that describe the world around us can then be split into a hierarchy of modular levels in interaction. 
The relation between the different levels have the following properties [2,3]. (1) Higher-level behaviours are constrained by 
the lower level laws from which they emerge. This is the usual bottom-up causation in which microscopic forces determine 
what happens at the higher levels. The more fundamental gives the space of possibilities in which a higher level can develop, 
by constraining, e.g., causality, the type of interactions or structures that can exist. (2) Scale separation implies that at each 
level of complexity, one can define fundamental concepts that are not affected by the fact that they may not be fundamental 
at a lower level. In that sense, much of the higher level phenomena remain quite independent of the microscopic structures, 
fields, and interactions. (3) At least for the lowest level, the fact that physical theories are renormalisable implies that they 
influence higher levels mostly through some numbers. This in particular the case of the fundamental constants of a given 
effective theory. While they cannot be explained within the framework of this particular level, they can however be replaced 
by more fundamental constants of an underlying level. For instance, the mass or the gyromagnetic factor of the proton are 
fundamental constants of nuclear physics. They can however be “explained”, even if the actual computation maybe difficult 
(see [4]), in terms of constants of the lower level (such as the quark mass, binding energies). This explanation of the 
constants of an effective theory may reveal new phenomena that could not be dealt with before (e.g., the fundamental 
parameters of the effective theory may now be varying), but these phenomena have to be at the margin (or below the 
error bars) of the experiences that have validated this effective theory. (4) Not all the concepts of a higher level can be 
explained in terms of lower-level concepts. Each level may require its own concepts that do not exist, or even are not 
related, to lower-level concepts. These are emergent properties so that the whole may not be understood in terms of its 
parts. (5) The fact that there exists a lower level of complexity and thus microscopic degrees of freedom implies that these 
degrees of freedom can be heated up so that we expect to see entropy and dissipation arising. (6) The higher levels of 
complexity can back-react on the lower levels. This is the notion of top–down causation. (7) Historically, various disciplines 
have developed independently in almost quasi-autonomous domains, each of them having its own ontology. Sometimes two 
such theories collide and show inconsistency that will need, in order to be resolved, the introduction of new concepts, more 
fundamental, from which the concepts of each one of the theories can be derived in a limiting behaviour. For example, 
Maxwell electromagnetism and Galilean kinematics are incompatible, which is at the origin of special relativity with the 
new concept of spacetime; or in quantum mechanics, the concept of wave function has to be coined from the preexisting 
concepts of particle and wave. This implies that concepts that were thought to be incommensurable (such as space and time, 
or momentum and wave number) need to be unified, which is usually achieved by the introduction of new fundamental 
constants (speed of light, or Planck constant, in the two examples above) that were not considered as fundamental (or even 
existed) in the previous theories; see, e.g., [5].

I shall thus define a fundamental constant as “any parameter not determined by the theories in which it appears”, which 
emphasises that constants and theories cannot be considered separately. Indeed, this parameters have to be assumed con-
stant for two reasons. First, from a theoretical point of view, we have no evolution equation for them (since otherwise they 
would be fields) and they cannot be expressed in terms of other more fundamental quantities. Second, from an experimen-
tal point of view, in the regimes in which these theories have been validated, their constants should be constant at the 
accuracy of the experiments, to ensure their reproducibility. This means that testing for the constancy of these parameters 
is a test of the theories in which they appear and allow us to extend the knowledge of their domain of validity.

These constants raise a number of questions. First, are they really constant during the evolution of the Universe? Then, 
can we explained their value? The first question is related to the validity of Einstein’s equivalence principle, while the sec-
ond is related to the apparent fine tuning of our Universe. In the following, I will summarise in Section 1 some theoretical 
aspects about fundamental constants, in particular their relation to general relativity and cosmology. Section 2 will pro-
vide an overview of the constraints on their variation, focusing on the latest developments. More details can be found in 
reviews [5,6], as this text focuses on more recent developments.

