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The cosmic microwave background is the most precise and the most simple cosmological 
dataset. This makes it our most prominent window to the physics of the very early 
Universe. In this article I give an introduction to the physics of the cosmic microwave 
background and show in some detail how primordial fluctuations from inflation are 
imprinted in the temperature anisotropy and polarisation spectrum of the CMB. I discuss 
the main signatures that are suggesting an inflationary phase for the generation of initial 
fluctuations.
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r é s u m é

Le fond fossile micro-onde est l’ensemble de données cosmologiques les plus précises et 
les plus simples à interpréter. Ceci en fait notre fenêtre la plus directe sur la physique 
de l’univers primordial. Dans cet article, je présente une introduction à la physique du 
fond fossile micro-onde et je démontre comment les fluctuations primordiales de l’inflation 
se manifestent dans les anisotropies de la température et dans la polarisation du fond 
fossile. Je discute les principales observables qui présentent des indices importants vers 
une attribution des fluctuations initiales à une phase inflationnaire.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

As you can see from the contributions by most other authors to this volume, inflation is presently well established. It 
was originally introduced by Guth [1] to explain the flatness and the large entropy of the present Universe and to solve 
the horizon problem. Somewhat earlier, Starobinsky [2] had shown that a quasi de Sitter phase of expansion leads to the 
generation of gravitational waves from quantum fluctuations of the metric and somewhat later Mukhanov and Chibisov [3,4]
found that also scalar fluctuations are inevitably generated during an inflationary phase.
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Contrary to the flatness, the homogeneity and isotropy and the large entropy of the Universe, which have been observed 
before they were explained and which therefore have to be regarded as ‘post-dictions’ of inflation,1 the generation of 
perturbations was a prediction that has been verified for the first time by the COBE satellite [5] in 1992 and led to the 
Nobel Prize awarded to G. Smoot in 2006.

The COBE satellite observed the cosmic microwave background (CMB). The CMB is a background of thermal photons 
that, during the hot early phase of the Universe, were tightly coupled to baryons. As the Universe expands and cools, 
baryons eventually combine with electrons first to neutral helium and finally to neutral hydrogen. At an age of the Universe 
of about τdec ∼ 3 × 105 years and a redshift zdec � 1090, the temperature drops below Tdec � 3000 K and there are no 
longer sufficiently many high energy photons around to keep the Universe ionized, most electrons are bound in neutral 
atoms. After that time, photons propagate freely into our antenna to be detected by COBE and other experiments. CMB 
experiments literally take a photo of the Universe when it was about 3 × 105 years young. This early time is not much 
after matter and radiation equality and since in a radiation dominated Universe fluctuations cannot grow, they are still very 
simply and linearly related to their value after a phase of primordial inflation. This renders the CMB a unique pristine probe 
of the physics of the very early Universe.

Therefore, inflation and observations of the CMB are intimately related. In this paper, I want to review this relation. For 
this, I introduce in the next section linear cosmological perturbations. Then I briefly indicate how quantum fluctuations are 
amplified during an inflationary phase and lead to classical fluctuations in the spacetime geometry. This topic is elaborated 
in much more detail in the contribution by A. Starobinsky. In Section 3, the heart of this paper, I explain how inflationary 
perturbations are imprinted in the CMB. In Section 4, I conclude.

For simplicity, I shall concentrate on a spatially flat Friedmann metric given by

ds2 = a2(t)
(
−dt2 + δi jdxidx j

)
= −dτ 2 + a2(τ )δi jdxidx j (1)

Here a denotes the cosmic scale factor, t is conformal time and τ is cosmic time. We denote the conformal Hubble parameter 
by H and the physical one by H ,

H = da/dt

a
, H = da/dτ

a
= a−1H

Latin indices run from 1 to three while greek indices run from 0 to 3, spatial vectors are indicated in boldface. Both, the 
speed of light and Planck’s constant are set to unity, c = h̄ = 1. Mp = (8πG)−1/2 denotes the reduced Planck mass.

2. The generation of fluctuations during inflation

2.1. Linear cosmological perturbations

The fluctuations in the cosmic microwave background are small. It is therefore a good strategy to compute them with 
linear cosmological perturbation theory. We consider a linearly perturbed Friedmann metric,

ds2 = a2(t)
[
ημν + hμν

]
dxμdxν with (2)

hμν = 2

( −� 0
0 −�δi j + Hij

)
(3)

Here (ημν) is the flat Minkowski metric, �(t, x) and �(t, x) are the so called Bardeen potentials of scalar perturbations 
and Hij(t, x) with Hi

i = ∂i Hi
j = 0 describes a gravitational wave. It can be shown that one can always bring the perturbed 

metric into this form, the longitudinal gauge as long as vector type (vorticity) perturbations can be neglected, see, e.g., [6]. 
The first-order perturbed Einstein equations relate the metric perturbations to the perturbations of the energy momentum 
tensor. They are given by

ρa2

2M2
P

(Ds + 3(1 + w)HV ) = �� (4)

ρa2

2M2
P

(1 + w)V = H� + �̇ (5)

ρa2

M2
P

w�(S) = � + � (6)

1 Actually the resolution of the horizon problem does not explain the homogeneity and isotropy of the Universe. It just renders is causally possible. How 
to generate it from an arbitrarily fluctuating initial spacetime is still an unsolved problem. Also for chaotic inflation, we require an initially homogeneous 
and isotropic patch of some small size.
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ρa2

