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This article reviews the properties and limitations associated with the existence of particle, 
visual, and event horizons in cosmology in general and in inflationary universes in 
particular, carefully distinguishing them from ‘Hubble horizons’. It explores to what extent 
one might be able to probe conditions beyond the visual horizon (which is close in size 
to the present Hubble radius), thereby showing that visual horizons place major limits on 
what are observationally testable aspects of a multiverse, if such exists. Indeed these limits 
largely prevent us from observationally proving a multiverse either does or does not exist. 
We emphasize that event horizons play no role at all in observational cosmology, even in 
the multiverse context, despite some claims to the contrary in the literature.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Cet article définit, puis passe en revue les propriétés et les limites associées à l’existence 
d’horizons (des particules, des événements et visuels) en cosmologie en général et pendant 
l’inflation en particulier, en insistant sur leurs différences avec les « horizons de Hubble ». 
Il discute la possibilité de tester les conditions physiques de l’univers au-delà de notre 
horizon visuel (qui, en taille, est proche du rayon de Hubble) et démontre que l’existence 
d’horizons visuels impose des limites strictes sur ce qui est potentiellement testable dans 
les scénarios de type multivers, s’ils existent. Ces limites nous interdisent de prouver 
observationnellement l’existence ou la non-existence de ces multivers. Il est aussi démontré 
que les horizons des événements ne jouent aucun rôle en cosmologie observationnelle, 
même dans le contexte des modèles de multivers.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The causal structure of spacetimes plays a major role in the understanding of the physics of black holes and in cosmology. 
In particular these spacetime possess horizons. A horizon is a frontier that bounds causality, or separates observable events 
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from non-observable ones. In cosmology they limit the observational possibilities, and they have to be distinguished from 
the natural scales fixed by the cosmic expansion rate. The way they do so differs in non-inflationary and inflationary 
cosmology.

These hypersurfaces play different roles in their two main contexts, the physics of black holes and cosmology [1–6]. We 
focus here on their role in cosmology, but contrast this with the black hole case. There appears to be substantial confusion 
about this in some of the current literature on inflationary cosmology, where in particular event horizons are claimed to 
play a significant physical role; but this is not the case.

The article is organized as follows: Section 2 defines the different notions of horizons, and Section 3 focuses on the use 
of conformal diagrams. Section 4 discusses the case of standard cosmology, while Sections 5 and 6 consider inflationary 
cosmology and alternative models, including small universes and some multiverse proposals.

2. Different notions of horizons

Very different concepts of horizons have to be considered. In particular, one needs to distinguish between local and 
non-local (or global) notions of horizons, respectively defined in Section 2.2 and Section 2.3.

In order to introduce all these notions, we firstly assume that the spacetimes under consideration are globally hyperbolic 
so that they can be foliated by a continuous family of spacelike three-dimensional hypersurfaces, �t [3]. This means that 
there exists a smooth function t̂ on M whose gradient never vanishes and is timelike so that each hypersurface is a surface 
of constant t̂ ,

�t = {p ∈ M, t̂(p) = t} (1)

∀t ∈ I ⊂ R and gμν t̂μt̂ν < 0 where I is a maximal subset of R so that �t covers all M. Such spacetimes represent most 
spacetimes of astrophysical and cosmological interest. They imply existence of a global direction of time. The expansion of 
the universe, and associated physically meaningful horizons, occur relative to the future direction of time.

Secondly, in the cosmological case, we assume existence everywhere of a family of fundamental observers with 4-velocity 
uμ : uμuμ = −1, defining a preferred cosmological restframe at each point [7,8]. This implies that the worldlines of funda-
mental observers never intersect.

2.1. Past light cone

Given a spacetime M with metric gμν , one can define for any event p the past lightcone C−(p) as the set of events q
such that there exists a future directed null geodesic joining q to p. It characterizes the set of events that can be observed 
by an observer at event p by electromagnetic radiation, irrespective of its wavelength. Technically, for any event q on 
C−(p), there exists a null geodesic xμ(λ) parameterized by the affine parameter λ ≤ 0 (chosen negative so that increasing 
λ corresponds to the future direction of time), such that xμ(0) = p and there is a value λ1 such that xμ(λ1) = q. Its tangent 
vector kμ ≡ dxμ/dλ satisfies the null geodesic equation

kμkμ = 0, kμ∇μkν = 0 (2)

The past lightcone is a 3-dimensional null surface that can be parameterized by 2 angles (θ, φ) representing the direction 
of observation in the sky and a redshift z that characterizes the distance “down” the lightcone, and is defined as

1 + z ≡ (−kμuμ)source

(−kμuμ)obs
(3)

where uμ is the tangent vector to the observer and source worldlines. These quantities are defined with respect to the 
fundamental observers. By construction, C−(p) depends on the event p so that two different observers have different 
lightcones, and any specific observer’s lightcone changes over time. In cosmology, this latter effect is at the origin of the 
time drift of observed redshift [9].

Let us recall an important property. Consider two spacetimes whose metrics gμν and g̃μν are conformal, i.e. gμν =
�2 g̃μν . Any null geodesic of gμν with affine parameter λ is a null geodesic of g̃μν with affine parameter λ̃ where dλ =
�2 dλ̃, so that k̃μ = �2kμ; see, e.g., Ref. [10].

2.2. Non-local horizons

We can define several types of non-local horizons, namely particle horizons [2], visual horizons [11,12] and event hori-
zons [2]. They are non-local in the sense that they depend on the large-scale geodesic structure of the spacetime. They are 
defined relative to the future direction of time.
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Fig. 1. The past lightcone, visual horizon and observable universe of an observer O in a globally hyperbolic spacetime.

2.2.1. Particle horizons (PH)
Particle horizons are defined as the worldlines of the limiting fundamental particles that can affect an observer O at a 

spacetime position p [2], provided such a limit exists. For an observer O at time t0, the particle horizon is the timelike 
hypersurface that at time t = t0 divides all particles in the Universe into two non-empty families: the ones that can have 
already been observed or been in causal contact with O at the time t0, and the ones that cannot have been observed 
or in causal contact then. For each time t0, the particle horizon is determined as the intersection between the limiting 
geodesics of the most distant comoving particles that can be causally interacted with (they lie on the past light cone 
of C−(p) of p), with the past hypersurface �t1 as t1 is taken to the limits of the boundary of the spacetime (t1 is not 
necessary finite). This limit is the limit of a two-dimensional spacelike surface which reduces to a sphere of center O
if the spacetime enjoys a rotational symmetry around the observers worldline. Clearly this depends on the foliation of 
spacetime by surfaces {t = const}; in a spatially homogeneous Friedmann–Lemaître (FL) geometry, the natural such foliation 
is unique.

In cosmology, the PH for an observer at the present time t0 is a key concept in discussing causal limits of an observer 
at the present time. It relates to the start of the universe, or initial boundary of the universe if there is no beginning. One 
can of course also define particle horizons for events at earlier times than the present, for example the particle horizon at 
the time of recombination, where it will characterize causal limits for events at that time (this is the Primordial Particle 
Horizon, see Section 4.2.3). Note also that if there are closed spatial sections, perhaps due to a non-trivial (i.e. non-simply 
connected) topology (see below), the spacetime may not have any particle horizons at late enough times, as is also the case 
if its expansion is accelerated with a non-singular start.

2.2.2. Visual horizons (VH)
If the past lightcone intersects a spatial section �td before which the spacetime is opaque to electromagnetic radiation, 

this leads to the existence of a visual horizon for electromagnetic radiation, defined as the set of fundamental worldlines 
passing through �p := C−(p) ∩ �td . We cannot see further out matter by any form of electromagnetic radiation, and the 
observable universe for p is the spacetime region delimited by the past light cone C−(p) up to �p (see Fig. 1). A typical 
example of such a visual horizon is the last scattering surface in cosmology which characterizes how far we can see by 
electromagnetic radiation [11,12] so that it is a key concept in the discussion of our observational limits (see below). The 
2-sphere �p delineates the furthest observable matter in the universe, for p; it is what we observe by means of cosmic 
background radiation observations, such as by COBE, Planck, and Bicep2. At later times p′ , the corresponding horizon will 
move out and �p′ will lie outside �p . Visual horizons can also appear in black hole physics, when it is surrounded by an 
accretion disk.

It follows from the definition that the visual horizon contains the worldlines of all matter that we can observe by 
photons of any wavelength. By construction, all these worldlines lie inside the particle horizon. Let us also stress that we 
may have different visual horizons according to the messenger used to observe, respectively vh(γ ), vh(ν), vh(GW) for 
photons, neutrinos, and gravity waves1 respectively since (1) they may not define the same “cones” (ν are supposed to be 
massive so that they propagate inside the lightcone contrary to photons and gravitational waves) and (2) the universe may 
not become opaque in the same circumstances (last scattering takes place earlier for neutrinos than for photons, and the 
universe remains transparent to gravity waves back to the Planck time).