2. Theoretical considerations

This section briefly summarises some theoretical considerations about the constants, in particular their nature (Sec-
tion 2.1), their link with the equivalence principle (Section 2.2), and cosmology (Section 2.3)
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2.1. Some properties of the constants

Given the previous definition, the number of fundamental constants depends on the theoretical framework we are con-
sidering to describe the laws of nature. Today, gravitation is described by general relativity, and the three other interactions 
and whole fundamental fields are described by the standard model of particle physics. In such a framework, one has 22 
unknown constants—the Newton constant, six Yukawa couplings for quarks and three for leptons, the mass and vacuum 
expectation value of the Higgs field, four parameters for the Cabibbo–Kobayashi–Maskawa matrix, three coupling constants, 
a UV cut-of to which one must add the speed of light and the Planck constant; see, e.g., [7]. Indeed, when introducing 
new, more unified or more fundamental theories the number of constants may change so that the list of what we call 
fundamental constants is a time-dependent concept and reflects both our knowledge and our ignorance [8].

For instance, we experimentally know today that neutrinos have to be massive. This implies that the standard model of 
particle physics has to be extended and that it will involve at least seven more parameters (three Yukawa couplings and 
four CKM parameters). On the other hand, this number can decrease, e.g., if the non-gravitational interactions are unified. 
In such a case, the coupling constants may be related to a unique coupling constant αU and a mass scale of unification MU
through α−1

i (E) = α−1
U + (bi/2π) ln(MU/E), where the bi are numbers that depend on the explicit model of unification. This 

would also imply that the variations, if any, of various constants will be correlated.
Since any physical measurement reduces to the comparison of two physical systems, one of them often used to realise a 

system of units, it only gives access to dimensionless numbers. This implies that only the variation of dimensionless combi-
nations of the fundamental constants can be measured and would actually also correspond to a genuine modification of the 
physical laws; see, e.g., [5,6,9]. Changing their value while letting all dimensionless numbers unchanged would correspond 
to a change of units. It follows that out of the 22 constants of our reference model, we can pick three of them to define a 
system of units (such as, e.g., c, G and h to define the Planck units) so that we are left with 19 unexplained dimensionless 
parameters, characterising the mass hierarchy, the relative magnitude of the various interactions, etc. This also means that 
in theory three fundamental constants can be used to define three of the seven base units of the international system of 
units (e.g., the metre, the second, and the kilogram). While the speed of light has already been fixed in 1983 so that the 
metre derives from the second, the possibility to fix the Planck constant, the charge of the electron, the Boltzmann constant 
and the Avogadro number to define the metre, the kilogram, the Candela, the Ampere, the mole and the Kelvin from the 
second (hence reducing all units to a single clock, the dream of all theoreticians, and in particular of relativists) is now 
lively debated [10].

The necessity of theoretical physics in our understanding of fundamental constants and for deriving bounds from their 
variation is, at least, threefold. (i) It is necessary to understand and to model the physical systems used to set the constraints 
(and to determine the effective parameters that can be observationally constrained to a set of fundamental constants); (ii) it 
is necessary to relate and compare different constraints that are obtained at different space-time positions (this requires 
a space-time dynamics and thus to specify a cosmological model); (iii) it is necessary to relate the variation of different 
fundamental constants. One has also to be aware that while in principle some constant parameters of a theory can be 
expressed in terms of the 22 above-mentioned fundamental constants, in practice the computation cannot be achieved with 
enough accuracy. This is the case, for example, of the masses of the neutron and proton, or the gyromagnetic factors [4]. 
This limitation has important consequences in the tests I shall discuss below, since even if one can set constraints on the 
variation of some of these parameters, it is often difficult and generically model-dependent to translate this to constraints 
on the variation of the 19 fundamental parameters. This also means that this is an active line of research.

2.2. Links with general relativity

The tests of the constancy of fundamental constants take all their importance in the realm of the tests of the equivalence 
principle [11].

This principle, which states the universality of free fall, the local position invariance and the local Lorentz invariance, is at 
the basis of all metric theories of gravity and implies that all matter fields are universally coupled with a unique metric gμν ; 
Smat(ψ, gμν). The dynamics of the gravitational sector is dictated by the Einstein–Hilbert action Sgrav = c3

16πG

∫ √−g∗R∗ d4x. 
General relativity [12] assumes that both metrics coincide, gμν = g∗

μν .
The test of the constancy of constants is a test of the local position invariance hypothesis and thus of the equivalence 

principle. Let us remind that it is deeply related to the universality of free fall [13] since if any constant ci is a space-time-
dependent quantity, so will the mass of any test particle. Starting from the action of a point particle of mass mA

