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Recent observations of high-energy photons from blazars suggest that there exist magnetic 
fields with typical amplitude around 10−15 G ubiquitously even in void regions. This being 
the case, it is natural to invoke them to explain the processes occurring during inflation 
in the early universe. We provide a list of models of magnetogenesis during inflation and 
consider several problems associated with them.
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r é s u m é

L’observation récente de photons ultra-énergétiques en provenance des blazars suggère 
l’existence de champs magnétiques cosmologiques, d’amplitude typique 10−15 G, omni-
présents, y compris au sein des vides cosmiques. Il est dès lors naturel de les associer 
à la physique inflationnaire dans l’univers primordial. Nous donnons une liste de modèles 
de génération d’un champ magnétique pendant l’inflation et discutons un certain nombre 
de problèmes qu’ils posent.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Magnetic fields play important roles in various astrophysical objects. In this article we focus on magnetic fields on 
cosmological scales. The amplitude of magnetic fields in galaxies and clusters of galaxies have been measured as B ∼ 10−5 −
10−6 G and 10−6 − 10−7 G, respectively (see, e.g., [1–3]). The origin of the galactic magnetic field is usually attributed to 
the dynamo mechanism, which, however, requires a nonvanishing seed field, although it may be as tiny as 10−22 − 10−16 G
[4,5].

For a long time, only upper bounds had been obtained for the amplitude of magnetic fields outside galaxies and clusters 
or on larger scales. Recently, however, a new method to probe magnetic field was proposed, combining observations of TeV 
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photons by HESS [6] and GeV photons by Fermi LAT [7] from blazars, which may be interpreted as setting a lower bound 
on the field amplitude on relatively large scales [8].

The existence of magnetic fields on scales well above the galactic scale and in particular in void regions [9] would 
motivate us to attribute their origin to the processes during to the inflationary period in the early universe [10–13]. Hence 
here we review and consider several issues on magnetogenesis during inflation, starting with a review on the observational 
results in Section 2.

In Section 3 we present an incomplete list of proposed models for inflationary magnetogenesis. Then in Section 4 we 
describe a model to produce magnetic fields by modifying the kinetic term of the gauge field. In Section 5, we summarize 
the constraints imposed on such a model mainly by the excessive electric field generated during inflationary magnetogenesis. 
Next we consider the effect of Schwinger’s process [15], which may take place due to the strong induced electric field. 
Finally Section 7 is devoted to our conclusion.

2. Observational evidence of large-scale magnetic field in empty space

According to the unified model of the accretion disks, we identify them as blazars if they are observed from the polar 
directions along which jets of high-energy TeV photons are emitted. These photons of energy Eγ0 scatter extragalactic 
background light (EBL) [16], consisting mainly of optical or infrared photons to create electron–positron pairs [17]. This 
occurs at a typical distance

Dγ (Eγ0 , z) = 40κ

(1 + z)2

(
Eγ0

20 TeV

)−1

Mpc (1)

which is not close to the blazar. Here κ is a numerical parameter ranging between 0.3 and 3. The electron–positron pairs 
thus created with energy Ee scatter off cosmic microwave background (CMB) radiation with energy ECMB to create GeV 
energy photons with typical energy

Eγ = 4ECMB E2
e

3 (1 + zγ γ )
� 0.32

(
Eγ0

20 TeV

)2

TeV (2)

with Ee = Eγ0/2 and the mean free path

De � 1023(1 + zγ γ )−4
(

Ee

10 TeV

)−1

cm

� 33

(
Ee

10 TeV

)−1

kpc (3)

Thus the high-energy photons travel a long cosmological distance before encountering an extragalactic background photon, 
but once they create electron–positron pairs, subsequent cascade processes occur almost locally.