M2
P

w�(T ) = Ḧ + 2HḢ − �H (7)

Here ρ is the mean density of the Universe and the pressure is given by P = wρ . Ds is the matter density perturbations, 
V is the peculiar velocity potential, V = −∇V and �(S) is the scalar anisotropic stress potential. The traceless part of the 
stress tensor is given by

T j
i − Pδ

j
i = P

[
∂i∂

j�(S) − 1

3
��(S)δ

j
i + �

(T ) j
i

]

Eq. (7) is the evolution equation for an arbitrary tensor mode and the transverse traceless part of the stress tensor, �(T ) is 
its source. Eqs. (4)–(6) are not independent. They are related via the energy momentum conservation equations. Using this 
one can derive, e.g., one single second-order equation for �, the so-called Bardeen equation. There Ds and V are eliminated 
by the constraints (4) and (5). �(S) as well as a combination of matter perturbations that describes the divergence of the 
entropy flux, i.e. the deviation of the perturbations from adiabaticity,

 ≡ δP/P − c2
s

w
Ds

source the Bardeen potential �. Here we shall not write the Bardeen equation, which can be found, e.g., in [6], but an 
equation for the so-called Mukhanov–Sasaki variable, see [4,7], which represents the spatial curvature in the comoving 
gauge and is given by:

ζ = 2

3(1 + w)

[
� +H−1�̇

]
(8)

The Bardeen equation is equivalent to the following equation for ζ ,

ζ̇ = w

w + 1
H − 2c2

s

2(1 + w)
H−1k2� (9)

This shows that for adiabatic perturbations, i.e., if  = 0, the variable ζ is conserved on super Hubble scales, i.e. scales with 
k/H � 1.

2.2. Generation of scalar perturbations during inflation

We briefly discuss the generation of scalar perturbations during inflation. More details can be found in the contribution 
by A. Starobinsky.

An inflationary phase is a period during which the cosmic expansion is accelerated, d2a/dτ 2 > 0 and the physical Hubble 
parameter changes only very slowly,

ε1 = −dH/dτ

H2
= H2 − Ḣ

H2
� 1 (10)

One also introduces

ε2 = d2 H/d2τ

2HdH/dτ
(11)

and requires that |ε2| � 1. With this, one finds that ε1 changes slowly,

ε̇1

ε1
= 2H(ε1 + ε2) (12)

If matter is given by a canonical scalar field with Lagrangian

Lφ = −1

2
∂μφ∂μφ − V (φ)

inflation happens when the energy density is dominated by the potential,

ρφ = 1

2a2
φ̇2 + V (φ) � V (φ) (13)

The slow roll parameters then simply become ε1 = 3
2 (dφ/dτ )2/V and ε2 = −M2

P Vφφ/V .
Introducing

z = √
2ε1aMp and v = zζ (14)
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the second-order perturbation of the action can be written as [8,6]

S2 = −1

2

∫
d4x

[
∂μv∂μv + m2(t)v2

]
(15)

where the indices are raised with the flat metric and m2 = −z̈/z. Now v is a canonically normalised scalar degree of 
freedom with a time-dependent mass. The best-known example of quantum particle creation in an external classical field. 
Requiring standard quantum initial conditions for v ,

vk(t) = 1√
2k

exp (−ikt) for k � m � H (16)

we can solve the classical mode equation and obtain v and ζ at late time. For the power spectrum of ζ , one finds the 
following result within the slow roll approximation,

k3〈0|ζ(k)ζ(k′)∗|0〉 = 2π2δ(k − k′)Ps(k) (17)

with

Ps(k) = H2

4ε1M2
P

(
k

H

)−2(3ε1+ε2)

= As

(
k

k∗

)ns−1

, for k/H � 1 (18)

Here ns is the scalar spectral index and As the scalar amplitude, which in general, i.e. if ns − 1 �= 0, depends on the ‘pivot 
scale’ k∗ . Since ε1 and ε2 are small, slow roll inflation predicts a nearly scale-invariant spectrum, |ns − 1| � 1. More details 
on the derivation of this result are found, e.g., in [8,6].

2.3. Generation of tensor perturbations during inflation

We also briefly discuss the generation of tensor perturbations during inflation. More details can be found in the contri-
bution by A. Starobinsky.

Like for the scalar case, we can write the second-order perturbed action for gravitational wave perturbations in the form 
(15). The only difference is that now v and m2 are defined differently. The canonically normalised variable v is now given 
by:

Hij = v

Mpa
eij (19)

where ei j is an arbitrary but normalised polarisation tensor, and m2 = −ä/a. Choosing again the quantum initial condition 
(16), one obtains the gravitational wave spectrum,

4k3〈0|Hij(k)H∗
i j(k′)|0〉 = 2π2δ(k − k′)Pt(k) (20)

Pt(k) = 4
H2

M2
P

(
k

H

)−2ε1

= At

(
k

k∗

)nt

, k/H � 1 (21)

Here we have taken into account the fact that the tensor perturbations are 2Hij and another factor of 2 comes from the sum 
over the two polarisation states of Hij . Details of the derivation are found in [6,8]. At and nt denote the tensor amplitude 
and spectral index.