Sp.p. = −
∫

mA[c j]
√

−gμν(x)vμvν dt

with vμ ≡ dxμ/dt , its equation of motion is

uν∇νuμ = −
(

∂ lnmA

∂ci
∇βci

)
(gβμ + uβuμ)

Hence, a test body does not enjoy a geodesic motion and experience an anomalous acceleration that depends on the 
sensitivity fA,i ≡ ∂ ln mA/∂ci of the mass mA to a variation of the fundamental constants ci . In the Newtonian limit, 
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g00 = −1 + 2�N/c2 so that a = gN + δaA with the anomalous acceleration δaA = −c2 ∑
i f A,i

(
∇ci + vA

c2 α̇i

)
. Such devia-

tions are strongly constrained in the Solar system and also allow one to bound the variation of the constants [14].

2.3. Links with cosmology

This property allows one to extend the tests of the equivalence principle, and thus tests of general relativity, on astro-
physical scales. Such tests are central in cosmology, in which the existence of a dark sector (dark energy and dark matter) 
is required to explain the observations [15]. Universality classes of dark energy models have been defined [16,17], and 
the constants give tests on some of these classes, hence complementing other tests of general relativity on astrophysical 
scales [17] and of the hypothesis of the cosmological model [18].

A cosmological insight into the value of the fundamental constants is becoming more and more popular. It is based on 
the idea that our observable Universe is part of a larger multiverse and on the application of the anthropic principle as an 
observer selection bias. I shall not address this in this short note.

2.4. Theory with varying constant

In order to construct a theory with a “varying constant”, one needs to replace it by a dynamical field. The action 
S[φ, Aμ, gμν, ψ, . . . ; c1, . . . cn], in which the ci are assumed constant, leads to one equation per degree of freedom. When 
extended to, e.g., S[φ, Aμ, gμν, ψ, . . . , c1(x); c2, . . . cn], it describes a theory in which c1 has become dynamical. This has 
two consequences [9]: (1) the equations derived under the assumption that this parameter is constant are modified so that 
one cannot just make it vary in the equations, and (2) the theory provides an equation of evolution for c1, since it is now a 
degree of freedom.

The field responsible for the time variation of the “constant” c1 is also responsible for a long-range (composition-
dependent) interaction, i.e. at the origin of the deviation from general relativity, indeed depending on its mass.

Many frameworks have been proposed, from the scalar-tensor theories of gravity to theories with higher dimensions, 
including string theories in which all dimensionless constants are supposed to become dynamical (see [6] for a detailed 
review of these models). This shifts the question to “why are the constants so constant today ?”, since one has to provide a 
stabilisation mechanism in order to explain the apparent constancy of this dynamical parameters.

3. Observational and experimental constraints

This section summarises the constraints on the variation of the fundamental constants. Sadly, this is a very active field 
that cannot be summarised in a short text. Hence, I shall first summarise in Section 3.1 the physical systems that have 
been used and the main constraints. I then focus on recent developments concerning the physical interpretation of atomic 
clocks constraints (Section 3.2), constraints derived from the observation of the cosmic microwave background by the Planck 
satellite (Section 3.3) and developments in nuclear astrophysics (Section 3.4).

3.1. Summary

3.1.1. Physical systems
The physical systems that have been considered can be classified in many ways [5,6].
First, we can classify them according to their space-time position. This is summarised in Fig. 1, which represents our 

past lightcone, the location of the various systems (in terms of their redshift z). These systems include atomic clocks 
comparisons (z = 0), the Oklo phenomenon (z ∼ 0.14), meteorite dating (z ∼ 0.43), both having a space-time position along 
the worldline of our Solar system, quasar absorption spectra (z = 0.2–4), population III stars (z ∼ 10–15), cosmic microwave 
background (CMB) anisotropy (z ∼ 103), and primordial nucleosynthesis (BBN, z ∼ 108). Indeed, higher redshift systems offer 
the possibility to set constraints on a larger time scale, but at the prize of usually involving other parameters such as the 
cosmological parameters. This is particularly the case of CMB and BBN, the interpretation of which requires a cosmological 
model.