Note also that if the spatial sections have a non-trivial topology, the spacetime may not have any visual horizons if the 
size of its fundamental domain is smaller than the size of its visual horizon in its covering space, see, e.g., Refs. [13,14]. 
Light can then travel right round the universe since �td .

1 Why not for cosmic rays also? The basic problem here is that because of magnetic fields they do not travel on geodesics in spacetime; hence their 
observed direction of arrival does not tell us where they came from, so they are not good imaging tools.
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Fig. 2. Worldlines of P in , at rest, and Pacc, uniformly accelerated, in a Minkowski spacetime. If the acceleration is eternal, there exist event horizons: P in
exits the event horizon of Pacc at 1/g . There are no event horizons for P in. From Ref. [6].

2.2.3. Event horizons (EH)
For an observer O , the event horizon is the null hypersurface that divides all events into two families: the ones that 

have been, are, or will ever be observable by O or in causal contact with O , and the ones that are for ever outside the 
observational and causal perimeter of O . Hence, it limits what can ever affect an observer in its entire history. Consequently 
it does not relate to any observations that can be made at the present day [2]. It is a null surface that can be seen as the 
future lightcone of the observer’s worldline in the limit t → +∞ (or t → t+ if there is a future singularity at t = t+). Unlike 
the particle horizon, it is not defined for one instant in an observer’s history: it depends on the entire future history of the 
observer, as well as the global spacetime structure.

For black holes, EH are closely related to singularity existence, basically because they are related to apparent horizons 
(see below). In cosmology, it is important to realize that they have no relation whatsoever with observations or causal limits 
for us at the present time, because they relate only to limits in the far distant future (see Section 6.3).

Let us emphasize that such horizons can also appear in special relativity. Consider two observers, an inertial observer 
P in at rest in a Minkowskian restframe such that its worldline is X = 1/g , and Pacc(g) subject to a constant acceleration 
so that its worldline is given by (X, T ) = (sinh gτ , cosh gτ )/g with g a constant; see Fig. 2. Assume that P in sends a signal 
at T = Te . It propagates as X = T − Te + 1/g . Since the worldline of Pacc enjoys X = T as an asymptote when T → +∞, 
each worldline in the family of observers Pacc(g) for any g has the past null surface T = +X as an event horizon. It is clear 
that no signal emitted by P in after T+ = 1/g can reach Pacc (note that this requires that Pacc is accelerated forever). This 
already illustrates the fact that event horizon are global quantities that depend on the whole structure of spacetime (or here 
the whole trajectory of observers that are under consideration). Hence P in exits the event horizon of Pacc at T+ . We refer 
to Ref. [6] (p. 211) for the computation of the redshift of the signal. This property is important in the study of the Unruh 
effect.

2.3. Local horizons

Two notions of local horizons, which both are actually not horizons, are often considered in the literature: the “Hubble 
Horizon”, and apparent horizons. In contrast to particle, event, and visual horizons, their existence and location are deter-
mined by local inequalities. They are again defined relative to the future direction of time.

2.3.1. Hubble horizon (HH)
For a universe filled with a cosmic fluid, that is matter averaged to a cosmological scale where it can be regarded as a 

continuous fluid representing the average motion of all matter in the universe, one can define a normalized tangent vector 
uμ to the corresponding fluid worldlines (uμuμ = −1) [7,8]. The local spatial metric is then hμν := gμν + uμuν . The relative 
motion of the fluid particles – which is what is observable in astronomical observations, when the ‘particles’ are groups of 
galaxies – is then characterized by a set of kinematic quantities [3,7,8]:

∇μuν = 1

hμν + σμν + ωμν − uμuα∇αuν (4)
3
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where the scalar 
 ≡ ∇αuα is the rate of volume expansion of the fluid, σμν is the trace-free symmetric shear tensor 
describing the rate of distortion of the matter flow, ωμν is the skew symmetric vorticity tensor describing the rotation of 
the matter, and the last term accounts for non-geodesic motion.

We then define the Hubble expansion rate by

H = 1

3

 (5)

H−1 characterizes the typical time scale of the expansion of the spacetime, or equivalently

R H ≡ H−1 (6)

is the Hubble radius, that is the radius of the Hubble sphere (which is defined by this relation). It is not directly related to 
any causal limits (the speed of light does not enter its definition); but it is important in the discussion of the dynamics of 
perturbations of a FL universe, because it allows one to state for a mode of wavelength λ whether or not the expansion of 
the spacetime affects its evolution; see Eq. (25) below. As a consequence, it plays an important role in structure formation 
in cosmology [5,15].

2.3.2. Apparent horizon (AH)
Given bundles of outgoing and ingoing null geodesics of tangent vector kμ satisfying Eq. (2) and nμ similarly defined, 

one can similarly to the case of a fluid define the expansion of the bundles as

θ̂+ ≡ 1

2
∇αkα, θ̂− ≡ 1

2
∇αnα (7)

Apparent horizons separate regions where either future or past null geodesics going either both inwards or both outwards 
converge, from where this is not the case.

We distinguish outer (resp. inner) apparent horizons, AH(+) (resp. AH(−)) for outgoing (resp. ingoing) bundles. Each can 
occur in a future or past direction of time.

Future outer apparent horizons FAH(+) are then defined to be spacelike 2-spheres where the local divergence rate θ+ for 
outgoing null geodesics vanishes after some initial 2-surface but not before. This implies that if the null energy condition 
Gμνkμkν ≥ 0 is satisfied, the outgoing as well as the ingoing null rays from this 2-sphere are from then on refocusing, 
and this will lead to conjugate points and self intersections of these rays in the future [3,16]. This is the black hole case, 
and the case of recollapsing cosmologies in the future. Past outer apparent horizons PAH(+) are defined to be spacelike 
2-spheres where the local outgoing null ray divergence rate θ+ vanishes before some initial 2-surface but not after, leading 
to conjugate points in the past if the energy conditions are satisfied. This is the case in all realistic cosmological models.

Similarly there are Future inner apparent horizons FAH(−) in the cosmological case where there is a (positive) cosmolog-
ical constant. They are then defined to be spacelike 2-spheres where the local divergence rate θ+ for ingoing null geodesics 
vanishes after some initial 2-surface but not before. This implies that if the null energy condition Gμνkμkν ≥ 0 is not satis-
fied, the outgoing as well as the ingoing null rays from this 2-sphere are from then on both diverging. This is the expanding 
de Sitter case. Past inner apparent horizons PAH(−) are defined similarly. This is the collapsing de Sitter case.

Apparent horizons are not directly related to any causal limits, as their definition does not involve light cones, but 
are important in discussions concerning the existence of singularities if energy conditions hold, because the existence of 
conjugate points relates to limits on the causal future or past via the field equations and energy conditions [3,16]. In general, 
the 3-dimensional apparent horizon surface made up of all 2-dimensional apparent horizons can be timelike, spacelike, or 
null, depending on whether matter is crossing the horizon or not (they will be null in the vacuum case). In the null case, 
they will be related to event horizons.

Outer apparent horizons occur in a past directed way in cosmology, showing singularities should have existed in the 
past. There, they are not related to causal limits but are related to minima of apparent sizes of rigid objects (which occur 
for example at a redshift of z = 1.25 in an Einstein–de Sitter universe) [8,12]. They occur in a future directed way in 
astrophysical black holes, showing singularities should exist in the future [3,16]. There, they are related to causal limits 
in the future direction of time because a collapsing fluid leading to an astrophysical black hole results in the existence 
of future directed apparent horizons that are associated with event horizons and production of Hawking radiation. Inner 
apparent horizons occur in a future directed way in de Sitter like phases of the universe, where they may be related to 
production of Hawking radiation (but which has no observable effects in a finite time [18]).

3. Conformal diagrams

The study of the global structures of a spacetime is simplified by the use of a representation introduced by Penrose. 
It is based on the idea of constructing, for any manifold M with metric gμν , another manifold M̃ with a boundary J
and metric g̃μν = W gμν such that M is conformal to the interior of M̃, and so that the “infinity” of M is represented 
by the “finite” hypersurface J . The last property implies that W vanishes on J . All asymptotic properties of M can be 
investigated by studying J (see Ref. [17] and Ref. [19] for a pedagogical introduction).
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Fig. 3. Conformal diagram of Minkowski spacetime.

3.1. Construction of a Penrose diagram

As a simple example, the Minkowski metric ds2 = −dt2 + dr2 + r2d�2 can be written in terms of the advanced and 
retarded null coordinates, v = t + r and u = t − r, as ds2 = −dvdu + 1

4 (v − u)2d�2 where v ≥ u and v and u range from 
−∞ to +∞. Then, one can compactify u and v by defining new rescaled null coordinates tan V = v , tan U = u so that 
−π/2 < U ≤ V < π/2. Then, introducing the Minkowski like coordinates T and R by T = U + V and R = V − U (such 
that −π < T + R < π and −π < T − R < π , R ≥ 0) the Minkowski metric turns out to be conformal to the metric ḡ given 
by ds̄2 = −dT 2 + dR2 + sin2 R d�2, with conformal factor W = {2 sin[(R + T )/2] sin[(T − R)/2]}−2. Minkowski spacetime 
is thus conformal to a portion of the Einstein static spacetime (a cylinder S3 × R which represents a static spacetime 
with spherical spatial sections). The boundary of this region therefore represents the conformal structure of infinity of the 
Minkowski spacetime.

