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Although the inflationary paradigm is the most widely accepted explanation for the current 
cosmological observations, it does not necessarily correspond to what actually happened in 
the early stages of our Universe. To decide on this issue, two paths can be followed: first, all 
the possible predictions it makes must be derived thoroughly and compared with available 
data, and second, all the imaginable alternatives must be ruled out. Leaving the first task to 
all other contributors of this volume, we concentrate here on the second option, focusing 
on the bouncing alternatives and their consequences.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Quoique le paradigme inflationaire soit maintenant communément accepté comme repré-
sentant la meilleure explication des données cosmologiques, il n’est pas pour autant 
possible de dire qu’une telle phase soit avérée. Pour s’approcher d’une telle conclusion, 
on peut suivre deux chemins différents : on peut explorer les conséquences de l’inflation 
pour la pousser dans ses derniers retranchements, ou bien, au contraire, étudier en détail 
les alternatives possibles. La première option faisant l’objet de la plupart des contributions 
de ce volume, nous nous concentrons ici sur la seconde, et présentons les modèles dans 
lesquels une phase de contraction est suivie d’un rebond conduisant à notre époque 
d’expansion.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Starting out in a dense state some 13.8 billion years ago, our Universe and its evolution since this initial time are well 
understood, with an initially almost scale-invariant, but not quite, spectrum of primordial perturbations condensing into 
the presently observed large-scale structures by means of gravitational collapse. The very high densities of the early stages 
provide initial conditions to explain the relative amounts of different nuclei, and the ensuing phases, being controlled by 
well-known physical mechanisms, permit to reconstruct, from the cosmic microwave background (CMB) observations, the 
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properties of the last scattering surface. We have arrived at the point [1,2] where cosmological data can be used to probe 
the earliest conceivable phases.

The most widely accepted paradigm for describing the earliest phases of the Universe, when the energy density was 
a mere few orders of magnitude below the Planck scale, is inflation [3,4]. Easily implemented by means of a scalar field, 
this almost exponentially expanding era rapidly leads to a flat Friedmann–Lemaître (FL) spacetime with a very slightly 
reddish spectrum of initial perturbations, from which the rest of the history of the Universe ensues. As is, such a scenario 
is compatible with all currently available data.

This contribution reviews some properties of some non-inflationary bouncing models. The first natural question that 
comes to mind before going any further is: why should we bother with possible alternatives to a working scenario? There 
are in fact many reasons, the first of which being that the phase of inflation is silent relative to the primordial singularity, 
as we discuss in Section 2 below. The second is that there is no way we will ever be able to assert that a phase of inflation 
did actually take place, except through its presently observable consequences. But then the question arises as to whether 
other competing theories could induce similar consequences. Thus, examining all plausible scenarios in detail seems to be 
the only way to assert whether inflation is the unique possibility leading to our observable Universe. In the end, ruling out 
alternatives, or not, increases or decreases our level of confidence in inflation until it becomes, if ever, recognized as valid 
beyond any reasonable doubt. As we shall see in Section 3, there are bouncing alternative explanations to the standard 
model puzzles of homogeneity, flatness, isotropy, horizon and the overproduction of relics, as well as many models, some 
of which are listed in Section 4, in which those bounces can be implemented.

Getting a background-compatible model is however not the end of the story: the recently released Planck data [5,6]
confirm what was suggested by previous experiments, namely that the spectrum of primordial perturbations was almost 
scale invariant: slightly red, with a spectral index ns = 0.9639 ± 0.0047, excluding exact scale invariance at the 5σ level. 
The level of non-gaussianity is compatible with zero, and the contribution of tensor modes remains below the ∼10% limit 
relative to the scalar amplitude. All these facts are compatible with the perturbations having been produced by quantum 
vacuum fluctuations of a single scalar degree of freedom, a natural consequence of slow-roll single-field inflation. Can a 
non-inflationary bouncing model reproduce such results? As of now, there is no definite answer to this question. For this 
reason, and for lack of space in the present article, we shall not discuss these points below, and instead refer the reader to 
a recent review [7] in which all the relevant constraints for the models exhibited below are derived.