The systems can also be classified in terms of the physics they involve in order to be interpreted. For instance, atomic 
clocks, quasar absorption spectra and CMB require only to use quantum electrodynamics to draw the primary constraints, 
so that these constraints will only involve the fine-structure constant α, the ratio between the proton-to-electron mass ratio 
μ and the various gyromagnetic factors gI . On the other hand, the Oklo phenomenon, meteorite dating and nucleosynthesis 
require nuclear physics and quantum chromodynamics to be interpreted.

3.1.2. Setting constraints
Setting constraints goes through several steps.
First, any system allows us to derive an observational or experimental constraint on an observable quantity O (Gk, X)

that depends on a set of primary physical parameters Gk and a set of external parameters X , which usually are physical 
parameters (e.g., temperature, etc.). These external parameters are related to our knowledge of the physical system and the 
lack of their knowledge is usually referred to as systematic uncertainty.
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Fig. 1. Systems that have been used to probe the constancy of the fundamental constants in a space-time diagram in which the cone represents our past 
lightcone. The shaded areas represent the comoving space probed by different tests with respect to the largest scales probed by big-bang nucleosynthesis.

From a model of the system, one can deduce the sensitivities of the observables to an independent variation of the 
primary physical parameters:

κGk = ∂ ln O

∂ ln Gk
(3.1)

The primary parameters Gk are usually not fundamental constants (e.g., the resonance energy of the samarium Er for the 
Oklo phenomenon, the deuterium binding energy BD for BBN etc.). The second step is thus to relate the primary parameters 
to fundamental constants ci . This gives a series of relations

� ln Gk =
∑

i

dki� ln ci (3.2)

The determination of the parameters dki requires to choose the set of constants ci (do we stop at the masses of the 
proton and neutron, or do we try to determine the dependencies on the quark masses, or on the Yukawa couplings and 
Higgs vacuum expectation value, etc.) and also requires to deal with nuclear physics and the intricate structure of QCD. In 
particular, the energy scales of QCD, QCD, is so dominant that at lowest order, all parameters scale as n

QCD so that the 
variation of the strong interaction would not affect dimensionless parameters and one has to take the effects of the quark 
masses.

An example of such a computation is described below. It also implies that the variation of the primary parameters are 
usually correlated, which means that drawing constraints by assuming independent variations is not a good approximation. 
Unfortunately, the correlations between the variation is model-dependent.

3.2. Atomic clocks and gyromagnetic factors

The comparison of two atomic clocks A and B allows one to set constraints on the local (i.e. today) time drift of various 
combinations of the fundamental constants. It relies on the simple fact that different transitions have different dependencies 
in the fundamental constants. For instance, for the hydrogen atom, the frequencies of the gross, fine and hyperfine-structures 
are roughly given by 2p–1s : ν ∝ cR∞ , 2p3/2–2p1/2 : ν ∝ cR∞α2, and 1s : ∝ cR∞α2 gpμ, respectively, where the Rydberg 
constant set the dimension. gp is the proton gyromagnetic factor and μ = me/mp.

In the non-relativistic approximation, the transitions of all atoms have similar dependencies, but two important ef-
fects have to be taken into account. First, the hyperfine-structures involve a gyromagnetic factor gi (related to the nuclear 
magnetic moment by μi = giμN, with μN = eh̄/2mpc), which are different for each nuclei. Second, relativistic corrections 
(including the Casimir contribution), which also depend on each atom (but also on the type of the transition), can be in-
cluded through a multiplicative function Frel(α). It has a strong dependence [29] on the atomic number Z , which can be 
illustrated on the case of alkali atoms, for which

Frel(α) =
[

1 − (Zα)2
]−1/2

[
1 − 4

(Zα)2
]−1
3
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Table 1
Summary of the constraints of the atomic clock experiments. For each experiment, one can determine the scaling of the relative frequency drift in terms 
of {gi , α, μ} (see e.g. Refs. [30,31]). The values of the coefficients {λgp , λgn , λb, λμ, λα} as obtained in Ref. [4].

Clocks νAB λgp λgn λb λμ λα ν̇AB/νAB (yr−1) Ref.