This boundary can be decomposed into

– two 3-dimensional null hypersurfaces, J + and J − defined by J + = {
V = π

2 , |U | < π
2

}
and J − = {

U = π
2 , |V | < π

2

}
or equivalently by T = ±(π − R) with R ∈ [0, π ]. The image of a null geodesic originates on J − and terminates at J + , 
which represent future and past null-infinity;

– two points i+ and i− defined by i±: U = V = ±π
2 , or equivalently by R = 0 and T = ±π . The image of a timelike 

geodesic originates at i− and terminates at i+ . They represent future and past timelike infinity, that is respectively the 
start- and end-point of all timelike geodesics.

– one point i0 defined by i0: U = −V = −π
2 , or equivalently by R = π and T = 0. It is the start- and end-point of all 

spacelike geodesics so that it represents spatial infinity.

The fact that i± and i0 are single points follows from the fact that sin R = 0. These are coordinate singularities of the same 
type as the one encountered at the origin of polar coordinates. The manifold M̃ is regular at these points. J − is a future 
null cone with vertex i− and it refocuses to a point i0 which is spatially diametrically opposite to i− . The future null cone 
of i0 is J + which refocuses at i+ .

Note that the boundary is determined by the spacetime and is unique but that the conformal extension spacetime (here 
the Einstein static spacetime) is not fixed by the original metric and is not unique since another conformal transformation 
could have been chosen.

For any spherically symmetric spacetime, the Penrose diagram can be represented in the (T , R) plane by ignoring the 
angular coordinates so that each point represents a sphere S2. In this representation the Minkowski spacetime is a square 
lozenge (see Fig. 3). Null radial geodesics are represented by straight lines at ±45 deg running from J − to J + , one of 
which apparently bounces when it passes through coordinate singularity at r = 0.

3.2. Relation with the existence of horizons

For most physically interesting spacetimes, J + and J − are either spacelike or null, which is closely related to the 
existence of one of the two types of non-local horizons described above.
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If J − is spacelike, the worldlines of the fundamental observers do not all meet on J − at the same point. For any 
particular observer and event on its worldline close to J − , the past light-cone of this event will not intercept all the 
particles in the universe before it reaches J − and there will be a particle horizon. If J − is null, it is expected that all the 
worldlines of the fundamental observers pass through the vertex i− so that the past light-cone of a point P will intercept 
all the worldlines and there is no particle horizon.

If J + is spacelike, the worldline of any fundamental terminates on a point O of J + and the past light-cone of O divides 
the universe into events that can be seen by the observer and events that he can never see; there is an event horizon. If 
J + is null, all the worldlines will pass through the vertex i+ so that O  = i+ and its past light-cone is J + and there is no 
event horizon.

In conclusion,

J− spacelike ⇐⇒ existence of a PH

J+ spacelike ⇐⇒ existence of an EH

We see from Fig. 3 that neither horizon exists in Minkowski spacetime for the usual static observers (with wordlines 
r = const).

4. Causal structures in cosmology

4.1. Geometry

In the standard cosmological model [3,5], the universe is described by a Friedmann–Lemaître (FL) spacetime with geom-
etry

ds2 = −dt2 + a2(t)γi j(xk)dxidx j (8)

t being the cosmic time (i.e. the proper time of fundamental observers), a(t) the scale factor and γi j the metric of constant 
time hypersurfaces, �t , in comoving coordinates (Latin indices i, j, . . . run from 1 to 3). The matter 4-velocity is uμ = δ

μ
0 . 

The conformal time η, defined by dη = dt/a(t) can also be introduced to rewrite the metric in the form

ds2 = a2(η)
(
−dη2 + γi jdxidx j

)
(9)

with γi jdxidx j = dχ2 + f 2
K (χ)d�2 in spherical comoving coordinates so that χ is the comoving radial distance. Here K is 

the normalized spatial curvature and respectively for K = +1, 0, −1, f K (χ) = (sin(
√

Kχ/
√

K , χ, sinh(
√−Kχ/

√−K ).
The geodesic equation (2) can be solved for radial null geodesics to obtain kμ = E(uμ + eμ) with Ė/E = −H and eμ

a constant unit spatial vector. It follows that E = k0/a, k0 being a constant. Thus the energy E , and hence the frequency 
ν ∝ E , of any photon varies as the inverse of the scale factor and the redshift is given by

1 + z = a0

a
(10)

This can be measured from the comparison of an observed spectrum to a laboratory spectrum, from which one can de-
duce how much the universe has expanded since the light was emitted. Indeed the comoving radial distance χ cannot be 
measured directly, but can be obtained from the redshift; however this requires knowledge of the expansion law of the 
Universe, that is a(t).

The characteristic distance and time scales of any Friedmann–Lemaître universe are fixed by the value of the Hubble 
constant (5) which is give by H = ȧ/a. The order of magnitudes of the Hubble time and radius are obtained by expressing 
the current value of the Hubble parameter as H0 = 100 h km · s−1 · Mpc−1 with h typically of the of order 0.7 so that the 
present Hubble distance and time are

DH0 = 9.26 h−1 × 1025 m

∼ 3000 h−1 Mpc (11)

tH0 = 9.78 h−1 × 109 years (12)

This expansion rate allows one to estimate the age of the universe. From dt = da/aH we find

t0 = tH0

∞∫
0

dz

(1 + z)E(z)
(13)

with E ≡ H/H0 being a function determined by the Friedmann equation,
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H2

H2
0

= 8πG

H2
0

∑
i

ρi − K

a2 H2
0

+ �

3H2
0

(14)

for a universe of spatial curvature K containing i fluids with density ρi and a cosmological constant �. Introducing the 
normalized density parameters �i = 8πGρi/3H2

0, �� = �/3H2
0, �K = −K/3a2

0 H2
0, this equation takes the form

H2

H2
0

=
∑

i

�i(1 + z)3(1+wi) + �K (1 + z)2 + �� (15)

assuming that each fluid has an equation of state Pi = wiρi with wi constant.
The comoving radial distance χ of an object with redshift z∗ that is observed by an observer located at χ = 0, is obtained 

by integrating along a radial null geodesic. Radial null geodesics between (0, t0) and (t1, χ) are given by θ, φ constant and 
dχ = dt/a, so

χ(t0, t1) :=
t1∫

t0

dt

a(t)
(16)

so that χ(t0, t1) = η1 − η0 in conformal time. Changing to redshift as a parameter, it follows that

a0χ(z∗) = DH0

z∗∫
0

dz

E(z)
(17)

4.2. Characterization of the different horizons

Using these relations, the former definitions allow us to define and compute the different horizons defined in Section 2.2

4.2.1. Event horizons
A necessary and sufficient condition for the existence of an event horizon is that the integral χ(t0, t1) is convergent as 

t → ∞ (or t = t+ if it has a finite future). Indeed, then at any time t0, there exists a worldline

χ = χEH(t0) := χ(t0, t+) =
t+∫

t0

dt

a(t)
(18)

such that a photon emitted at t0 from χ = χEH(t0) towards the origin reaches χ = 0 at t+ = +∞ if the universe expands 
forever, or at a finite t+ if the future is finite (k = +1, or in big-rip scenarios where the upper bound of the integral is finite). 
Any photon emitted at t0 for χ > χEH(t0) never reaches the origin and any photon emitted at t0 for χ < χEH(t0) reaches 
the origin in a finite time. The Universe has an event horizon since at each time t0, only the events with χ ≤ χEH(t0) will 
ever be accessible to the observer O at any time in the future.

4.2.2. Particle horizons
A necessary and sufficient condition for the existence of a particle horizon is that the integral χ(t1, t0) is convergent as 

t1 → 0 or t1 → −∞, depending on whether or not a(t) continues for negative values of t . From now on we will consider 
the first case only; the other is similar.

Then at any time t0, any particle such that the comoving radial coordinate χ >
∫ t0

0 a−1dt has not yet been observed by 
an observer O at the origin. The 2-dimensional surface (t0, χPH(t0), θ, φ) defined by

χPH(t0) := χ(0, t0) =
t0∫

0

dt

a(t)
(19)

defines the particle horizon at a given time t0 and thus divides all particles into two sub-families: the ones that have 
been observed at t0 or before t0 [χ ≤ χPH(t0)] and the ones that have not yet been observed [χ > χPH(t0)], i.e. they lie 
beyond the particle horizon of O at t0. The particle horizon itself is the timelike 3-surface χ = χPH(t0) generated by all the 
fundamental worldlines through this 2-surface. It does not relate to particles moving away from us faster than the speed 
of light (see Ref. [12,20] for a detailed discussion), despite the fact that many claim this to be so. The present physical size 
of the particle horizon is dPH = a(t0)χPH(t0). Since a(t) is a positive function, when χPH(t0) exists (because the integral in 

2 We will not deal with apparent horizons here as they are not significant for causal limits in cosmology.
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Eq. (19) converges), it is an increasing function of t0 so that as time elapses, more and more particles are visible from O . 
Thus it is not possible for particles to enter the particle horizon and then leave it: once they are in causal contact in a FL 
spacetime, they are in causal contact forever.