Since during inflation the slow roll parameters are small, both spectra are nearly scale invariant, with spectral indices 
ns − 1 = −6ε1 − 2ε2 and nt = −2ε1. For historical reasons, the spectral index of ζ is not simply denoted ns , but ns − 1. The 
tensor spectrum is suppressed with respect to the scalar one by a factor

r = Pt

Ps
� 16ε1 = −8nt � At

As
(22)

This is the so-called slow-roll consistency relation. If we could ever measure Pt , we could in principle test this relation. The 
� signs are strict equal signs only for scale invariant spectra. Otherwise the expressions depend on the scale.

The fluctuations generated in this way during slow-roll inflation are typically Gaussian. The non-Gaussianities that come 
from interactions of the inflation field are suppressed. The parameter fNL, defined as the ratio between the 3-point function 
and the square of the 2-point function, is of the order of the slow-roll parameters [9].

3. Inflationary fluctuations in the CMB

In this section, which is the heart of this contribution, we discuss how perturbations generated during inflation are 
imprinted on the CMB.
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3.1. Transfer functions

Let us first note that we can relate the curvature spectrum Ps on super-Hubble scales to the spectrum of the Bardeen 
potential via Eq. (8). In the radiation and matter dominated regimes this yields

P� = 4

9
Ps (radiation dom.) (23)

P� = 9

25
Ps (matter dom.) (24)

Here we have used that in a radiation and in a matter dominated Universe � is constant on super Hubble scales. Using 
also that both,  and � vanish in a pure radiation and in a pure matter Universe one can use the Bardeen equation to 
compute �, Ds or V at any time such that

�(k, t) = T�(k, t)ζ(k)

Ds(k, t) = T D(k, t)ζ(k)

V (k, t) = T V (k, t)k−1ζ(k) (25)

Here T X (k, t) is the transfer function of the variable X . It relates the fluctuations in X at scale k−1 at time t to the initial 
fluctuations of ζ after inflation at the same scale. We have introduced a factor k−1 in the equation for V , since the potential 
V has a dimension of length and we want to keep the transfer functions dimensionless. Since the perturbation equations 
are linear, different scales do not mix and, in simple inflationary models, there is just one non-trivial initial condition 
that is usually cast in the variable ζ . If the matter content of the Universe is more complicated, for example during the 
radiation–matter transition or allowing for collisionless neutrinos which have anisotropic stress, �(S) �= 0, we just have to 
introduce more transfer functions and the corresponding linear perturbation equations which determine their evolution. 
In order to compute the transfer functions T X , we need to know the coefficients of the corresponding linear differential 
equation, which depend on the background Universe, i.e. on the cosmological parameters. Therefore, in cosmology we cannot 
isolate cosmological parameters from initial conditions. We always estimate them together. In simple inflationary models, 
the initial spectra from inflation together with the matter content of the Universe yield a set of at least six parameters that 
we can estimate from the observed CMB anisotropies and polarisation.

3.2. Photon propagation in a perturbed Universe

Let us first consider photons coming from the last scattering surface into our antenna and compute the temperature (en-
ergy) fluctuations of such photons. We assume here that decoupling happens instantaneous and at a fixed temperature T∗ .

The photons propagate in the perturbed metric,

ds2 = a2(ημν + hμν)dxμdxν

But photon propagation is conformally invariant, only the affine parameter λ of the photons depends on the scale factor. 
We can therefore forget about the factor a2 and consider photon propagation the a perturbed Minkowski metric. We define 
the photon 4-velocity by

(
nμ

) =
(

1 + δn0

n + δn

)
(26)

where n is a unit vector, n2 = 1. The geodesic equation, n̈μ + 
μ
αβnαnβ = 0 leads to the following first-order perturbation 

equation for δn0:

d

dλ
δn0 = hα0,βnαnb − 1

2
ḣαβnαnb

To first order, we can replace nμ by its unperturbed value on the r.h.s. Integrating we obtain:

δn0
∣∣∣ f

i
=

[
h00 + h0 jn

j
] f

i
− 1

2

f∫
i

ḣαβnαnbdλ (27)

The energy of a photon with 4-momentum p as seen by an observer moving with 4-velocity u is given by (p · u). The 
observer 4-velocity is uμ∂μ = a−1[(1 − �)∂t + V i∂i], where V i denotes the peculiar velocity. The photon 4-momentum in 
the expanding universe is proportional to pμ ∝ a−2nμ , since the affine parameters are related by a factor a−2 (see [6] for 
details). To first order in the perturbation, we therefore have:
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E f

Ei
= ai

a f

(
1 + [� − δn0 + V b

i ni] f
i

)
(28)

But we must be careful, the last scattering surface is not at constant scale factor ai , but at constant temperature Tdec =
Ti + δTdec, hence ai is also perturbed,

ai

a f
= T0 − δT0

Tdec − δTdec
= T0

Tdec

(
1 − 1

4
D(r)

s

∣∣∣ f

i

)
(29)

Here T0 and Tdec are the true physical temperatures today and at decoupling, which are related to the unperturbed back-
ground temperatures via T f = T0 − δT0 and Ti = Tdec − δTdec. For the second equal sign, in (29) we made use of the fact 
that

δT

T
= 1

4

δρ(r)