Cs–Rb gCs
gRb

α0.49 −1.383 0.325 0.714 0 0.49 (0.5 ± 5.3) × 10−16 [21]
Cs–H gCs μα2.83 −0.619 0.152 0.335 1 2.83 (32 ± 63) × 10−16 [22]
Cs–199Hg+ gCs μα6.03 −0.619 0.152 0.335 1 6.03 (−3.7 ± 3.9) × 10−16 [23]
Cs–171Yb+ gCs μα1.93 −0.619 0.152 0.335 1 1.93 (0.78 ± 1.40) × 10−15 [24]
Cs–Sr gCs μα2.77 −0.619 0.152 0.335 1 2.77 (1.0 ± 1.8) × 10−15 [25]
Cs–SF6 gCs

√
μα2.83 −0.619 0.152 0.335 0.5 2.83 (−1.9 ± 0.12 ± 2.7) × 10−14 [26]

Dy α 0 0 0 0 1 (−2.7 ± 2.6) × 10−15 [27]
199Hg+–27Al+ α−3.208 0 0 0 0 −3.208 (5.3 ± 7.9) × 10−17 [28]

Fig. 2. (Colour online.) Constraints on the variation of {gp, μ} assumed to be independent once the constraint from the variation of α from the Hg–Al clock 
is taken into account. Solid, dashed and dotted contours correspond to 68.27%, 95% and 99% C.L. From [4].

The development of highly accurate atomic clocks using different transitions in different atoms offer the possibility to test 
a variation of various combinations of the fundamental constants. The computation of the dependencies of the frequency 
ratios on the set of constants {α, μ, gi} involves quantum electrodynamics and N-body simulations. As an example, the 
ratio of two hyperfine-structure transitions depends only on gI and α, while the comparison of fine-structure and hyperfine 
structure transitions depend on gI , α and the electron-to-proton mass ratio, μ. For instance [19,20], νCs/νRb ∝ gCs

gRb
α0.49 for 

the comparison of rubidium and caesium clocks and νCs/νH ∝ gCsμα2.83 for the comparison of hydrogen and caesium clocks. 
Different set of clocks have been used and the existing constraints and the references to the experiments are summarised 
in Table 1; we refer the reader to other contributions in this volume for a detailed description of these experiments. Recent 
experiments using 171Yb+ and Cs clocks tend to slightly improve these constraints [32].

All the constraints involve only four quantities, μ, α and the two gyromagnetic factors gCs and gRb. In Ref. [4], the 
nuclear g-factors have been related to the proton and neutron g-factors as

δgRb

gRb
= 0.764

δgp

gp
− 0.172

δgn

gn
− 0.379

δb

b

δgCs

gCs
= −0.619

δgp

gp
+ 0.152

δgn

gn
+ 0.335

δb

b

in which b is determined by the spin–spin interaction and appears in the expressions for the spin expectation value of the 
valence proton. These expressions allow one to relate the observational constraints to {gp, gn, μ, α} as

ν̇AB

νAB
= λgp

ġp

gp
+ λgn

ġn

gn
+ λb

ḃ

b
+ λμ

μ̇

μ
+ λα

α̇

α
(3.3)

with the coefficients λ summarised in Table 1. Using the constraint [28] on α, this relation leads to an independent con-
straint on the time variation of μ and gp; see Fig. 2.

However, one has to be aware that gp and μ are not independent, since the latter involves the proton mass. The goal is 
then to express them in terms of the masses of the quark u, d, s and QCD, which would then allow one to get constraints 
on the time variation of the Yukawa couplings h, the Higgs vacuum expectation value v , and QCD. This has been performed 
in Ref. [4] to show that, depending on the approach (non-relativistic constituent quark model, chiral perturbation theory, 
lattice QCD), one gets different results that can vary by two orders of magnitude.
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Fig. 3. (Colour online.) CMB TT (left), TE (middle) and EE (right) angular power spectra for different values of variations of −5% (blue) and −5% (red) of the 
fine-structure constant. From [33].

3.3. Cosmic microwave background

The cosmic microwave background radiation has been emitted roughly 300.000 yr after the big bang, when the tem-
perature of the photon bath filling the Universe has dropped enough to allow proton (resp. helium nuclei) and electron to 
combine to form neutral hydrogen (resp. helium); see [15] (Chapters 4 and 6).

Any variation of the fundamental constants, and more particularly of the fine-structure constant or mass of the elec-
tron, affects the recombination history and imprints the CMB angular power spectrum. This can be taken into account by 
determining the influence of α and me on (1) the binding energies of hydrogen and helium, (2) the Thomson scattering 
cross-section, (3) the different photoionisation cross-sections, (4) the recombination parameters, (5) the photoionisation 
parameters, (6) the Einstein coefficient and (7) the 2s decay rate by emission of two photons.