If there exists a magnetic field, electron trajectories are bent with the Larmor radius

R L = Ee

eB
� 3·1028

(
B0

10−18 G

)−1 (
Ee

10 TeV

)
cm (4)

Hence if the correlation length of the magnetic field, λB , satisfies λB � De, the deflection angle is given by

δ = De

R L
� 3·10−6(1 + zγ γ )−2

(
B0

10−18 G

)−1 (
Ee

10 TeV

)−2

(5)

If it is much smaller than De, the net deflection angle is given by the result of random walks as

δ =
√

DeλB

R L
� 5·10−7(1 + zγ γ )−1/2

(
B0

10−18 G

)(
Ee

10 TeV

)−3/2 (
λB

1 kpc

)1/2

(6)

As a result, GeV photons created by the scatter of electron and positron arrive at the observer with an opening angle 
�ext ∼= Dγ δ/Dθ , where Dθ is the distance between the blazar and the observer. The opening angle is given by

�ext � 0.5◦

(1 + z)2

( τθ

10

)−1
(

Eγ

0.1 TeV

)−1 (
B0

10−14 G

)
(7)

for λB � De with τθ ≡ Dθ /Dγ , and

�ext � 0.07◦

(1 + z)1/2

( τθ

10

)−1
(

Eγ

0.1 TeV

)−3/4 (
B0

10−14 G

)(
λB

1 kpc

)1/2

(8)

for λB 	 De. These are to be compared with the point spread function of Fermi LAT, given by
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�PSF �
⎧⎨
⎩ 2◦

(
Eγ

1 GeV

)−0.8
for Eγ < 1 GeV,

0.2 at Eγ = 10 GeV

If the magnetic field satisfies the inequality B ≥ BPSF with

BPSF � 6·10−17 Dθ

Dγ

(
Eγ min

10 GeV

)
G (9)

for λB > De and

BPSF � 8·10−16 Dθ

Dγ

(
Eγ min

10 GeV

)3/4 (
λB

1 kpc

)1/2

G (10)

for λB < De, we find �ext > �PSF for Eγ < Eγ min so that such photons are invisible as a point source.
Assuming the spectrum of photons from a blazar takes the form dNγ /dE ∝ E−	e−E/Ecut , Neronov and Vovk [8] calculated 

processed photon spectra to match the HESS observation of three blazars and found that the amount of resultant GeV 
photons for two of the blazars were in contradiction with the upperbounds obtained by Fermi LAT without assuming the 
presence of extragalactic magnetic fields. Using various values of 	 and Ecut, they have found that for blazar 1ES 0229 +200
to be compatible with Fermi data, a magnetic field of strength B = 3·10−16 G with a coherent length larger than ∼0.1 Mpc 
is required [8]. If the correlation length is smaller, a larger magnetic field is required. Tavecchio et al. [18] obtained a lower 
bound B � 5·10−15 G for the collimation angle of the blazar 1ES0229 + 200 θc = 0.1.

One may wonder if sufficiently strong magnetic fields localized in filaments may explain the above deficits in Fermi 
data. To answer this question, Dolag et al. [9] performed a number of numerical simulations with various profiles of the 
extragalactic magnetic field. For example, they calculated the photon spectrum assuming that a strong magnetic field with 
strength 10−10 G exists in filamentary regions with separation 10 Mpc each and estimated the minimal filling factor of such 
regions to suppress GeV photons below the upper bounds obtained by Fermi. They have found that the strong magnetic field 
must fill at least 80% of the space. More sophisticated simulations based on MHD follow also shown the same tendency; in 
particular, they have shown that B0 = 10−17 G in void regions is too small to account for Fermi data.

These observations and considerations strongly suggest there exist magnetic fields ubiquitously in extragalactic space 
including void regions. One should remember, however, that this line of argument, namely, putting a lower bound on 
magnetic fields from NON-observation of GeV photons, can apply if and only if we fully understand the underlying physics.

3. Magnetogenesis during cosmic inflation

If indeed there exist magnetic fields with coherent length larger than ∼ 1 Mpc or in void regions, where no astrophysical 
generation mechanisms are known to operate, then we must seek their origin in the early universe, especially during 
inflation, when a large coherent scale was easily achieved by virtue of the quasi-exponential expansion.