ρ(r)
= 1

4
D(r)

s

Inserting our scalar and tensor perturbations, we obtain the following result:

E f

Ei
= T0

Tdec

⎧⎪⎨
⎪⎩1 −

[
1

4
D(r)

s − V b
i ni + �

] f

i
+

f∫
i

(�̇ + �̇ + Ḣi jn
ini)dλ

⎫⎪⎬
⎪⎭ (30)

In an experiment we consider photons coming in from different directions, n1 and n2, and we measure the difference 
in their energy. Neglecting the terms at tf = t0, which apart from the dipole due to our motion with respect to the last 
scattering surface, V j(t0)ni , are simple monopole terms that drop out in a difference measurement, we find:

�T

T
≡ �T (n1)

T
− �T (n2)

T
= Tdec

T0

(
E f

Ei
(n1) − E f

Ei
(n2)

)
with

�T (n1)

T
=

[
1

4
D(r)

s − V b
i ni + �

]
(tdec,xdec) +

t0∫
tdec

(�̇ + �̇ + Ḣi jn
ini)(t,x(t))dt (31)

Here x(t) = x0 − n(t − t0) denotes the background trajectory of the photon. This first-order perturbative expression corre-
sponds to the ‘Born approximation’, i.e., we neglect the perturbation of the photon trajectory.

This is the CMB temperature fluctuation in the instant decoupling approximation first derived in [10]. It contains the 
Sachs–Wolfe term [11], the integrated Sachs–Wolfe term and the acoustic oscillations, but not Silk damping. We here discuss 
the former and leave Silk damping for the next section.

Let us determine the CMB power spectrum from this expression. We first define the correlation function,

ξ(n · n′) =
〈
�T (n)

T

�T (n′)
T

〉
(32)

where 〈· · ·〉 denotes a statistical expectation value. The quantum perturbations generated during inflation become classical 
statistical fluctuations at the end of inflation, which are usually Gaussian. For an explanation of this ‘cosmological squeezing’ 
process, see, e.g., [12]. Because of statistical isotropy, this function can only depend on the scalar product, n · n′ . Since ξ is 
a function on the interval [−1, 1] we can expand it in Legendre polynomials. Denoting n · n′ = μ we set:

ξ(μ) = 1

4π

∑
�

(2� + 1)C� P�(μ) (33)

Expanding the temperature fluctuations in spherical harmonics, one finds that for

�T (n)

T
=

∑
�m

a�mY�m(n) (34)

〈a�ma∗
�′m′ 〉 = δ��′δmm′ C� (35)

Again, the Kronecker deltas are a consequence of statistical isotropy. The C�s are the CMB power spectrum, i.e., the expec-
tation values of the square amplitude of its multipole coefficients. The quantity D� = (2π)−1�(� + 1)C� is the square of the 
fluctuation amplitude on the angular scale θ� � π/�.

Let us compute the CMB power spectrum from the expression (31) for the temperature fluctuation. Since scalar and 
tensor fluctuations are uncorrelated (also this is simply a consequence of statistical isotropy), we can calculate their contri-
bution separately. We start with the scalars. For given initial fluctuations ζ(k) after inflation, the expressions for each one 
of the required perturbation variables in Fourier space is given by the transfer function, see Eq. (25).
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We first insert its Fourier representation for each variable appearing in (31). For example,

V (x(t), t) =
∫

d3k

k
T V (k, t)ζ(k)exp(ikn(t0 − t))

where we have set x0 = 0. We then use that

eiknr =
∑

�

(2� + 1)i� j�(kr)P�(k̂n) (36)

where j� denotes the spherical Bessel function [13] or order �. Using also the addition theorem of spherical harmonics, we 
find

C (s)
� = 2

π

∫
dk

k
Ps(k)|�(s)

� (k)|2, where (37)

�
(s)
� (k) =

(
T (r)

D

4
+ T�

)
j�(k�tdec) + iT V j′�(k�tdec) +

t0∫
tdec

dt(Ṫ� + Ṫ�) j�(k�t) (38)

Here �t = t0 − t and in the first and second lines, the transfer functions have to be evaluated at tdec , while in the integral 
they are evaluated at t .

When we take into account the finite thickness of the decoupling surface as well as polarisation; this will simply change 
the expression for �(s)

� (k), but not Eq. (37). The �(s)
� (k) are called the transfer functions for the scalar CMB power spectrum.

Note that the transfer functions depend only on the background cosmology and all the physics related to inflation is in 
the curvature power spectrum Ps.

In the same manner, we find the tensor contribution to the power spectrum, see [6] for a detailed derivation,

C (t)
� = (� + 2)!