All these modifications have been included in a CMB code [33]. It was shown that a larger value of any of the two 
constants shifts the recombination epoch to earlier times. This results in a smaller sound horizon at decoupling and a 
larger angular diameter distance to the last scattering surface. As a consequence, the position of the acoustic peaks shifts to 
higher multipoles, in a way that can be degenerated with other cosmological parameters that have analogues effects, e.g., 
the Hubble constant. However, a larger value of the constants also affects the amplitude of the peaks. In fact, an earlier 
recombination induces an increase in the amplitude at large scales through an increase in the early integrated Sachs–Wolfe 
effect, and at small scales through a decrease in the Silk damping. The effects of the angular power spectra for temperature 
and E-polarisation are depicted in Fig. 3.

Assuming a (standard) cosmological model (i.e. a flat CDM model) with two additional varying constants (α or me) 
and with purely adiabatic initial conditions with an almost scale invariant power spectrum, and no primordial gravity 
waves, these spectra were compared to the recent Planck data [34]. These spectra thus depend on an eight-dimensional 
parameter space that includes the baryon and cold dark matter densities ωb = �bh2 and ωc = �ch2, the Hubble constant 
H0, the optical depth at reionisation τ , the scalar spectral index ns, the overall normalisation of the spectrum As and two 
parameters for the varying constants.

It was shown [33] that the Planck data allow one to improve the constraint on the time variation of the constants by 
almost an order of magnitude compared to WMAP. An independent time variation of α is constrained to �α/α = (3.6 ±
3.7) ×10−3 when one includes BAO data, while an independent variation of me is constrained to �me/me = (4 ±11) ×10−3, 
both at a 68% confidence level.

The Planck data also permit to set a constraint on α and me when they are both allowed to vary. This can be understood 
by the fact that the degeneracy is broken at high multipoles (see the detailed analysis in Appendix B of [33]) and that no 
such high resolution data existed before Planck. This is summarised in Fig. 4.

These data also constrain, for the first time with CMB, a dipolar spatial variation of α to show that it cannot exceed 6.5 ×
10−4 from a redshift of z ∼ 103. This shows that CMB data are now competitive with lower redshift data. In particular, recent 
analysis of quasar data have supported the claim that there may exist such a dipole in the fine-structure constant [35]. 
Combining the observations of 154 absorption systems from VLT and 161 absorption systems observed from the Keck 
telescope, it was concluded [35] that the variation of α was well represented by an angular dipole pointing in the direction 
RA = (17.3 ±1.0) hr, dec. = (−61 ±10) deg, with an amplitude �α/α = 0.97+0.22

−0.20 ×10−5, at a 4.1σ level. From a theoretical 
point of view, such a dipolar modulation can be realised in some models [36].

3.4. Big bang and stellar nucleosynthesis: nuclear physics at work

The nucleosynthesis of light nuclei took place in the early Universe (BBN) and during the stellar evolution. For the former, 
we have been interested in modelling the effects of a variation of the fundamental constants on the production of the light 
elements during BBN, while for the latter we have focused on the production of carbon-12 in population-III stars.
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Fig. 4. (Colour online.) Two-dimensional likelihood contours (68% and 95%) in the (α, me) plane for Planck (blue) and Planck combined with higher multi-
pole data (yellow). We also show the results using WMAP data in red. From [33].

The effects of the variation of fundamental constants on BBN predictions is difficult to model. However, one can proceed 
in a two-step approach: first by determining the dependencies of the abundances on the nuclear parameters and then by 
relating those parameters to the fundamental constants [38].