2. The singularity

The fact that cosmology, or at least its classical implementation in terms of general relativity (GR), always leads to the 
existence of singularities stems from the well-known singularity theorems [8]. A general argument was proposed in Ref. [9]: 
in an FL spacetime with metric

ds2 = −dt2 + a2(t)γK
i j (x)dxidx j = a2(η)

[
−dη2 + γK

i j (x)dxidx j
]

(1)

with γK
i j the constant-curvature (K = 0, ±1) spatial metric, let Uμ ≡ dxμ/dλ, with λ an affine parameter, be a lightlike 

tangent to a geodesic curve, i.e. UμUμ = γK
i j a2U iU j − (

U0
)2 = 0 and Uμ∇μUα = 0. Expanding the geodesic equation in 

terms of the connections associated with the metric (1) and taking into account the lightlike character of U , one finds that

dU0

dλ
+ H

(
U0

)2 = 0

which implies that

d

dλ

(
dt

dλ

)
+ H

(
dt

dλ

)2

= 0 (2)

where the Hubble scale is H = d ln a/dt . Eq. (2) is solved by choosing the affine parameter λ to satisfy dλ = [a(t)/a(tf)]dt , 
with tf a reference time, today say. We now assume our spacetime to begin at some initial coordinate time ti , which can 
take any value between 0 say, to −∞; this depends on the actual cosmological realization. The average Hubble rate along 
the geodesic parameterized by λ is found to be

Haverage ≡ 1

λ(tf) − λ(ti)

λ(tf)∫
λ(ti)

H(λ)dλ = 1

λ(tf) − λ(ti)

{
1 − a [λ(ti)]

a [λ(tf)]

}
≤ 1

λ(tf) − λ(ti)
(3)

so that in order for Haverage to be strictly positive, a condition that is generally satisfied in inflationary models, one finds 
that the interval in affine parameter must be finite, and therefore that the spacetime under consideration is not geodesically 
complete. This argument can be extended to timelike geodesics and more arbitrary cosmological models, i.e. with no specific 
assumptions regarding homogeneity and isotropy. This requires the definition of a local expansion rate that is not dependent 
on the special FL metric solution; in this case, it is the deviation between neighboring geodesics that needs to be used 
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Fig. 1. (Color online.) Typical time evolution of the scale factor a(t) (dashed line), Hubble rate H(t) ≡ ȧ/a (full line) and Hubble length �H(t) = H−1 (dotted 
line) for a bouncing scenario. For large negative times (conventionally setting the bounce at t = 0), the scale factor decreases in a non-accelerated way, 
then it curves up, accelerating and rendering the curve convex, finally connecting, not necessarily in a symmetric way, to a more standard non-accelerating 
expansion. The Hubble rate starts vanishingly small, then decreases to large negative values, passes through the bounce almost linearly increasing, reaches 
a maximum and then decreases back to its usual behavior. The Hubble length is originally very large, reaches a minimum and diverges at the bounce point: 
there is no super-Hubble scale at the bounce!

explicitly to define the expansion rate (in the highly symmetric FL universe, the geodesic deviation is given by the expansion 
only, as this is the only relevant observable). The conclusion then is that, regardless of any energy condition, inflating 
spacetimes are past incomplete.

An obvious way out of this problem consists in allowing the average Hubble rate to be negative. This corresponds to 
having some amount of contraction, and hence, given that we observe the Universe to be currently expanding, that it must 
have bounced. In the framework of GR however, this is not always easy.

Using the metric (1) and a fluid stress-energy tensor Tμν = (ρ + P ) uμuν + P gμν with energy density ρ , pressure P , and 
uμ a timelike vector, the Einstein equations read

H2 + K
a2

= 1

3
ρ, Ḣ + H2 = ä

a
= −1

6
(ρ + 3P ) (4)

leading to

Ḣ = K
a2

− 1

2
(ρ + P ) (5)

(we use natural units where h̄ = c = 8πGN ≡ 1 so that the Planck mass MPl ≡ G−1/2
N is dimensionless). Although hav-

ing an inflationary phase with ä > 0 merely demands the violation of the Strong Energy Condition (SEC: ρ + 3P > 0), 
a bounce, requiring H → 0 while Ḣ > 0 at the same time, implies that either the spatial sections must be positively 
curved (K > 0) or the Null Energy Condition (NEC: ρ + P > 0) must be violated. In the former case, the scale factor at the 
bounce aB is obtained as the solution to 3K/a2

B = ρ(aB) and must satisfy K/a2
B > −P (aB). This condition is for instance 

fulfilled in the very simple case in which a single scalar field evolves in a potential with a local maximum [10–12]. The 
bouncing solution, seen generically as indicated in Fig. 1, does have an accelerating phase, the scale-factor curve being 
convex at the bounce; although this technically implies the SEC to be also violated during a bouncing epoch, this cannot 
be understood as an inflating phase since the accelerating phase is not associated with a large increase of the size of the 
Universe.

In the more familiar (to inflation-oriented cosmologists) case of vanishing or negligible spatial curvature,1 as mentioned 
above, Eqs. (4) imply a much more stringent constraint, namely that the NEC be violated; as discussed in Section 4, this 
often leads to various instabilities that then need to be tamed in order for the model to make any sense at all.