(� − 2)!
1

2π

∫
dk

k
Pt(k)|�(t)

� (k)|2 (39)

where

�
(t)
� (k) =

t0∫
tdec

dt Ṫ H
j�(k�t)

(k�t)2
(40)

Let us estimate the result on large scales, ktdec � 1, where Silk damping and polarisation on the last scattering surface 
are irrelevant. For this, we use the fact that j�(x) peaks at x � �, so that the multipole � is dominated by the fluctuations 
at scale k � �/�tdec � �/t0. On super-Hubble scales, we can approximate T� � 3/5 and T D/T� = −2. Using also the fact 
that, at decoupling, the Universe is already matter dominated (this is not a very good approximation...) and the fact that, 
for adiabatic perturbations, D(r)

s = 4D(m)
s /3, we obtain T (r)

D /(4T�) = −2/3. The transfer function T V is suppressed by a 
factor k/H. Neglecting also the integrated term, we obtain the Sachs–Wolfe result [11],

�
(s)
� (k) � 1

3
T�(k) j�(kt0) (41)

If Ps is a simple power law, we can integrate (37) in this approximation and find

C (SW)
� = As

25

(3 − ns)(� − 1
2 + ns

2 )

23−ns2(2 − ns
2 )(� + 5

2 − ns
2 )

(42)

where  denotes the Gamma-function. For a scale-invariant spectrum, ns = 1 this yields:

�(� + 1)C (SW)
� = As

25π
(43)

To obtain an analytic estimate for the tensor spectrum, we neglect the time dependence of �t and approximate �t ∼ t0. 
With this the integral, (40) becomes simply:

−T H (k, tdec) j�(kt0)/(kt0)
2

On super Hubble scales, the transfer function for a gravitational wave mode is 1/(2
√

2) (the factor 1/2 coming from our 
normalization of H and the factor 1/

√
2 from the fact that T H denotes the transfer function for one mode). Inserting this 

in (39), we can perform the integral and obtain:

C (t)
� = At

16

(� + 2)!
(� − 2)!

(6 − nt)(� − 2 + nt
2 )

27−ns2( 7 − nt )(� + 4 − nt )
(44)
2 2 2
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For a scale-invariant spectrum, nt = 1, this yields:

�(� + 1)C (t)
� = At

60π

�(� + 1)

(� + 3)(� − 2)
(45)

For the ratio, we obtain:

C (t)
�

C (SW)
�

� 5At

12As
� 5

12
r (46)

This result is of course very rough, but it captures the fact that for r = 1 the tensor signal is about a factor 2–3 times 
smaller than the scalar signal on large scales.

Once a tensor fluctuation of wavenumber k ‘enters the horizon’, i.e. k/H = 1, it starts decaying. Therefore the tensor 
CMB anisotropy spectrum starts decaying around � ∼ 60, from the loss of power in modes with ktdec � k/Hdec > 1.

During the radiation, dominated Universe scalar perturbations obey an acoustic wave equation. Hence D(r)
s and V

oscillate at constant amplitude. The initial conditions from inflation are such that each mode starts out as D(r)
s (k, t) =

A(k) cos(cskt), where cs = 1/
√

3 is the sound speed of radiation. At the time of decoupling, D(r)
s therefore exhibits a series 

of acoustic peaks, the first at k1 = π/cstdec � √
3πHdec/2. Since for k/Hdec > 1 the transfer function ��(k) is dominated 

by D(r)
s and V ; these peaks are imprinted in the CMB, see Fig. 2. The first peak is at �1 � √

3πHdec/H0 ∼ 200.
Note that for the existence of these peaks, it is very important that all modes with wavenumber k are in phase, i.e. are 

generated with the same amplitude and the same time derivative during inflation, so that they are all really ∝ cos(csktdec), 
and not cos(csktdec + α), i.e. that these acoustic fluctuations are coherent. This is not so if perturbations are generated by 
seeds, e.g., cosmic strings or other causal scaling seeds. In this case, the fluctuations of a given wavenumber are typically 
generated when this wavenumber enters the horizon, but for different wave vectors k in general with different phases. 
In this case one does not see a clear patterns of acoustic peaks, but the peaks are smeared out into one broad hump by 
decoherence [14].

The presence of the acoustic peaks in the CMB power spectrum proves that these fluctuations are not generated by some 
stochastic seeds at horizon crossing, but that they have been laid down early in the Universe when they were still super 
Hubble. Hence it proves that some mechanism like inflation, which generates coherent fluctuations on super-Hubble scales, 
was at work.

3.3. The Boltzmann hierarchy: temperature anisotropies and polarisation

In this section, we want to consider the decoupling process in somewhat more detail and present more precise results 
for the CMB power spectra. We discuss the decoupling process, but shall not derive the Boltzmann hierarchy. A detailed 
derivation can be found in [6].

In the previous section, we approximated the last scattering surface as infinitely thin. This is of course not realistic. 
During recombination, the mean free path of the photons gradually grows until it becomes larger than the Hubble scale and 
the photons become free. During this process, the photons go through a phase of imperfect coupling where on small scales 
photons can move out of overdensities into underdensities, hence small fluctuations are damped by photon diffusion. This 
process is called Silk damping [15]. It seriously affects scales smaller than a few h−1Mpc (comoving), which corresponds 
roughly to the third peak in the CMB spectrum. But already the first peak would be about 10% higher without Silk damping.

The only scattering process relevant before decoupling is non-relativistic, elastic Thomson scattering. The photon energies 
are not affected by Thomson scattering, photons are simply deflected. But Thomson scattering depends on polarisation: the 
polarisation amplitude for photons with linear polarisation in the scattering plane is suppressed by a factor cos θ , where θ
denotes the scattering angle [16]. For an electron density given by ne, depending on whether the polarisation is parallel or 
orthogonal to the scattering plane, one finds the following scattering rates:

τ−1
sp = 3

8π
neσT cos2 θ parallel

τ−1
so = 3

8π
neσT orthogonal

If there is a quadrupole anisotropy of incoming photons onto an electron, this leads to a net polarisation of outgoing 
photons. The most extreme case, with a scattering angle of π/2, is shown in Fig. 1. On average, the final polarisation is on 
the order of a few percent of the anisotropy.