Unlike the inflaton, which is a minimally coupled nearly massless scalar field in the standard slow-roll models [13], and 
the tensor perturbations, the electromagnetic field is conformally invariant, as one can easily see from the electromagnetic 
action in the spatially flat Robertson–Walker metric gμν = a2(η)ημν ,

SEM = −
∫ √−g

1

4
gμα gνβ Fμν Fαβ d4x

= −
∫

a4(η)
1

4
a−4(η)ημαηνβ Fμν Fαβ d4x

= −
∫

1

4
ημαηνβ Fμν Fαβ d4x (11)

Thus it behaves in the same way as in the Minkowski space. Hence no long-wave quantum fluctuations are generated during 
inflation unless the conformal invariance is broken in an appropriate manner. The study of magnetogenesis during inflation 
needs therefore modifying (11) to break the conformal invariance appropriately.

The first attempt along this line was done by Turner and Widrow [14], who introduced couplings to spacetime curvatures. 
Their first model was

S R1 =
∫ √−g d4x

(
−1

4
Fμν F μν − c1

2
R Aμ Aμ − c2

2
Rμν Aμ Aν

)
(12)

which also breaks gauge invariance. This Lagrangian, however, suffers from the ghost problem [19,20] and cannot serve as 
a realistic model.

The second model of Turner and Widrow [14] was to couple Fμν with curvature tensors without breaking gauge invari-
ance.

S R2 =
∫ √−g d4x

(
−1

4
Fμν F μν − c3

4m2
R Fμν F μν − c4

4m2
Rμν F μα F ν

α − c5

4m2
Rμναβ F μα F νβ

)
(13)
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which predicted too weak field strength on cosmological scales.
Ratra [21] introduced a coupling with the inflaton field, which was extended to an arbitrary scalar field in [22,23]. This 

class of model was studied in more detail in [24]; its action reads

S1 = −
∫ √−g d4x

1

4
f 2(�)Fμν F μν (14)

Here � is a scalar field that may or may not be the inflaton, but that dynamically evolves during inflation. In this model, 
1/ f (�) gives a time-dependent gauge coupling that induces a problem, as we will see later.

Another type of gauge-scalar coupling has been considered in the literature [25–27],

S2 = −
∫ √−g d4x

1

4
h2(φ)Fμν F̃ μν

F̃ μν ≡ 1

2
εμναβ Fαβ (15)

Here εμναβ is the totally antisymmetric tensor. This means that time derivative is always associated with spacial derivative. 
In Fourier space, conformally noninvariant terms have an extra k factor, which tends to suppress long-wave fluctuations 
compared with the model (14), which we will call fFF hereafter.

4. fFF model

Let us consider the fFF model (14) assuming that � is the inflaton that is a minimally coupled scalar field with a 
potential V [�] following [24]. Taking the Coulomb gauge A0 = ∂i Ai = 0, we expand the gauge field as

Ai(η, x) =
∫

d3k

(2π)
3
2

2∑
λ=1

εiλ(k)

[
aλ(k)A(η,k)eik·x + a†

λ(k)A∗(η,k)e−ik·x
]

(16)

in terms of the annihilation and creation operators, aλ(k) and a†
λ(k), with ελ

i (k) being the transverse polarization vector. 
The canonically normalized mode function A(η, k) ≡ a(η) f (η)A(η, k) satisfies the following equation of motion

A′′(η,k) +
(

k2 − f ′′

f

)
A(η,k) = 0 (17)

and the normalization condition

A(η,k)A∗′(η,k) −A′(η,k)A∗(η,k) = i

Let us consider de Sitter inflation a(η) = −1/(Hη) and assume that f is a function of conformal time η through evolution 
of �(η) as f (η) = (a/aend)−γ . Then we find

f ′′

f
= γ (γ − 1)