The hypersurface σ : {χ = χ(0, t)} is the future lightcone emitted from the position of the observer at t = 0 (the creation 
lightcone). The particle horizon at time t0 can also be seen as the section at t = t0 of this spacetime surface σ . In conformal 
time, the creation light cone is a cone at ±π/4 and the particle horizon at t0 is a 2-sphere represented by a point where 
the creation light cone intersects t = t0.

4.2.3. Primordial particle horizons
Similarly the primordial particle horizon is defined as the particle horizon of an observer at tLSS, i.e.

χPPH = χ(tLSS,0) =
tLSS∫
0

dt

a(t)
(20)

tLSS being the time of recombination defined below. This limiting surface governs what causal interactions were possible 
up to tLSS, when the Cosmic Microwave Background Radiation (CMB) was emitted; events at tLSS whose comoving distance 
from each other exceeds χPPH cannot have influenced each other.

4.2.4. Visual horizons
In the standard cosmological model, the universe remains transparent until the temperature of the photon bath has 

dropped enough to allow the formation of neutral hydrogen and helium. This happens at a redshift of order zLSS ∼ 1100
which defines the time of last scattering, t = tLSS, which can be computed once the cosmological parameters are chosen. It 
means that the comoving visual horizon of an observer at t0 (the worldlines through the 2-sphere �p mentioned above) is 
given by

χVH(t0) = χ(t0, tLSS) =
t0∫

tLSS

dt

a(t)
(21)

Clearly this is inside the particle horizon. One may notice here from the definitions that

χPH(t0) = χVH(t0) + χPPH (22)

4.3. Matter-radiation universes

Whenever the universe is filled by a fluid with a constant equation of state w , the scale factor behaves as a ∝ tn with 
3n = 2/(1 + w), provided K = � = 0. The different horizons are then easily computed analytically. When K �= 0 or � �= 0
one can calculate them using the equations above; they are all depicted in Figs. 4 and 5.

4.3.1. Event horizons
The integral 

∫ ∞ t−ndt converges if and only if n > 1. Then, for the case of a single matter component with K = � = 0, 
an event horizon exists if w < − 1

3 , i.e. if ρ + 3P < 0, that is if the strong energy condition is violated. So in general in 
this case for ordinary matter, there is no event horizon. However, if K = +1 and the universe recollapses, or if � > 0, there is 
indeed an event horizon for each observer. These two cases are different since for the former the bound on the integral is 
finite, which makes it converge, whereas for the latter, it is the growth of the scale factor that is sufficiently large to make 
the integral converge.

4.3.2. Particle horizons
The integral 

∫
0 t−ndt converges if and only if n < 1, so there exists a particle horizon for a model with K = � = 0 if 

w > −1/3, that is if ρ + 3P > 0. There will also be particle horizons if K > 0 or � > 0. Note that for a single fluid with 
a constant equation of state and K = � = 0, one can have either an event horizon or particle horizon, but not both at the 
same time. The two types of horizons are thus mutually exclusive in this particular case.

The physical diameter at a time t2 for the particle horizon of an event that occurred at t1 < t2 is the limit

DPH(t1, t2) = a(t2)χ(0, t1)

It can be checked that if t1 and t2 are two events from an era dominated by a fluid with constant equation of state w and 
K = � = 0, then

DPH = 6(1 + w)

1 + 3w
t2

[
1 −

(
t1

t2

) 1+3w
3+3w

]
(23)
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Fig. 4. The particle horizon at a given time is defined at different moments as the geodesic of the most distant observable comoving particles at this 
moment (plain vertical lines). This surface can be visualized as the intersection of the creation light cone with a constant-time hypersurface. The equation 
of this surface is given by χ = χ(0, t0) in comoving coordinates (top) and by χ = a(t0)χ(0, t0) in physical coordinates (bottom). This diagram represents a 
Universe with the following cosmological parameters (�m, ��) = (0.3, 0.7) and h = 0.7. From Ref. [21].

4.3.3. Visual horizon
Unless we live in a small universe (we have seen right round the universe since last scattering because it has small 

enough closed spatial sections) there will always be a visual horizon because there are no divergent terms in Eq. (21). 
Indeed we have already seen back to the surface of last scattering, and (as shown by COBE and Planck observations) it 
covers the entire sky. That is the furthest we will ever be able to see; and what we see is not infinite, as would be the case 
if we could see all the matter in a K = 0 universe with its standard topology.

4.3.4. Hubble horizon
The Hubble radius at time t with a ∝ tn is given by

DH(t) = n/t (24)

As pointed out above, this is locally defined and is not directly related to the past light cone or causal limits. This applies 
to the matter dominated period after recombination till quite recent times (when the universe started to accelerate), with 
n = 2/3.

If t1 � t2 then the particle horizon diameter (23) is proportional to the Hubble radius at the time t2

DPH(t1, t2) � 4

1 + 3w
DH(t2)

This is at the origin of the confusion between the Hubble radius and a horizon and the fact that one often assigns causality 
properties to the Hubble horizon. This property does not hold in other contexts such as during inflation.

4.3.5. Penrose diagrams
When written in terms of conformal time, FL spacetimes with Euclidean spatial sections (K = 0) are obviously conformal 

to Minkowski spacetimes. It follows that they map onto a part of a region representing Minkowski spacetime in the Einstein 
static universe. The actual region is determined by the range of variation of η. For � = 0 and P > 0, 0 < η < ∞ so that it is 
conformal to the upper half of the Minkowski diamond defined by T > 0 with a singularity boundary, T = 0. See Fig. 6.

Friedmann–Lemaître spacetimes with spherical spatial sections (K = +1) are conformal to the Einstein static spacetime 
(with the substitutions η → T and χ → R). They are thus mapped into the part of this spacetime determined by the allowed 
values for η. There are three general possibilities. When � = 0, η varies from 0 to π if P = 0 and from 0 to α < π when 
P > 0. The Friedmann–Lemaître spacetime is thus conformal to a square region of the Einstein static spacetime so that 
both J + and J − are spacelike and represents two singularities. When � �= 0, η can vary from 0 to ∞ for the hesitating 
Universes or from −∞ to ∞ for the bouncing Universes. The FL spacetime is thus conformal to either the half of or the 
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Fig. 5. Universe diagrams for a Friedmann–Lemaître space with parameters �m = 0.3, �� = 0.7 and h = 0.7. The first two diagrams represent, respectively, 
the physical distance, a(t)χ , and the comoving distance, χ , in terms of the cosmic time, t (left scale) or in terms of the scale factor, normalized to 1 today 
(right scale). The last diagram represents the comoving distance in terms of the conformal time, η. The dotted lines represent the worldlines of comoving 
observers and our worldline is the central vertical line. Above each of these lines is indicated the redshift at which a galaxy on this worldline becomes 
visible for the central observer. We represent the past light cone for the present central observer and the event horizon corresponding to a similar light 
cone originated from timelike infinity (plain bold line). We also show the Hubble sphere (plain light line) and the particle horizon (dashed line). From 
Ref. [21].

Fig. 6. Conformal diagram of the Friedmann–Lemaître spacetimes with Euclidean spatial sections with ρ = 0 and P > 0 (left) and de Sitter space in the 
spherical slicing in which it is geodesically complete (right) – dashed line corresponds to χ = 0 and χ = π ; see Section 4.3.5.

entire Einstein static spacetime. As in the case of the de Sitter space (see Section 5.2), the conformal region will be a square 
of the Einstein static space and J + and J − are also spacelike but do not necessary represent a singularity.

In the case of Friedmann–Lemaître spacetimes with hyperbolic spatial sections (K = −1), the metric can be brought to 
its conformal form by means of the coordinate transformation

T = arctan

(
tanh

η + χ

2

)
+ arctan

(
tanh

η − χ

2

)

R = arctan

(
tanh

η + χ

2

)
− arctan

(
tanh

η − χ

2

)

Again the exact shape of this region depends on the matter content (equation of state and �).
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We see from these examples that some parts of the boundary correspond to the big-bang singularity a = 0. When P > 0
and � ≥ 0, the initial singularity is spacelike, which corresponds to the existence of a particle horizon. If K = +1 or � ≥ 0, 
the future boundary is spacelike, which signals the existence of event horizons for the fundamental observers

4.4. Implication for the big-bang model

In the standard big bang model, the universe is filled by a mixture of matter and radiation and a non-vanishing cosmo-
logical constant. This means that (1) the universe was opaque before last scattering, so the visual horizon was determined 
by the time of last scattering, and (2) at late time the evolution of the scale factor is well approximated by

a(t) =
(

1

��0
− 1

)1/3

sinh2/3
(

3αt

2

)

where α = H0
√

��0. Thus in the future our universe behaves as a de Sitter universe. As a consequence, unless it has a 
non-simply connected topology with small enough spatial sections, we cannot see most of the matter in the universe.