1 Note that this is an assumption that can only be checked a posteriori: given a material content with positive and negative energy components, one 
must first solve the Friedmann equation for the minimum scale factor aB, and then verify that the curvature term K/a2

B is indeed negligible with respect 
to all other contributions.
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3. Standard model puzzles, bouncing solutions – new issues

The reason why the inflationary scenario is so fashionable stems from its successes in solving the standard hot big bang 
puzzles in a unified way, while at the same time providing a means of producing perturbations whose spectrum can be 
made to agree with all known data. Can a bouncing scenario, on top of naturally avoiding the singularity, propose satisfying 
solutions to the standard hot big bang puzzles? If it is the case, can a bouncing scenario provide a means to generate 
cosmological perturbations whose statistics agree with observations? As mentioned before, we refer the reader to Ref. [7]
for a detailed discussion of this latter question, and focus in the remainder of this review on bouncing solutions to the 
background cosmological problems and on a review of existing bouncing models.

3.1. Horizon and flatness puzzles

The standard hot big bang model suffers from a few puzzling problems, and we will treat in this section how a bounce, 
which implies a contracting phase preceding the current expansion, deals with the two most important, namely the horizon 
and flatness problems. We refer the reader to Refs. [7,13] for more details relative to the other commonly addressed puzzles.

− Horizon 

The horizon problem relates to the inability to explain the quasi-homogeneity of the observable universe within the context 
of standard cosmology in which the entire evolution of the universe consists in decelerated expansion during the radiation-
and matter-dominated epochs. In the context of inflation, the necessity of a period of accelerated expansion for a period 
lasting a minimum of N ∼ 60 e-folds can be phenomenologically understood by computing the solid angle subtended by 
causally connected regions. Assuming an expansion history in which the universe is initially radiation-dominated, then 
dominated by the inflaton, represented by a fluid X with equation of state parameter w X until a redshift ze, then once 
again radiation-dominated until the last scattering surface at zlss , and finally matter-dominated till today, we find that [14]

�� = 1

2

[
1 − (1 + zlss)

−1/2
]−1

(1 + zlss)
−1/2

{
1 + 1 − 3w X

1 + 3w X

1 + zlss

1 + ze

[
1 − e−N(1+3w X )/2

]}
(6)

where N = ln(ae/ai) with ai the scale factor at the onset of the X-dominated period. If we assume that N = 0, we recover 
standard cosmology and �� ∼ 0.85 degrees. This corresponds to a total of about 106 causally disconnected regions in 
which, strangely enough, the CMB is everywhere the same up to 1 part in 105. Increasing �� is easily achieved in the 
context of inflation by requiring w X < −1/3 and large positive N .

A similar calculation can be done in the context of bouncing cosmology. Here again, we shall assume a phase domi-
nated by a fluid with equation of state parameter w X during which the Universe first contracts. The bounce is assumed 
non-singular, occurring at a redshift zb and short enough that we can ignore its contribution. It is followed by the standard 
radiation- and matter-dominated phases. The solid angle subtended by causally connected regions is then

�� = 1

2

[
1 − (1 + zlss)

−1/2
]−1

(1 + zlss)
−1/2

{
1 + 1 + zlss

1 + zb

[
3 (1 + w X)

1 + 3w X

e−N(1+3w X )/2 − 2 (2 + 3w X)

1 + 3w X

]
+ 1

}
(7)

In this expression, N = ln(ai/aB) ≤ 0, with ai and aB the scale factors at the onset of the X-dominated contraction and at 
the bounce respectively. Here, large values of �� are obtained for w > −1/3 and large values of |N|. Thus, in contrast with 
inflation, the horizon problem can be solved using a fluid that satisfies all energy conditions.

− Flatness 

The flatness problem is easily understood by working with the ratio of the Friedmann equation with the critical density 
ρcrit = 3H2, which is the energy density the Universe would have if it had exactly flat spatial sections. In the presence of 
the spatial curvature term, the Friedmann equation (4) takes the form

K
a2 H2

=
N∑

i=1

�i − 1 = �T − 1 (8)

with

�i = ρi

ρcrit
= H2(t0)

H2(t)
�i(t0)

(
a

a0

)−3(1+wi)

(9)

From observations, we know that the total density parameter today is �T(t0) � 1. It is easy to recast Eq. (8) in the conve-
nient form [14]

�T(a) =
N∑

� j(t0)

(
a

a0

)−3(1+w j)
{ N∑

�i(t0)

(
a

a0

)−3(1+wi)