The abundances of the nuclei synthesised during BBN rely on the balance between the expansion of the Universe and the 
weak interaction rates that control the neutron-to-proton-ratio [15]. Basically, the abundance of helium-4 depends mainly on 
the neutron-to-proton ratio at the freeze-out time, (n/p)f = exp (−Q np/kTf), determined (roughly) by G2

F(kTf)
5 = √

GN(kTf)
2, 

N being the number of relativistic degrees of freedom; Q np = mn − mp, GF the Fermi constant and the neutron lifetime. It 
also depends on tN, the time after which the photon density becomes low enough for the photo-dissociation of deuterium 
to be negligible. Hence, the predictions of BBN involve a large number of parameters. In particular, tN depends on the 
deuterium binding energy and on the photon-to-baryon ratio, η10. Besides, one needs to include the effects of α in the 
Coulomb barriers. For a different analysis of the effect of varying fundamental constants on BBN, see, e.g., [37,38]. Thus, the 
predictions are mainly dependent on the effective parameters Gk = (G, α, me, τ , Q np, BD, σi), while the external parameters 
are X = (η10, h, Nν, �i). It was shown [38] that the most sensitive parameter is the deuterium binding energy, BD.

In principle, it would be desirable to know the dependence of each of the main SBBN reaction rates to fundamental 
quantities. This was achieved in Ref. [38], but only for the first two BBN reactions: the n ↔ p weak interaction and the 
p(n,γ )d bottleneck. Recently [40,39], it was extended to the 3H(d,n)4He and 3He(d,p)4He reactions that proceed through the 
A = 5 compound nuclei 5He and 5Li, and to the 4He(αα, γ )12C reaction that could bridge the A = 8 gap.

In a second step, the parameters Gk can be related to a smaller set of fundamental constants, namely α, the Higgs 
VEV v , the Yukawa couplings hi and the QCD scale QCD, since Q np = mn − mp = αaQCD + (hd − hu)v , me = he v , τn =
G2

Fm5
e f (Q /me) and GF = 1/

√
2v . The deuterium binding energy can be expressed in terms of hs , v and QCD using a sigma 

nuclear model or in terms of the pion mass. Assuming that all Yukawa couplings vary similarly, the set of parameters Gk
reduces to {α, v, h, QCD}.

For the 3H(d,n)4He, 3He(d,p)4He and 4He(αα, γ )12C reactions, we used a different approach, which has also been used 
for the stellar production of carbon [41]. In these three reactions, the rates are dominated by the contribution of resonances 
whose properties can be calculated within a microscopic cluster model. The nucleon–nucleon interaction V (r), which de-
pends on the relative coordinate, is written as

V (r) = V C(r) + (1 + δNN)V N(r)

where V C(r) is the Coulomb force and V N(r) the nuclear interaction [42]. The parameter δNN characterises the change in 
the nucleon–nucleon interaction. It is related to the binding energy of deuterium by �BD/BD = 5.7701 × δNN [41]. The next 
important step is to relate �BD to the more fundamental parameters [38,43]. From the astrophysical measurements of the 
primordial abundances of D and 4He, we obtained [40] −0.0025 < δNN < 0.0006 at a redshift z ∼ 108.

For the triple-alpha reaction two alpha-particles fuse into the 8Be ground state, then another alpha capture leads to the 
Hoyle state in 12C. In our cluster the wave functions of the 8Be and 12C nuclei are approximated by a cluster of respectively 
two and three α particle wave functions. It allows us to calculate the variation of the 8Be ground state and 12C Hoyle state 
w.r.t. the nucleon–nucleon interaction, i.e. δNN. In Ref. [41], we obtained Eg.s.(

8Be) = (0.09208 − 12.208 × δNN) MeV, for the 
8Be g.s. and ER(12C) = (0.2877 − 20.412 × δNN) MeV, for the Hoyle state.

This formalism was used in Ref. [41] to show that −0.0005 < δNN < 0.0015 to ensure the production of carbon and 
oxygen by population-III stars to be high enough.



584 J.-P. Uzan / C. R. Physique 16 (2015) 576–585
4. Discussion

This short overview stresses the importance of the study of fundamental constants and of strong constraints on their 
variation at different epochs, using different physical systems. These tests are particularly lively with the necessity to test 
the general relativity on astrophysical scales in order to better understand the dark sector.

One question remained unresolved is the mechanism that determines the values of the dimensionless constants. While 
the existing tests show that their values have been almost frozen since BBN time, they do not give any answer to this 
question. By changing the value of these parameters, we change the physics and thus the properties of nature from the 
nuclear matter to the dynamics of the Universe. It appears that the value of some constants has to be extremely tuned 
for a complex Universe to develop. These fine-tuning, to be distinguished from numerical coincidences, characterises some 
catastrophic boundaries in the space of fundamental constants across which some phenomena drastically change.
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