The expansion of the universe being accelerated, this also means that the worldlines of comoving structures are going 
out of our Hubble radius at the present time. Note that they remain in principle observable since they can never exit the 
visual and particle horizons once they have entered them. In practice, their apparent luminosity will drop very fast, making 
them fade out.

4.5. Superhorizon modes

As far as cosmological perturbations are concerned, the physical wavelength of any perturbation scales as a(t). Since 
ä < 0 during a matter dominated or radiation dominated era, this means that each physical wavelength will become smaller 
than the Hubble radius during such an era, if it lasts long enough. This leads to the notion of super-Hubble and sub-Hubble
modes. Consider a mode with comoving wave-number k, it is said to be super-Hubble if its wavelength λ ∝ a/k is larger 
than Hubble radius 1/H and sub-Hubble otherwise. Thus,

super-Hubble: k < aH

sub-Hubble: k > aH

As long as a ∝ tn , aH ≡H is the comoving Hubble parameter and scales as η, so that this condition takes the form kη < 1 or 
kη > 1; this shows super-Hubble modes becomes sub-Hubble as η increases. This distinction is important for the dynamics 
of perturbations. The relevant equations are partial differential equations involving only a Laplacian, so typically are of the 
form

Ẍ + H Ẋ + k2 X = 0 (25)

in Fourier space [5,15,35]. The term in k2 X becomes important for sub-Hubble modes while it is negligible when the mode 
is super-Hubble. This transition, and when it takes place with respect to matter-radiation equality, has an importance for 
the growth of large scale structures [5,15].

However, historically, these modes have been called super-horizon and sub-horizon, the reason being that (as shown 
above) for a universe filled with matter and radiation, the Hubble radius and particle horizon are of the same order. Never-
theless this is confusing since causality (i.e. effects associated with the speed of light) is nowhere at work here. Besides this 
statement does not hold anymore during an inflationary or cosmological constant dominated era.

4.6. The horizon problem

The CMB, originating at the surface �p , delimits our visual horizon today. The horizon problem states that in a matter 
and radiation dominated universe the visual horizon, which is of the order of the particle horizon, is much larger than the 
primordial particle horizon. This implies that the last scattering surface should be composed of many independent causally 
disconnected regions. One can then not causally explain how these regions have thermalized for the CMB to enjoy a perfect 
black body spectrum with the same temperature over the whole sky.

Let us emphasize that in cosmology one often refers to modes as super-horizon if they were super-Hubble at the time of 
last scattering. While these modes imprinted temperature fluctuations in the CMB, in particular giving rise to the Sachs–
Wolfe plateau, they are sub-horizon at earlier times if they find their origin in an inflationary mechanism even if they were 
super-Hubble at last scattering. Indeed one puzzle of the standard hot big bang model without inflation was to explain the 
existence of super-Hubble (and in that case also super-horizon) correlations at the time of last scattering.

4.7. How far beyond the visual horizon can we extract information

One can try to quantify the largest wavelength that can imprint a detectable signature on the CMB, i.e. to determine how 
far beyond the visual horizon one can observationally probe.
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An order of magnitude can be obtained by first considering the largest mode that needs to be included in a computation 
of the angular power spectrum, C� . The CMB temperature anisotropy angular power spectrum is obtained as a convolution 
of the primordial power spectrum P (k), which is determined by the inflationary physics, and a transfer function T�(k), 
which is determined by the evolution of the post-inflationary perturbations: thus

C� = 2

π

∫
P (k)T 2

� (k(η0 − ηLSS))
dk

k
(26)

Formally, this integral runs from k = 0 to k = ∞. In practice, it is computed with a lower cut-off kmin that has to be adjusted 
in such a way that it does not affect C� . Given the shape of T� the main contribution to this integral is given by modes 
such that k(η0 − ηLSS) ∼ �. What is the smallest kmin that needs to be considered? The answer is three-fold, using the fact 
that in the standard concordance model 3η0 ∼ a0 H0.

(1) From a theoretical point of view, one needs to consider a kmin such that kmin(η0 − ηLSS) is much smaller than the 
value at which the spherical Bessel function of order � j�(x) peaks, i.e. x ∼ �. Therefore, in practice it suffices to take 
kminη0 � 2, the exact value mattering only for the quadrupole. This corresponds to

λmax(pert) ∼ 200R H0/a0 (27)

Low multipoles of the angular power spectrum (referred to as Sachs–Wolfe plateau) correspond to modes that are super-
Hubble at the time of last-scattering. The first acoustic peak, round � ∼ 220 corresponds to the sound horizon at last-
scattering [40], which is a fraction of the Hubble radius at that time.

(2) When taking into account the cosmic variance, which is large at small multipoles (typically below an � of order 10), 
one can argue that modes larger than

λmax(cmb) ∼ (10 − 20)R H0 (28)

do not leave significant signatures on the CMB. This explains also why a spatial topology with size smaller than the last-
scattering diameter leads to a lack of power in the Sachs–Wolfe plateau (since the largest wavelength fixed by the size of 
the universe is smaller than λmax). This is also the case with polarization and in particular B-modes [22].

(3) Taking into account the observations, which have their own error bars and suffer from a galactic cut and many 
astrophysical effects, the question is when can one distinguish, given the same set of data, two models: one with a non-zero 
kmin and one with kmin = 0. This question can only be answered in a model dependent way. For instance, one can use a 
compact space and increase the size of its fundamental domain until it cannot be distinguished from an infinite space. In 
that particular case, topology induces multipole correlations, i.e. the correlator of the coefficients a�m of the expansion of 
the temperature field in spherical harmonics do not satisfy 〈a�ma∗

�m〉 ∝ C�δ��′δmm′ . The use of the information encoded in 
the full correlation matrix (of the temperature and polarization) has been investigated in the case of topology, using the 
notion of Kullback–Leibler distance, to conclude that at best one can probe topologies of size up to 1.15 times the Hubble 
radius today (see Fig. 18 of Ref. [23]). Thus

λmax(obs) ∼ (1.15)R H0/a0 (29)

is the most that one can realistically probe by CMB observations. Note that this will be true whether or not inflation took 
place and that the numerical value may depend slightly on the spectral index. Also any observations of matter features, such 
as the Baryon Acoustic Oscillations, will probe scales less than this, because the corresponding angular scales lie well within 
the visual horizon (the BAO corresponds to the first acoustic peak in the CMB angular power spectrum peak at about 1◦ , 
while the visual horizon size is 180◦).

Let us also emphasize that upper bounds on �K , which correspond to lower bounds on the curvature radius of the 
spatial sections, are often used to state that we are actually probing the universe on much larger scales than λmax. Such an 
argument assumes, however, both that topology remains trivial on scales much larger than the Hubble radius today, and the 
validity of the Copernican principle on scales much larger than the Hubble radius today. Neither of these assumptions can 
be tested, so such a claim does not rely simply on data, but on their extrapolation under hypotheses that can be neither 
checked nor falsified (actually the last one is false if we live in a chaotic inflationary universe).

5. Causal structures in inflationary models

During inflation in the very early universe, the expansion of the universe was accelerated. This acceleration phase helps 
solve various cosmological problems, in particular the horizon problem, and leads to a coherent theory of structure forma-
tion.

5.1. Different approaches

Following Ref. [24], there have been two main approaches to studying quantum effects during inflation. Both lead to a 
drastic modification of the Penrose diagram of the universe.
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Fig. 7. Penrose diagrams of de Sitter space in the flat (left) and static (right) slicings that each cover only part of the whole de Sitter space, and that are 
both geodesically incomplete.

Fig. 8. (Color online.) Evolution of a mode during inflation and the hot big bang phases. A mode can be initially sub-Hubble, becomes super-Hubble during 
inflation and then sub-Hubble again.

The first approach, originating in the 60s [25], is fairly often used in the superstring community, in particular in the 
context of holography and the thermodynamics associated with horizons and the so-called “hot tin can” picture [26]. It uses 
the static form of the de Sitter metric (see Fig. 7) so that an observer at the origin would detect thermal radiation from 
R = 1/H with a temperature T = H/2π , which corresponds to vacuum polarization of the de Sitter geometry.

The second approach [27] is based on quantization of a scalar field in a time-dependent background described by an 
(almost) de Sitter space. It thus uses the flat representation of the de Sitter space (see Fig. 7). It follows that the Hubble 
radius during inflation is almost constant, which means that the comoving Hubble radius shrinks. Then, contrary to standard 
cosmology, this means that a comoving mode k will become super-Hubble during inflation if it were initially sub-Hubble. 
This is summarized in Fig. 8. This property is very important in the mechanism of the generation of initial perturbations 
during inflation, and is the explanation of the inflationary universe solution to the horizon problem for cosmological per-
turbations.