− [�T(t0) − 1]

(
a

a0

)−2}−1

(10)

j=1 i=1
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At early times (small scale factor), the Universe is radiation dominated, and Eq. (10) simplifies to

�T(t) − 1 � �T(t0) − 1

�rad(t0)

(
1

1 + z

)2

(11)

For z 	 1, �(t) − 1 must be much less than 1. For instance, taking znucl = 3 × 108, �rad(t0) = 10−4, and �T(t0) − 1 =
0.01, one finds �T(tnucl) − 1∼10−15. The value of the total density parameter at nucleosynthesis required to satisfy today’s 
observed value �T(t0)∼1 is highly fine-tuned and thus highly improbable. This embodies the flatness problem of standard 
cosmology.

Let us now consider the case of a bouncing universe that contracts in a phase dominated by a fluid of equation of state 
parameter w X , bounces and then expands according to the standard scenario. Note that the set of equations above do not 
apply at the bounce point where H = 0. In fact, in the presence of a spatial curvature term, �T diverges at the bounce.

For a universe dominated by some fluid X , one has

�T(t) = �X(ti)

�X(ti) − [�T(ti) − 1] (a/ai)
1+3w X

(12)

The total density parameter at the end of the contracting phase at t− is given by

�T(t−) − 1 � �T(ti) − 1

�X (ti)

(
a−

ai

)1+3w X

(13)

while it is given by Eq. (11) at the beginning of the expanding phase, for t = t+ and z = z+ . The difference

��T = [�T(t+) − 1] − [�T(t−) − 1] (14)

can be computed using Eq. (8) and the Taylor expansion of the scale factor close to the bounce,

a(t) = aB

[
1 +

(
t

tc

)2

+ β

(
t

tc

)3

+ . . .

]
(15)

One finds

��T � −3β

2

(
tc

aB

)2

(16)

Generically, in the absence of any fine-tuning, one should assume �T(ti) − 1 and �X (ai) take values of O(1) while it is 
known that �rad(t0) � 10−4 and �T(t0) − 1 ≤ 10−2. Hence, we have:(

a−
ai

)1+3w X

− 3β

2

(
tc

aB

)2

≤ 106 × z−2+ (17)

Taking as before z+ � 1028, and with w = 1/3, we have

e2N − 3β

2

(
tc

aB

)2

≤ 10−50 (18)

where N < 0. Thus, for N ≤ −60, and β of order 1, a bounce with a short characteristic timescale and a large value of the 
scale factor at the bounce such that tc/aB ≤ 10−25 can satisfy current constraints on the spatial curvature of the universe.

3.2. Shear/BKL instability

In a bouncing scenario, the standard puzzles find natural solutions because of the contracting phase. However, such a 
phase can also induce another problem: the fate of any initial amount of anisotropy. To focus on this question, we consider 
a spatially flat model whose dynamics derives from the Bianchi I metric ds2 = −dt2 + a2(t)dx2, whose spatial part reads

dx2 = e2θx(t)dx2 + e2θy(t)dy2 + e2θz(t)dz2 (19)

with 
∑

i θi ≡ θx + θy + θz = 0. Plugging (19) into the Einstein equations generalizes (4) to

H2 ≡
(

ȧ

a

)2

= 1

3
ρ + 1

6

∑
θ̇2

i ≡ 1

3
(ρ + ρθ ) (20)
i
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and

Ḣ = −1

2
(ρ + P ) − 1

2

∑
i

θ̇2
i (21)

where we have identified the shear energy density ρθ contained in the anisotropy stemming from the functions θi : Eqs. (20)
and (21) imply that θ̈i + 3H θ̇i = 0, and therefore ρθ ∝ a−6.

With dust and radiation scaling as ρm ∝ a−3 and ρr ∝ a−4, respectively, the above result is a catastrophe: as the universe 
contracts, any initial anisotropy, however small,2 will grow until it eventually dominates the dynamics. This was shown [17]
by Belinsky, Khalatnikov, and Lifshitz (BKL) to induce an instability sufficient to spoil the bounce.

One way out of the shear problem is to add an extra component, usually a scalar field in a potential satisfying specific 
constraints, with large effective equation of state wφ 	 1, so that the resulting Friedmann equation reads:

H2 = 1

3

[
−3K

a2
+ ρm0

a3
+ ρr0

a4
+ ρθ0

a6
+ ρφ0

a3(1+wφ)

]
(22)

If this so-called ekpyrotic phase [18] lasts long enough, it eventually comes to dominate over all other constituents when 
a → 0, including the shear contribution. The Universe then bounces and starts expanding again while in a fully symmetric 
FL phase, a condition absolutely required to explain the observational data.