To take these effects correctly into account, one has to solve the coupled Boltzmann equation for the temperature fluctu-
ation, �T /T = �I/4I and the polarisation that can be cast in terms of the dimensionless Stokes parameters Q = Q /4I and 
U = U/4I . Thomson scattering does not generate circular polarisation, so that it is consistent to set the Stokes parameter 
V = 0. Q and U depend on the chosen basis and it is more convenient to exploit the fact that Q ± iU are helicity ±2
objects in the sky, which we can expand in spin-weighted spherical harmonics,
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Fig. 1. Incoming photons scattered at π/2 are fully polarized. If the photon density in the vertical direction is smaller that the one in the horizontal 
direction; this leads to a net polarisation of the outgoing photons here in forward direction.

(Q± iU)(n) =
∑

(e�m ± ib�m)±2Y�m(n) (47)

Here ±2Y�m(n) are the spin-weighted spherical harmonics of helicity ±2, see [6]. Note that under parity, n → −n, 
±2Y�m(n) → ∓2Y�m(n), so that the coefficients e�m are parity even while the b�m are parity odd. One can actually show 
that E-type polarisation (i.e. polarisation with b�m ≡ 0) is described by a gradient field, while B-type polarisation (i.e. polar-
isation with e�m ≡ 0) is a pure curl. This makes B-polarisation so interesting. It cannot come from linear scalar perturbation, 
but is a smoking gun of gravitational waves.

Like for the temperature we can now define the polarisation spectra

C (E E)
� = 〈|e�m|2〉 (48)

C (B B)
� = 〈|b�m|2〉 (49)

C (T E)
� = 〈a∗

�me�m〉 (50)

C (T E)
� is the correlation between E-type polarisation and the temperature anisotropy. For a parity invariant Universe, there 

are no E–B or T–B correlations.
The Boltzmann hierarchy yields coupled linear differential equations for the evolution of the transfer functions X�(k)

such that

C (XY )
� = 2

π

∫
dk

k
P in(k)X∗

� (k)Y�(k) (51)

Here P in is Pt for tensor perturbations and Ps for scalar perturbations and X , Y denotes T , E or B . This method to compute 
the CMB perturbation and polarisation spectra has been first derived in [17,18] and is explained in detail in [6]. Here we do 
not write down the somewhat cumbersome Boltzmann hierarchy equations and their integral solutions.

The Boltzmann hierarchy actually allows for integral solutions similar to Eqs. (38) and (40) in terms of combinations 
of spherical Bessel functions, which contain only the lowest moments of the hierarchy, the baryon perturbation variables 
and the gravitational field. One can therefore solve the hierarchy up to � ∼ 10 coupled with the Einstein equations and the 
fluid equations for baryons and dark matter, and then use these solutions to determine all the higher multipoles via the 
integral solutions. This method has been introduced in [19] and has become the standard for the present fast CMB codes 
like CAMB [20] and CLASS [21].

3.4. Observations

It was clear for a long time that the CMB should have fluctuations if the gravitational instability picture of structure 
formation is to be correct. Therefore, workers in the field, like David Wilkinson started searching for these fluctuations right 
after the discovery [22] of the CMB in 1965. It took however until 1992 for the first positive fluctuations to be discovered 
by the COBE satellite team. At this time there was a clear indication of a Sachs–Wolfe plateau at large scale, � < 20 in good 
agreement with inflation [5]. However, such a plateau was also predicted by fluctuations from topological defects and so 
it took a couple more years to detect the very coherent peak structure of the CMB, which is in perfect agreement with 
inflation, but at odds with topological defects and other causal scaling seed models, to convince also the ‘heretics’ (like 
the author of this paper) that a process similar to inflation must have generated the initial fluctuations. The latest CMB 
temperature and polarisation spectra from the Planck satellite are shown in Figs. 2 to 4.

The quantity D� plotted in the figures is

D� = T 2�(� + 1)C�/(2π)
0
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Fig. 2. (Color online.) The temperature anisotropy spectrum measured by the Planck satellite. Note the different scaling of the �-axis from 2 to 29 and from 
30 to 2500. This renders the Sachs–Wolfe plateau at low � visible. Figure from [23].

Fig. 3. (Color online.) The temperature–polarisation cross-correlation spectrum measured by the Planck satellite. Figure from [23].

The small strip at the bottom of the figure indicates the difference to the old 2013 results.
The acoustic peaks are very well visible. Interestingly, the T–E correlation has a first negative peak at � � 100. There 

is therefore T–E anti-correlation already at � < 100, which comes from scales that are larger than the Hubble scale at 
decoupling. Since polarisation has been laid down at the time of decoupling, this proves the existence of correlations on 
super-Hubble scales. It has been postulated in [24] and it has been shown numerically in [25] that such correlations cannot 
be generated by causal scaling seeds like, e.g., topological defects.

The observed fluctuations are consistent with Gaussianity; for example, a 3-point function of the local type is constrained 
by fNL = 0.8 ± 5 at the 68% confidence level and is well compatible with zero. Also other types of non-Gaussianities that 
have been investigated are significantly constrained and are compatible with zero [26].