5.2. de Sitter universe

The de Sitter spacetime is a maximally symmetric spacetime. It enjoys many slicings, only one of them being geodesically 
complete. These different representations, corresponding to different choices of the family of fundamental observers, are [3]:

1. the spherical slicing in which the metric has a FL form with K = +1 spatial sections and scale factor a ∝ cosh Ht with 
H = √

�/3 constant. It is the only geodesically complete representation;
2. the flat slicing in which the metric has a FL form with Euclidean spatial section, in which case a ∝ exp Ht;
3. the hyperbolic slicing in which the metric has a FL form with K = −1 spatial sections and scale factor a ∝ sinh Ht;
4. the static slicing in which the metric takes the form ds2 = −(1 − H2 R2) dT 2 + dR2/(1 − H2 R2) − r2 d�2.

In each of the last three cases, the coordinate patch used covers only part of the de Sitter hyperboloid.

5.3. Horizons in a de Sitter space

5.3.1. Event horizon
Since

χ0 =
∞∫

t0

dt

exp(Ht)
= e−Ht0

H
< ∞

there exists an event horizon for each of forms 1.–3. of the de Sitter metric. There also exists one for form 4. because this 
static case is essentially like the Minkowski space case discussed above in Section 2.2.3 (see Fig. 2).
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Fig. 9. (Color online.) Penrose diagram with an intermediate inflationary stage (shaded region). The dashed line represents the last scattering hypersurface. 
The light-cones from A and B on the last-scattering hypersurface intersect only if there is a sufficiently long phase of inflation (hence solving the horizon 
problem). The dotted line represents the light-cone of an observer located on the last scattering surface. Hence AB represents the Visual Horizon and C D
the Primordial Particle Horizon.

5.3.2. Particle horizon
Is there a particle horizon? In case (1), the K = +1 frame, we have a(t) = a0 cosh(Ht) and the integral Eq. (19) converges 

as t0 → −∞ (there is no beginning), and there is a particle horizon. Thus there are both particle and event horizons in this 
bouncing eternally inflating cosmology. Since in cases (2), (3), and (4) the universe is null geodesically incomplete in the 
past (the coordinate system is not global), this is not really a sensible question to ask. Nevertheless the integral diverges as 
t0 → −∞ in case (2) (there is no beginning to the expansion), so there is no particle horizon in this case. In case (3) there 
is a start to the expansion at t = 0 and the integral diverges there, so there is no particle horizon. If the de Sitter expansion 
phase of the universe was finite, starting at some time ti , then the answer depends on what happened before.

5.3.3. Hubble horizon
Since H = √

�/3 is constant in case (2), the physical Hubble horizon remains constant and the comoving Hubble horizon 
shrinks as H exp(−Ht). At late times, this means that comoving worldlines are going out of our Hubble sphere. The same 
will be true for cases (1) and (3) at late times; see Ref. [37].

5.3.4. Penrose diagram
An exact de Sitter space is maximally symmetric so that there is no natural slicing. The choice of a particular slicing may 

lead to the fact that only a part of the Penrose diagram 6 is covered in flat or static representations. Using the coordinates

R = χ, T = 2 arctan
(

eHt
)

(30)

with 0 < R < π and 0 < T < π , the de Sitter spacetime with K = +1 (case 1) is conformal to a square region of the Einstein 
static space with conformal factor W = H−2 cosh2(Ht) (see Fig. 6). We see that this conformal diagram has a spacelike 
infinity both for timelike and null geodesics. However case (2) (K = 0) covers only a triangular half of this domain, and case 
(4) (static) covers only a triangular quarter of that domain (see Fig. 7).

The existence of these different representations of the de Sitter space is central in most arguments in the multiverse 
discussion (see below).

5.4. Cosmological model with an early inflationary phase

When inflation is driven by a scalar field, its slow-roll defines a natural time direction and slicing, but the spacetime is 
then only almost de Sitter, and in particular is then no longer maximally symmetric.

The second consequence concerns the horizon problem. Consider that the universe underwent a phase of inflation from 
ti to t f in its early phase. Assuming it is spatially Euclidean with no cosmological constant, its Penrose diagram is similar 
to Fig. 6 (left). During the inflationary phase, the primordial particle horizon expands while the visual horizon remains 
unaffected. This means that, provided the inflationary phase lasts long enough, the visual horizon can become smaller than 
the primordial particle horizon (see Fig. 9). Consequently the ‘horizon problem’ goes away: there can have been time for 
causal influence to smooth the universe out on scales larger than the visual horizon [5].

Finally, as noted above, comoving wavelengths will be leaving the Hubble horizon during this era, only to re-enter after 
the end of inflation. This plays a crucial role in structure formation [5,15].

A key point is that inflation does not alter the limits on observations discussed in Section 4.7, and particularly Eq. (29)
will still hold. There will exist super-Hubble perturbations [38] that can be probed by future galaxy surveys, but they will 
be seen to occur on angular scales (dependent on the relevant redshift range) that are smaller than the present day visual 
horizon, because the ‘Hubble Horizon’ here relates to expansion rates in the past, not the present Hubble radius.3 Thus 
‘super horizon modes’ do not allow us to probe beyond the present Hubble scale.

3 We thank Roy Maartens for comments on this topic.
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Fig. 10. Penrose diagram for a universe model with compact spatial sections. The shaded region corresponds to the fundamental polyhedron (i.e. the whole 
physical universe). The dashed line represents the light-cone from t� . For any t0 > t� the light-cone warps around the universe so that there is no particle 
horizon.

6. Causal structures in alternative models

This section discusses the global structures of some alternative models used in the literature.

6.1. Spatially compact universes

A universe can enjoy compact spatial sections so that no (spatial) infinities occur and the volume is finite at each time. 
In standard cosmology where the spatial sections are homogeneous and isotropic Riemannian 3-manifolds, the topology can 
be described by its fundamental polyhedron, the faces of which are associated in pairs through the elements of a holonomy 
group. In that case new length scales enter the model and characterize the size and shape of the spatial sections. One often 
considers:

– the (comoving) volume of the fundamental polyhedron,
– the outside radius r+ , the radius of the smallest geodesic ball that contains the fundamental polyhedron,
– the inside radius r− , the radius of the biggest geodesic ball contained in the fundamental polyhedron,
– the injectivity radius rinj , half the length of the shortest closed geodesic.

Depending on the expansion history of the universe, there may be a time t� such that

χ(0, t�) ≥ r+ (31)

with χ give by Eq. (16), and for t ≥ t� there will be no particle horizons: all matter in the universe will be in causal contact, 
see Fig. 10. If an inflationary epoch takes place, this can occur very early on (see, e.g., Ref. [28] for an example). There will 
also then be no visual horizons [13]. The value of t� depends on the topology and the matter content. For instance in a 
universe with S3 spatial sections and no cosmological constant, t� = tcrunch, the big-crunch time.

6.2. Chaotic inflation and multiverse

In chaotic inflation, the value of the inflaton experiences large quantum fluctuations which result in spatial fluctuations of 
the number of e-folds of the inflationary phase. It follows that the universe is not homogeneous on very large scales. As the 
inflationary universe is not homogeneous globally, hypersurfaces of constant value of the inflaton field (which defined the 
onset and end of inflation) are no longer cosmic constant time hypersurfaces, so the end of the inflationary era corresponds 
to different times in different spatial domains. When the inflaton rolls beyond a critical value such that the expansion is no 
longer accelerated, it oscillates at the bottom of the universe potential and reheats a FL domain that is separated from the 
expansion of the other domains and has a K = −1 geometry. This happens repeatedly and thus forms a fractal distribution 
of FL patches, in the sense that J + is a broken line (see Fig. 11, also Ref. [26]). Here the relative sizes of the FL patches in 
the figure are irrelevant, because of the conformal freedom of the diagram. Note that the conformal structure of the future 
boundary is patchwise that of the left hand diagram in Fig. 6 rather than the right hand one: that implies that � is taken 
to be zero in each of these bubbles.

The implication of chaotic inflation on the global structure is three-fold: (1) global homogeneity is violated on large 
scales, (2) the asymptotic null future has a fractal structure, and (3) the universe has a large number of causally disconnected 
FL patches since decoupling. This is often called a multiverse because the different FL domains have different properties.

Note that if the cosmological constant � is non-zero in any of these domains (as is probably the case in ours) then 
future infinity will be spacelike in that domain rather than null. The value of � may vary across domains, or may be the 
same in all of them. Usually the multiverse structure is invoked to explain the small positive value of � we observe by 
having all possible values occurring in the various bubbles, and using anthropic selection effects to explain the small value 
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Fig. 11. Same as Fig. 9 with large scale quantum fluctuations. From Ref. [24].