η2
(18)

so that the mode function is given by

A(η,k) =
√

π

4k
e

i
2 γπ (−kη)

1
2 H (1)

γ − 1
2
(−kη) (19)

which behaves as

A(k, η) → 1√
2k

e−ikη (20)

in the short-wavelength limit. Thus the initial vacuum state in the short wave regime coincides with the Minkowski vacuum. 
In the long-wave regime, the leading contributions to the mode function reads

A(k, η) →
√

π

2γ +1/2

eiπγ /2k−1/2(kη)γ

	(γ + 1/2) cos(πγ )
+

√
π

2−γ +3/2

eiπ(1−γ )/2k−1/2(kη)1−γ

	(−γ + 3/2) cos [π(1 − γ )]
(21)

where the amplitude of the two modes has been written such that the symmetry γ → 1 −γ be manifest. The limit changes 
depending on whether γ > 1/2 or γ < 1/2.

Now the magnetic field Bi and the electric field Ei are given by

Bi = εi jk
∂ j Ak and Ei = − A′

i (22)

a a
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respectively, and their energy density due to the quantum fluctuations of the gauge field are given by

dρE (η,k)

d ln k
= f 2(η)

2π2

k4

a4

∣∣∣∣
(A(η,k)

f

)′∣∣∣∣
2

(23)

dρB(η,k)

d ln k
= 1

2π2

k4

a4
|A(η,k)|2 (24)

per each logarithmic wavenumber interval.
Using the above equalities we find

dρB(η,k)

d ln k
= F(1 − γ )H4

2π2

(
k

aH

)−2γ +6

(25)

for γ > 1/2 and

dρB(η,k)

d ln k
= F(γ )H4

2π2

(
k

aH

)2γ +4

(26)

for γ < 1/2, with

F(δ) ≡ π

22δ+1	2(δ + 1/2) cos2(πδ)
(27)

As for the electric field, we find

dρE(η,k)

d ln k
= G(−γ )H4

2π2

(
k

aH

)−2γ +4

(28)

for γ > −1/2 and

dρE(η,k)

d ln k
= G(1 + γ )H4

2π2

(
k

aH

)2γ +6

(29)

for γ < −1/2, with

G(ι) ≡ π

22ι+3	2(ι + 3/2) cos2(πι)
(30)

In the case γ = 0, for which gauge coupling is constant, we find both scale k4 as they should.
In the above simple setup, spectrum of the energy densities in magnetic and electric fields take a power-law form, and 

in order to obtain appreciable amplitude of magnetic fields on cosmological scale, we need a nearly scale-invariant power 
spectrum for magnetic fields to satisfy both upper and lower bounds on large scales. Models with f (η) evolving according 
to more complicated functions have been considered in [29].

The exactly scale-invariant spectrum is realized if γ = 3 or −2.
For γ = −2 we find that long-wave energy density in the electric field is suppressed in proportion to (k/aH)2, and so 

only the magnetic field is relevant on large scales. In this case, however, f (η) rapidly increases in time during inflation, 
which means that, in the beginning of inflation, the effective gauge coupling constant or the electric charge was expo-
nentially large [22], so that perturbative calculation was not possible there [20]. This strong coupling problem may be 
ameliorated if coupling between gauge fields and matter fields also have time dependence in such a way that the effective 
gauge coupling constant remain small [28].