The CMB measurements can be used to estimate the cosmological parameters and the inflationary parameters by search-
ing for a best-fit model. This is usually done with a Markov chain Monte Carlo routine, see [27]. For the inflationary 
parameters the findings of the Planck Collaboration [23,26] are given in Table 1.
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Fig. 4. (Color online.) The polarisation spectrum measured by the Planck satellite. (The vertical axis should indicate D� .) Figure from [23].

Table 1
The inflationary parameters from present CMB data. The values of 
the amplitude and the spectral index of scalar perturbations have 
been estimated by setting r = 0. Allowing for a positive r some-
what increases their error bars.

ln(1010 As) ns r | fNL|
3.094 ± 0.034 0.9645 ± 0.0049 < 0.11 < 6

The fluctuations of the CMB are also affected by lensing from foreground density perturbations. This second-order effect 
is relevant at the present accuracy. It widens and damps somewhat the acoustic peaks, as described in detail in [28,6]. The 
analysis of the Planck data has even allowed us to determine the lensing potential [29] and to use it to lift degeneracies in 
the determination of cosmological parameters [23].

The next exciting discovery we are waiting for is primordial B-polarisation. Unfortunately, even if there are no gravi-
tational waves, the lensing of foreground structure affects polarisation and rotates some of the scalar E-polarisation into a 
B-mode [28]. This makes it more difficult, but not impossible to disentangle the gravitational wave signal. The B-modes from 
lensing of scalar perturbations have recently been detected [30]. Last spring, a collaboration had also announced a positive 
value of r � 0.2, which however turned out to be most probably due to an underestimation of the contribution from dust 
to B-polarisation [31].

A positive value of r in the regime 0.001 < r < 0.1 would be extremely interesting. It would point towards and inflation-
ary energy scale of about 1016 GeV, a scale where effects of quantum gravity, e.g., from string theory, might be relevant. 
Therefore, the CMB is extremely interesting for the connection of cosmology and very high-energy physics.

4. Conclusion

In this paper I have argued that present observations of CMB anisotropies and polarisation are in very good agreement 
with slow-roll inflation with

1 − ns = 2(3ε1 + ε2) � 0.04, and (52)

r = 16ε1 < 0.1 (53)

The main features in favor of inflation are

– the nearly scale-invariant spectrum,
– Gaussian fluctuations,
– the coherence of the acoustic peaks,
– the anti-correlation of E-polarisation and temperature anisotropy at � < 100,
– and the fact that there is no evidence of vector perturbation.
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Causal scaling seeds typically only reproduce the first of these features. We have not discussed vector perturbations at all in 
this paper but they are typically very relevant, e.g. for topological defects. There exist also ‘exotic’ inflationary models that 
generate vector perturbations, but in a radiation-dominated Universe, they then decay.

Are there alternatives to inflation? The problem of this question is that it is not well posed. If we define inflation to be a 
phase in the early Universe where correlations are generated on scales which are larger than the Hubble scale at decoupling, 
the answer is definitively no, since we have observed such correlations. However, if we define inflation somewhat more 
narrowly as a phase where the expansion of the Universe is driven by the potential energy of a scalar field, the inflation, 
there the answer is positive. There exist other possibilities, as, e.g., bouncing Universes, see the contribution by Lilley and 
Peter to this volume [32] or pre-big bang cosmology, which is inspired by string theory [33–35]. The main difference of 
these models of the early Universe, which typically also solve the horizon and flatness problem, and which also lay down 
coherent fluctuations on large scales, with scalar field inflation lies in their gravitational wave spectrum. In these models, 
the Hubble scale is not nearly constant during the pre-big bang phase, but it is actually growing. Therefore, they typically 
lead to a blue spectrum of gravitational waves that peaks at very small scales and is negligible on cosmological scales.

Discovering gravitational waves in the CMB would rule out all the alternative models presently on the market. But we 
have to keep in mind that data or observations cannot ‘prove’ a physical theory. It is the theoretical consistency, stringency 
and elegance that finally convince us. On this level, we must admit that present inflationary models are either simple toy 
models not connected to the standard model, or contrived constructions which are far from elegant.

Acknowledgements

The author is thankful to Jean-Philippe Uzan and Francois Bouchet for the invitation to provide this contribution. I ac-
knowledge financial support from the Swiss National Science Foundation under grant no 200020_144014.

References

[1] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347.
[2] A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682–685.
[3] V.F. Mukhanov, G.V. Chibisov, Quantum fluctuation and nonsingular universe, JETP Lett. 33 (1981) 532 (in Russian).
[4] V.F. Mukhanov, G.V. Chibisov, The vacuum energy and large scale structure of the universe, JETP Lett. 56 (1982) 258.
[5] G.F. Smoot, et al., Structure in the COBE differential microwave radiometer first-year maps, Astrophys. J. 396 (1992) L1–L4.
[6] R. Durrer, The Cosmic Microwave Background, Cambridge University Press, 2008.
[7] M. Sasaki, Gauge invariant scalar perturbations in the new inflationary universe, Prog. Theor. Phys. 70 (1983) 394.
[8] V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, 2005.
[9] J. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, J. High Energy Phys. 0305 (2003) 013.