Fig. 12. Penrose diagram for a model with two colliding bubbles. The past light-cone of the observer contains part of the bubble wall (null) worldsheet so 
that the second bubble can influence the local physical conditions in our early universe, even though the bubble wall never enters our visual horizon: the 
nucleation event of the second bubble is outside our visual horizon but inside our Primordial Particle Horizon. From Ref. [31].

we actually observe. In that case it is Fig. 6 (right) that will represent the causal structure rather than Fig. 11, because �
will not be zero almost everywhere in the multiverse.4

A key point is that all this structure still does not alter the limits on observations discussed in Section 4.7, and partic-
ularly Eq. (29) will still hold. One can note here that in a non-inflationary universe, the primordial particle horizon (the 
particle horizon at recombination) has an angular size of θc � 2.3◦ (much less than the visual horizon size of 180◦), so 
causal processes cannot lead to structure on larger scales in those universes [36].5 Inflation causes the primordial particle 
horizon to become much larger than the visual horizon and so in principle allow observations to test these larger scales. 
However as discussed above this will not occur for real observations, so Eq. (29) is unaffected.

6.3. Bubble collisions

In the multiverse description, one needs to carefully describe the process of nucleation in order to characterize the global 
structure. We cannot review all proposals but shall focus on the example of bubble nucleation in a de Sitter like background.

One question is whether neighboring bubbles can leave an observational signature in our universe [29–31]. They could 
potentially do so if bubble collisions take place. Whether such collisions will take place in a multiverse will depend on 
a competition between the expansion rate and the nucleation rate; there may be none or many, depending on how one 
chooses these parameters.

Fig. 12 presents the Penrose diagram of two colliding bubbles. In such a situation, the past light-cone of the observer 
contains part of the bubble wall worldsheet so that the second bubble can influence the local physical conditions in our 
early universe, even though the bubble wall never enters our visual horizon: the nucleation event of the second bubble is 
outside our visual horizon but inside our Primordial Particle Horizon. This means the collision could for example in principle 
lead to circles in the CMB sky as an observable effect [31].

In this model, the spatial sections have hyperbolic geometry and are often said to be infinite. Let us however emphasize 
that infinite spatial sections with K = −1 cannot in fact be instantaneously formed, as is often claimed in the literature. The 
reason is that point-like processes are required for this to happen; and such processes cannot occur when the nucleation 
process has a non-zero spatial extension [32], which is the physically relevant case because of quantum effects. This is 

4 We assume here it only takes positive values. Things will be more complex if it also takes negative values.
5 It appears that what they call the ‘particle horizon at recombination’ is what that horizon would be in the case where no inflation takes place.
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also implied by the structure shown in Fig. 12 where these spatial surfaces run into a domain wall; what happens to 
them then depends on what is the other side of that wall. That would not be possible if infinite spatial sections had been 
instantaneously formed.

Thus, if a multiverse forms by bubble nucleation in a de Sitter model in the K = +1 frame, it has to be spatially compact 
before the nucleation occurs and will remain so at any finite time after nucleation occurs (that is there will exist a foliation 
by compact spatial 3-surfaces, as in the de Sitter universe). Generically there will be particle horizons and event horizons 
in this case: indeed each bubble will have its own event horizon (if � = 0 there), or there will be a set of event horizons 
for each observer (if � �= 0 in the bubble, which is the more likely case).

The key point then is that the limits on observations discussed in Section 4.7, and particularly Eq. (29), still hold whatever 
the details of the nucleation process. Observational access to other domains in a multiverse is highly restricted. It is possible 
we might get hints of existence of one or two other bubbles through CMB observations of bubble collision. However they 
will for example almost certainly not be able to show that the value of � is different in the other bubble – which is what 
one would need to confirm the anthropic multiverse picture.

6.4. Static and dynamic pictures

Use of a mixture the different kinds of de Sitter patches (expanding volumes and static causal diamonds) in a multiverse 
picture in a complementary way, as sometimes proposed, is problematic. For example Susskind remarks in Ref. [26] “Pick a 
timelike observer who looks around and sees a static universe bounded by a horizon.” He means an event horizon (such a 
static domain has no particle horizons for the static particles filling the patch), but you can’t determine an event horizon in 
a finite time. So it is not in fact observable.

But in any case the real universe is not static locally anywhere, because where it is not filled with matter, it is filled with 
radiation; and both are necessarily in a dynamic state. The dynamic local patches give a much better description.

6.5. Event horizons

Various writings claim to derive cosmologically relevant observational results that are related to the existence of event 
horizons in the multiverse context, for example Ref. [33]. The problem is that the event horizon has no link to present day 
observations, which are limited by the visual horizon [34]. This suggestion does not relate to real observational cosmology.

As has been made clear above, event horizons only come into being in the far future of the universe or the multiverse, 
indeed as t → ∞. Our past light cone, which is where we can carry out observations, lies well to the past of any event 
horizon that may exist. Consequently, existence of event horizons can have no effect whatever on any possible astronomical 
observation and so cannot have any relation to using observational data of any kind to constrain cosmological models. 
Furthermore the black hole information loss paradox and firewall issue are irrelevant to observational cosmology, because 
they are related to properties of event horizons.

One might reply that event horizons are used in some versions of structure formation calculations to deduce the exis-
tence of Gibbons–Hawking radiation in de Sitter spacetime, which is related to generation of quantum fluctuations (see the 
first option in Section 5.1), and hence those event horizons do indeed have observational consequences through their effects 
on structure formation. The response is that such event horizons only exist if the de Sitter space is eternal; if the inflation-
ary phase comes to an end at a finite time and thus leads to a standard big bang epoch, as in the standard model, there is 
no event horizon associated with the inflationary epoch because of that fact. (Hawking’s radiation may be associated with 
apparent horizons in the inflationary domain; but that will be redshifted so as to be negligible.)

The essential nature of event horizons is related to the infinite future of an observer in a universe domain, not to 
anything that may have happened in the past or occurs in a finite time, and hence they are not related to structure 
formation, which can be properly determined from the second option mentioned in Section 5.1 (see Refs. [5,15]). And one 
does not need any concept of horizons in order to derive the quantum fluctuations that lead to structure formation in an 
inflationary universe: see, e.g., Ref. [35].

In summary: event horizons play no role in observational cosmology, on a cosmological scale. Of course they may do so 
at an astrophysical scale when local black holes form: but that is a completely different story.

7. Discussion

Our argument can be summarized as follows.

1. Visual horizons are a key limit on what we can observationally test in a FL universe, and in a multiverse (if such exists). 
The Hubble “horizon” is not a causal limit but rather is a dynamical scale associated with structure formation in the 
expanding universe. It is the particle horizon that limits causal interactions up to the present day.

2. In an inflationary universe, the visual horizon can be much smaller than the particle horizon. “Superhorizon modes” 
can test conditions on scales greater than what the Hubble scale was at past times, but not greater than roughly 1.15 
times the Hubble scale/visual horizon at the present time (see Eq. (29)).
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3. We can see the LSS where it intersects the visual horizon, apart from interference by intervening matter. We cannot 
see the LSS inside the visual horizon unless there are folds in our past light cone. But they are not likely to be large 
enough to be significant. However we can deduce some features of the interior of our past light cone through the SZ 
effect [39].

4. In a multiverse, unless we have had bubble collisions, all bubbles except our own are irrevocably inaccessible to all 
observational tests. But such collisions will only occur in a subset of multiverses; and if they do occur, they only give 
very limited access to data about a few bubbles. They will not give access to almost all bubbles (if a multiverse indeed 
exists).

5. In a universe or multiverse, cosmological event horizons are irrelevant both to observational cosmology and to the 
origin of structure. The only observationally relevant apparent horizons are past directed and do not relate to causal 
limits other than those implied by the past null cone. They relate to minimal observed apparent sizes, associated with 
past directed closed trapped surfaces.

Acknowledgements

We thank Thiago Pereira, Cyril Pitrou, and Alain Riazuelo. This work was supported by French state funds managed by 
the ANR within the “Investissements d’avenir” programme under reference ANR-11-IDEX-0004-02, the “Programme national 
Cosmologie et Galaxies”, and the ANR THALES (ANR-10-BLAN-0507-01-02). JPU thanks Cape Town university for its hospi-
tality during the early phase of this work and GFRE thanks the “Institut d’astrophysique de Paris” for hospitality in the late 
phase of this work and the NRF (South Africa) for financial support.

References

[1] R. Penrose, in: B. de Witt, C. de Witt (Eds.), Relativity, Groups and Topology, Gordon and Breach, New York, London, 1964, p. 565. Reprinted in Gen. 
Relativ. Gravit. 43 (2011) 901.