For γ = 3, there is no strong coupling problem. On the other hand, the energy spectrum of the electric field has a 
severely blue spectrum

dρE (η,k)

d ln k
= G(−3)H4

2π2

(
k

aH

)−2

∼
(

k

aH

)−2 dρB(η,k)

d ln k
(31)

and, in fact, the factor (k/aH)−2 in the last expression is quite common in magnetogenesis models without the strong cou-
pling problem [30]. This means that we inevitably obtain much larger electric fields than magnetic fields on astrophysical 
and cosmological scales. When inflation ends and charged particles are created, the electric conductivity rises up to elimi-
nate the electric field [21]. Hence it is harmless after inflation. For the moment, let us assume that this is the case and also 
that f (η) becomes unity at the end of inflation and remains constant thereafter. Then the energy density of the magnetic 
field created during inflation starts to dissipate in proportion to a−4 just in the same way as radiation. During inflation, 
however, the amplitude of the electric field imposes nontrivial constraints on the magnetogenesis model, which we discuss 
in the next section.
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5. Constraints on the energy scale of inflation in the fFF model

First of all, its energy density may not exceed that of the inflaton to sustain inflation. For γ = 3, we find that the energy 
scale of inflation must satisfy ρ1/4

inf < 107 GeV [24].
A more stringent constraint is obtained by the requirement that the extra energy density should not perturb the space-

time excessively. Let us consider how the curvature perturbation is affected by the existence of a magnetic field by solving 
the evolution equation for the curvature perturbation, ζ , on the uniform density surface. On superhorizon scales k/(aH) 	 1, 
its evolution equation is derived from the Einstein equation as

ζ̈ + 3H ζ̇ + 1

a3

(
a3 H

ρ + P
δP rel

)·
− 8πG

3
� = 0 (32)

where ρ , P , and � represent the background energy density, pressure, and the anisotropic stress, respectively [31,32]. Here

δP rel ≡ δPem − Ṗ

ρ̇
δρem (33)

represents the nonadiabatic pressure perturbation due to the relative entropy perturbation, where δρem and δPem are the 
energy density and pressure perturbations of the electromagnetic field, respectively, but since the electromagnetic field does 
not have any homogeneous mode, they are identical with the energy density and the pressure themselves, respectively.

We find the following inhomogeneous solution

ζ(t) = −
t∫

t∗

dt1
H(t1)

ρ(t1) + P (t1)
δP rel(t1) + 8πG

3

t∫
t∗

dt1

a3(t1)

t1∫
t∗

dt2 a3(t2)�(t2) (34)

starting from ζ(t∗) = 0 at some initial time t∗ that may be identified with the horizon crossing time [33]. Since P � −ρ
during inflation, the first term is larger than the second one in general. Hence we concentrate on the first term hereafter.

During inflation, we find δP rel � 4δρem, and during radiation domination, we find δP rel = 0, because the magnetic field 
dissipates in the same way as radiation. We therefore find

ζ(t) � −2N
ε

δρem

ρinf
(35)

where ε ≡ −Ḣ/H2 is the slow-roll parameter and N is the number of e-fold measured from the time when the mode of 
interest crossed the horizon to the end of inflation. Thus as a conservative bound we may adopt

ρem < εζρinf (36)

which is more stringent than the first constraint by a factor of ∼ 10−5ε .
Extending this line of thoughts to generic cases where the ratio of the electric field to the magnetic field is enhanced by 

a factor of eN with N being the number of e-folds of inflation corresponding to the scale we measure it, it has been found 
that the scale of inflation must satisfy ρ1/4

inf < 30 GeV to realize B � 10−15 G on a megaparsec scale today [30].
Further constraints may be imposed by the calculation of non-Gaussianity of curvature perturbations due to the electric 

field, which obeys a chi-square distribution rather than a Gaussian one [34].

6. Schwinger effects in a de Sitter space

So far we have seen that in fFF type models of inflationary magnetogenesis we encounter much stronger electric fields 
than magnetic fields and they are tightly constrained by the excessive strength of electric fields. If one could effectively re-
move electric fields during inflation, one may obtain a successful scenario of magnetogenesis during inflation. This motivates 
us to study the Schwinger effect [15] during inflation or in a de Sitter space [35–38].

If this process operates efficiently to produce charged particles abundantly, electric conductivity may take a large enough 
value to eliminate the induced electric field. Calculation of the pair production rate in a curved background is a difficult 
problem and analytic solution is possible only in a simplified case, where the gauge field is treated as a homogeneous 
external back ground as discussed below.