[10] R. Durrer, Gauge invariant cosmological perturbation theory with seeds, Phys. Rev. D 42 (1990) 2533.
[11] R. Sachs, A. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J. 147 (1967) 73.
[12] C. Kiefer, D. Polarski, A. Starobinsky, Quantum to classical transition for fluctuations in the early universe, Int. J. Mod. Phys. D 7 (1998) 455, arXiv:gr-

qc/9802003.
[13] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1972.
[14] R. Durrer, M. Kunz, A. Melchiorri, Cosmicstructure formation with topological defects, Phys. Rep. 364 (1) (2002).
[15] J. Silk, Cosmic black-body radiation and galaxy formation, Astrophys. J. 151 (1968) 459.
[16] J.D. Jackson, Classical Electrodynamics, Wiley and Sons, New York, 1962.
[17] M. Zaldarriaga, U. Seljak, An all-sky analysis of polarization in the microwave background, Phys. Rev. D 55 (1997) 1830–1840.
[18] M. Kamionkowski, M. Kosowsky, A. Stebbins, Statistics of the cosmic microwave background polarisation, Phys. Rev. Lett. 78 (1997) 2058–2061.
[19] U. Seljak, M. Zaldarriaga, A line of sight integration approach to cosmic microwave background anisotropies, Astrophys. J. 469 (1997) 437.
[20] A. Lewis, A. Challinor, A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473.
[21] D. Blas, J. Lesgourgues, T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, J. Cosmol. Astropart. Phys. 1107 

(2011) 034, arXiv:1104.2933.
[22] A. Penzias, R. Wilson, A measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J. 142 (1965) 419–421.
[23] Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589, 2015.
[24] M. Zaldarriaga, D. Spergel, CMB polarization as a direct test of inflation, Phys. Rev. Lett. 79 (1997) 2180–2183.
[25] S. Scodeller, M. Kunz, R. Durrer, CMB anisotropies from acausal scaling seeds, Phys. Rev. D 79 (2009) 083515.
[26] Planck Collaboration, Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, arXiv:1502.01592, 2015.
[27] A. Lewis, S. Bridle, Cosmological parameters from CMB and other data: a Monte Carlo approach, Phys. Rev. D 66 (2002) 103511.
[28] A. Lewis, A. Challinor, Weak gravitational lensing of the CMB, Phys. Rep. 429 (1) (2006).
[29] Planck Collaboration, Planck 2015 results. XV. Gravitational lensing, arXiv:1502.01591, 2015.
[30] P.A.R Ade, et al., Polarbear Collaboration, A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree 

scales with POLARBEAR, Astrophys. J. (2015), arXiv:1403.2369.
[31] P.A.R. Ade, et al., Planck Collaborations, A joint analysis of BICEP2/Keck array and Planck data, BICEP2/Keck, arXiv:1502.00612, 2015.
[32] M. Lilley, P. Peter, Bouncing alternatives to inflation, arXiv:1503.06578, 2015.
[33] A. Melchiorri, F. Vernizzi, R. Durrer, G. Veneziano, Cosmic microwave background anisotropies and extra dimensions in string cosmology, Phys. Rev. 

Lett. 83 (1999) 4464–4467, arXiv:astro-ph/9905327.
[34] F. Vernizzi, A. Melchiorri, R. Durrer, CMB anisotropies from pre-big bang cosmology, Phys. Rev. D 63 (2001) 063501, arXiv:astro-ph/0008232.
[35] K. Enqvist, M. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology, Nucl. Phys. B 626 (2002) 395–409, arXiv:hep-ph/0109214.

http://refhub.elsevier.com/S1631-0705(15)00132-2/bib67757468s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib73746172s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib4D756B68616E6F763A313938317874s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib6D756Bs1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib636F6265s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib626F6F6Bs1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib736173s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib6D756B32s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib6D616C6461s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib4475727265723A313939306D6Bs1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib7377s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib7374617232s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib7374617232s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib61627261s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib70687973726570s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib73696C6Bs1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib6A61636Bs1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib7A616Cs1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib6B6F73s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib636D6266617374s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib63616D62s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib636C617373s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib636C617373s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib70656E7A77696Cs1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib706C616E636Bs1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib7A616C737065s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib7363616Cs1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib6761757373s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib6D636D63s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib616161s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib4164653A323031357A7561s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib706F6C617262656172s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib706F6C617262656172s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib706C616E636B2D6269636570s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib7070s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib4D564456s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib4D564456s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib564D44s1
http://refhub.elsevier.com/S1631-0705(15)00132-2/bib656E7176697374s1

	The imprint of inﬂation on the cosmic microwave background
	1 Introduction
	2 The generation of ﬂuctuations during inﬂation
	2.1 Linear cosmological perturbations
	2.2 Generation of scalar perturbations during inﬂation
	2.3 Generation of tensor perturbations during inﬂation

	3 Inﬂationary ﬂuctuations in the CMB
	3.1 Transfer functions
	3.2 Photon propagation in a perturbed Universe
	3.3 The Boltzmann hierarchy: temperature anisotropies and polarisation
	3.4 Observations

	4 Conclusion
	Acknowledgements
	References