[2] W. Rindler, Mon. Not. R. Astron. Soc. 116 (1956) 662. Reprinted in Gen. Relativ. Gravit. 34 (2002) 133.
[3] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Spacetime, Cambridge University Press, Cambridge, 1973.
[4] F.J. Tipler, et al., in: A. Held (Ed.), General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 2, Plenum Press, New 

York, NY, 1980, p. 97.
[5] P. Peter, J.-P. Uzan, Primordial Cosmology, Oxford University Press, Oxford, 2009.
[6] N. Deruelle, J.-P. Uzan, Théories de la relativité, Belin, Paris, 2014.
[7] J. Ehlers, Akad. Wiss. Lit. Mainz, Abhandl. Math.-Nat. Kl. 11 (1961) 793–837. Reprinted in Gen. Relativ. Gravit. 25 (1993) 1225–1266.
[8] G.F.R. Ellis, in: R.K. Sachs (Ed.), General Relativity and Cosmology, Academic Press, New York, 1971, p. 565. Reprinted in Gen. Relativ. Gravit. 41 (2009) 

581–660.
[9] A. Sandage, Astrophys. J. 136 (1962) 319;

G. McVittie, Astrophys. J. 136 (1962) 334;
J.-P. Uzan, F. Bernardeau, Y. Mellier, Phys. Rev. D 77 (2008) 021301R.

[10] R. Wald, Gravitation, University of Chicago Press, 2010.
[11] G.F.R. Ellis, W. Stoeger, Class. Quantum Gravity 5 (1988) 207.
[12] G.F.R. Ellis, T. Rothman, Am. J. Phys. 61 (1993) 883.
[13] G.F.R. Ellis, G. Schreiber, Phys. Lett. A 115 (1986) 97;

J.-P. Luminet, et al., Nature (London) 425 (2003) 593;
N.J. Cornish, et al., Class. Quantum Gravity 15 (1998) 2657;
A. Riazuelo, et al., Phys. Rev. D 69 (2004) 103514;
J.-P. Uzan, et al., arXiv:gr-qc/0005128.

[14] J.A. Wolf, Spaces of Constant Curvature, Publish or Perish Inc., Wilmington, USA, 1967;
M. Lachièze-Rey, J.-P. Luminet, Phys. Rep. 254 (1995) 135;
J.-P. Uzan, Int. J. Theor. Phys. 36 (1997) 2167.

[15] V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger, Theory of cosmological perturbations, Phys. Rep. 215 (1992) 203.
[16] R. Penrose, Phys. Rev. Lett. 14 (1965) 57.
[17] R. Penrose, in: C. de Witt, B. de Witt (Eds.), Relativity, Groups and Topology, Les Houches 1963, Gordon and Breach, 1964, p. 561.
[18] J.T. Firouzjaee, G.F.R. Ellis, arXiv:1503.05020.
[19] S. Winitzki, Phys. Rev. D 71 (2005) 123523.
[20] T.M. Davis, C.H. Lineweaver, arXiv:astro-ph/0011070.
[21] T.M. Davis, C.H. Lineweaver, arXiv:astro-ph/0310808.
[22] H. Lee, S.-C. Su, D. Baumann, arXiv:1408.6709 [astro-ph.CO];

D. Baumann, M. Zaldarriaga, J. Cosmol. Astropart. Phys. 0906 (2009) 013.
[23] O. Fabre, S. Prunet, J.-P. Uzan, arXiv:1311.3509.
[24] L. Kofman, in: F. Bernardeau, et al. (Eds.), Particle Physics and Cosmology: The Fabric of Spacetime, Les Houches 2006, Elsevier, 2007, p. 195.
[25] G. Gibbons, S. Hawking, Phys. Rev. D 15 (1977) 2738;

T. Bunch, P. Davies, Proc. R. Soc. A 360 (1978) 117.
[26] L. Susskind, arXiv:hep-th/0302219.
[27] A. Starobinsky, Phys. Lett. B 117 (1982) 175;

V. Mukhanov, G. Chibisov, Sov. JETP Lett. 33 (1981) 54;
A. Vilenkin, L. Ford, Phys. Rev. D 26 (1982) 1231;
A. Linde, Phys. Lett. B 116 (1982) 335.

[28] N.J. Cornish, D.N. Spergel, G.D. Starkman, Phys. Rev. Lett. 77 (1996) 215.
[29] B. Freivogel, M. Kleban, A. Nicolis, K. Sigurdson, J. Cosmol. Astropart. Phys. 0908 (2009) 036.
[30] B. Freivogel, M. Kleban, M.R. Martinez, L. Susskind, arXiv:1404.2274 [astro-ph.CO].

http://refhub.elsevier.com/S1631-0705(15)00131-0/bib50656E3634s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib50656E3634s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib52696E3536s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib486177456C6C3733s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib546970436C61456C6C3830s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib546970436C61456C6C3830s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib506574557A613133s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib446572557A613134s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib65686C3631s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib656C6C3731s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib656C6C3731s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib7A646F74s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib7A646F74s2
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib7A646F74s3
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib77616C64s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib456C6C53746F3838s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib456C6C526F743933s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib746F706F6C6F6779s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib746F706F6C6F6779s2
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib746F706F6C6F6779s3
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib746F706F6C6F6779s4
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib746F706F6C6F6779s5
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib746F706F67656Es1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib746F706F67656Es2
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib746F706F67656Es3
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib4D756B46656C4272613830s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib50656E3635s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib332E70656E726F7365s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib6A6176s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib77696E69s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib7663s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib6C696E656461766973s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib4C65653A32303134637961s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib4C65653A32303134637961s2
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib6661627265s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib4C6576s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib64737363686F6F6Cs1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib64737363686F6F6Cs2
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib737573736B696E643033s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib74696D65646570s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib74696D65646570s2
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib74696D65646570s3
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib74696D65646570s4
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib6D6978696E67s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib66726569766F67656Cs1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib46726569766F67656C3A32303134s1


G.F.R. Ellis, J.-P. Uzan / C. R. Physique 16 (2015) 928–947 947
[31] M. Kleban, Class. Quantum Gravity 28 (2011) 204008;
S. Chang, M. Kleban, T.S. Levi, J. Cosmol. Astropart. Phys. 0904 (2009) 025.

[32] G.F.R. Ellis, W. Stoeger, Gen. Relativ. Gravit. 41 (2009) 1475.
[33] L. Susskind, The Cosmic Landscape: String Theory and the Illusion of Intelligent Design, Little, Brown, New York, 2005.
[34] G.F.R. Ellis, Gen. Relativ. Gravit. 38 (2006) 1209.
[35] V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, Cambridge, UK, 2005.
[36] H. Lee, S.-C. Su, D. Baumann, arXiv:1408.6709v1.
[37] L.M. Krauss, R.J. Scherrer, Gen. Relativ. Gravit. 39 (2007) 1545.
[38] E.W. Kolb, et al., Mod. Phys. Lett. A 20 (2005) 2705.
[39] P. Zhang, A. Stebbins, Phys. Rev. Lett. 107 (2011) 041301.
[40] W. Hu, arXiv:astro-ph/9508126.

http://refhub.elsevier.com/S1631-0705(15)00131-0/bib4B6C6562616Es1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib4B6C6562616Es2
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib456C6C53746F3039s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib5375733035s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib456C6C3036s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib4D756B3035s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib4C65653134s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib6B7261757373s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib4B6F6C3035s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib535A656666s1
http://refhub.elsevier.com/S1631-0705(15)00131-0/bib6875706864s1

	Causal structures in inﬂation
	1 Introduction
	2 Different notions of horizons
	2.1 Past light cone
	2.2 Non-local horizons
	2.2.1 Particle horizons (PH)
	2.2.2 Visual horizons (VH)
	2.2.3 Event horizons (EH)

	2.3 Local horizons
	2.3.1 Hubble horizon (HH)
	2.3.2 Apparent horizon (AH)


	3 Conformal diagrams
	3.1 Construction of a Penrose diagram
	3.2 Relation with the existence of horizons

	4 Causal structures in cosmology
	4.1 Geometry
	4.2 Characterization of the different horizons
	4.2.1 Event horizons
	4.2.2 Particle horizons
	4.2.3 Primordial particle horizons
	4.2.4 Visual horizons

	4.3 Matter-radiation universes
	4.3.1 Event horizons
	4.3.2 Particle horizons
	4.3.3 Visual horizon
	4.3.4 Hubble horizon
	4.3.5 Penrose diagrams

	4.4 Implication for the big-bang model
	4.5 Superhorizon modes
	4.6 The horizon problem
	4.7 How far beyond the visual horizon can we extract information

	5 Causal structures in inﬂationary models
	5.1 Different approaches
	5.2 de Sitter universe
	5.3 Horizons in a de Sitter space
	5.3.1 Event horizon
	5.3.2 Particle horizon
	5.3.3 Hubble horizon
	5.3.4 Penrose diagram

	5.4 Cosmological model with an early inﬂationary phase

	6 Causal structures in alternative models
	6.1 Spatially compact universes
	6.2 Chaotic inﬂation and multiverse
	6.3 Bubble collisions
	6.4 Static and dynamic pictures
	6.5 Event horizons

	7 Discussion
	Acknowledgements
	References