Let us consider pair production of a charged scalar field ϕ with mass m in a de Sitter background a(η) = 1/(1 − Hη) =
eHt . Here the domain of the conformal time is taken as −∞ < η < H−1, so that we can easily take the Minkowski limit by 
taking the Hubble parameter H −→ 0 when η reduces to the physical time t . To allow an analytic solution, we consider the 
case when the proper electric field is constant along the z-direction in spite of the exponential expansion of the background 
space, taking the gauge field as Aμ = (0, 0, 0, Az) with

Az(η) = − E
(a(η) − 1) (37)
H
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which satisfies the Lorenz and Coulomb gauge conditions, A0 = ∂i Ai = 0. We expand a conformally rescaled scalar field 
χ ≡ aϕ as

χ(η, x) =
∫

d3k

(2π)3
eik·x(χk(η)bk + χ∗

k (η)d†
−k) (38)

The commutation relations for the creation and annihilation operators take the form,

[bk,b†
k′ ] = [dk,d†

k′ ] = (2π)3δ(3)(k − k′)

[bk,bk′ ] = [b†
k,b†

k′ ] = [dk,dk′ ] = [d†
k,d†

k′ ] = 0

The Klein–Gordon equation for each mode reads(
∂2
η + α

(1 − Hη)2
+ β

1 − Hη
+ γ

)
χk = 0

(α,β,γ ) =
(

m2 − 2H2 + l2, −2lpz, p2
)

(39)

where p is the shifted wavenumber vector

p = (kx,ky,kz + l) with l ≡ eE/H

Its solution is expressed in terms of the Whittaker functions Wκ,μ(z) and Mκ,μ(z) with

κ ≡ − iL
pz

p
, μ ≡

√
9

4
− M2 − L2

z ≡ − 2ip

(
1

H
− η

)
(40)

where M ≡ m/H and L ≡ l/H .
The appropriate positive frequency mode at the in-regime η −→ −∞ is given by

χ in
p (η) = eiκπ/2

√
2p

Wκ,μ(z) (41)

The positive frequency mode in the asymptotic future η −→ H−1 is well defined if and only if μ is pure imaginary as

χout
p (η) = ei|μ|π/2

√
4|μ|p Mκ,μ(z) (42)

Using the relation between the two Whittaker functions

Wκ,μ(z) = 	(−2μ)

	(1/2 − μκ)
Mκ,μ(z) + 	(2μ)

	(1/2 + μκ)
Mκ,−μ(z) (43)

the Bogoliubov coefficients can be calculated as

αk =
√

2|μ|	(−2μ)

	(1/2 − μ − κ)
ei(κ−μ)π/2 (44)

βk =
√

2|μ|	(2μ)

	(1/2 + μ − κ)
ei(κ+μ−1)π/2 (45)

Thus the number of particles observed in the asymptotic future is given by

Nk = |βk|2 = e2π L cos θ + e−2π |μ|

e2π |μ| − e−2π |μ| , cos θ ≡ pz

p
(46)

One can easily confirm that taking the limit H −→ 0 reproduces the well-known result of Schwinger, which gives a null 
result for cos θ < 0. What is interesting here is that in a de Sitter space, the creation of particles with its momentum 
anti-parallel to the electric field is also possible.

From this result, Kobayashi and Afshordi [38] obtain the number density of ϕ particles during inflation as

n = (|μ|2 + 1/4)3/2

3 sinh(2|μ|π)

[
1

L
sinh(2π L) + 2πe−2|μ|π

]
H3

(2π)3
(47)

which is constant, even though the background space is expanding exponentially, because this calculation is based on a toy 
model where the electric field is not diluted by the cosmic expansion.
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We thus expect that charged particles may be ambiently produced during inflationary magnetogenesis with an enhanced 
electric field, and hope to proceed to the calculation of the electric conductivity, again using the same toy model, which can 
be done by calculating the vacuum expectation value of the current

Jμ = −i e
[
ϕ† Dμϕ − (Dμϕ)†ϕ

]
(48)

with Dμ = ∂μ + i e Aμ . It is formally given by

〈 J i〉 ≡ 〈0| J i |0〉 = 2e

a2

∫
d3k

(2π)3
(ki + e Ai) |χ in

k (η)|2 (49)

Since this is a divergent quantity, we must regularize it using, say, the adiabatic regularization scheme as

〈 J z〉reg = 〈 J z〉 − 〈 J z〉
∣∣(A=n)

(50)

where the second term in the right-hand side is calculated in the same way as in (49), but with χ in
k (η) replaced by a mode 

function calculated up to the n-th adiabatic expansion. It is given in the WKB form:

χk = 1√
2�k(η)

e−i
∫ η dη′�k(η′) (51)

with �k(η) = �
(0)

k (η) + �
(2)

k (η) + �
(4)

k (η) + · · · . Here �(n)

k (η) is composed of terms containing n time derivatives.
It is known that, in order to regularize the energy-momentum tensor, we need to use adiabatic expansion up to n = 4, 

which is explicitly given by

�k(η) = ω(η) +
(

3

8

ω̇2

ω3
− 1

4

ω̈

ω2

)
+ 1

8

(
−13

4

ω̈2

ω5
+ 99

4

ω̇2ω̈

ω6
− 5

ω̇ω(3)

ω5
+ 1

2

ω(4)

ω4
− 297

16

ω̇4

ω7

)
+ · · · (52)

where ω2 ≡ α(1 − Hη)−2 + β(1 − Hη)−1 + γ .
Kobayashi and Afshordi [38] reported the regularized current in this setting for the first time. They have obtained a finite 

result using the adiabatic expansion only up to the second order. Their result, however, has exhibited a strange behavior that 
the current takes a negative value when m is much smaller than H for a range of L. We have found that the situation may 
not be improved even if we take the fourth-order effect into account as we must do in the calculation of the regularized 
energy momentum tensor. The induced current is proportional to the external electric field only in the regime it is small, 
where the conductivity σ is well defined. For generic cases, one must solve the field equation for the gauge field taking the 
induced current into account.

7. Outlook

While the calculation of the Schwinger effects as well as the induced current by the quantum processes is difficult to 
perform in more realistic situations, one can imagine what would happen in case charged particles are abundantly produced 
during inflation to enhance the electric conductivity effectively to eliminate the electric field.

The situation in which the conductivity rises up to a large and constant value compared with the Hubble parameter 
has been studied by Ratra [21], who has shown the electric field indeed vanishes and the magnetic field is frozen. This 
means that the amplitude of the magnetic field starts to decrease in proportion to a−2 apart from the effect of the time 
dependence of the coupling function f (η).

As we have seen in the magnetogenesis scenario without the strong coupling problem, one generically finds that the 
magnetic field is suppressed by a factor of k/aH compared with the electric field. Hence in case the Schwinger effect is 
absent, we find the amplitude of the magnetic field is smaller than the electric field by a factor of eN on the current 
horizon scale, where N ∼ 60 is the number of e-folds of inflation after that scale left the Hubble radius.

If the Schwinger effect starts to operate at some time tcond during inflation to make the effective conductivity large 
enough to eliminate the electric field and freeze the magnetic field, the final amplitude of the magnetic field becomes 
smaller than the case without the Schwinger effect by a factor of eNcond where Ncond is the number of e-folds of inflation 
after the conductivity has become large. Hence the situation is expected to become even worse, although the electric field 
may be eliminated earlier.

Thus although the Schwinger effect during inflation is an interesting topic of study in relation with the magnetogenesis 
without the strong coupling problem, it may not provide us with a way out to solve the mystery of the origin of the 
large-scale magnetic field.
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