The bounce itself is another matter, which we now turn to.

4. Existing models

There exist a large number of bouncing cosmological models in the literature; we shall refer the reader to Ref. [7] for an 
exhaustive review and all the relevant references. We will instead focus here on a few models and give concrete examples.

4.1. Classical bounces

Bouncing models predate by many decades the inflationary paradigm, as they were first introduced in the 1930s. Classical 
models involve unconventional perfect fluids or scalar fields with possibly non-standard kinetic terms, or various combina-
tions of those. The most conservative setup that may be used to obtain a bounce is to introduce spatial curvature and to 
violate the strong-energy condition. In such a setup, scalar field matter is required in order to achieve ρ +3P < 0 and either 
a quasi-symmetric bounce or a post-bounce phase of inflation is needed to drive �K towards zero.

• Perfect fluids

In a theory restricted to GR and FL spacetime, generically, for K �= +1, the null-energy condition has to be violated in order 
to obtain a bounce, as discussed below Eq. (5). Exotic hydrodynamical fluids that violate the null-energy condition, and thus 
all other energy conditions, are a priori allowed, and models using those can be built in the framework of an FL spacetime. 
Assuming an expansion for the scale factor of the form

a = a0 + bη2n + dη2n+1 + eη2n+2 (23)

where n ≥ 1, and (a0, b, d, e) constant, it is possible to compute, in a fully analytic way, the evolution of adiabatic perturba-
tions around the bounce [19]. The possible choices for n and K are: (i) n > 1 and K �= 0; (ii) n > 1 and K = 0; (iii) n = 1
and d �= 0 ∀ K; (iv) n = 1 and d = 0 ∀ K; setting d = 0 restricts to a symmetric bounce. In the first three cases, the Bardeen 
potential � describing the gauge-invariant perturbations turns out to be singular at the bounce, while in case (iv), although 
� is well behaved, the NEC needs to be violated, even if K = +1. Given that at late times, it has to be satisfied, there must 
exist a time t∗ at which ρ(t∗) + P (t∗) = 0. It turns out that, at this NEC transition, the growth of � is unlimited, raising 
potential questions on the perturbative expansion through a bouncing phase.

When entropy perturbations are considered in addition to the adiabatic ones, they are found to be sourced by the 
interaction of the hydrodynamical fluids involved in the cosmological evolution. This implies that the fluids do not evolve 
independently. Inclusion of entropy perturbations has the effect of regularizing the Bardeen potential and its derivatives at 
the NEC transition. It may thus be concluded that perfect-fluid-dominated bouncing models in which both adiabatic and 
entropy perturbations are taken into account are regular and do not necessarily lead to strong backreaction effects of the 
perturbations onto the background geometry [20].

When it comes to violating energy conditions, it is tempting to make use of scalar fields: most implementations of the 
inflationary paradigm are based on scalar fields, and the bounce does no better in that respect! Bouncing models powered 

2 Actually, the problem only arises in the presence of primordial classical shear: it has been shown that if the primordial shear is generated by quantum 
vacuum fluctuations, scalar and vector perturbations remain comparable [15,16].
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by such fields can be broadly distinguished in two categories, depending on the coupling (minimal or extended) with the 
geometry. We now discuss both these possibilities.

• Minimally coupled scalar fields theories

Theories using minimally coupled scalar fields can be separated in two categories. First, an ordinary scalar field, with a 
standard kinetic term and a potential. In this case, in order to obtain a bouncing cosmology and preserve the weak energy 
condition, one needs K = +1. We shall not dwell here with such cases, which then demand the curvature problem to be 
addressed independently, and may result in perturbations being large and potentially highly non-Gaussian [21].

The second category naturally involves non-standard kinetic terms; those can be generalized to the galileon theories 
(non-minimal coupling, see below). Their advantage over the standard kinetic terms is that those can be implemented in a 
flat FL universe.

− Ghost condensates 

The simplest possible example of a non-standard kinetic terms consists in merely switching its sign, making it a so-called 
ghost field, which yields an untenable theory because instabilities, both classical and quantum, will immediately develop 
and ruin any configuration. Although one can use a ghost as an effective means to initiate a bounce with K = 0 [22], it 
makes more sense to induce NEC violations with dynamical ghosts. This can be achieved in higher-derivative theories with 
second-order equations of motion that by construction prevent gradient or ghost instabilities. This is the ghost condensate 
mechanism [23], whose features we can sketch with the Lagrangian

L = P (X) where X ≡ −1

2
gμν∂μφ∂νφ (24)

and where the pressure P is an arbitrary function of the kinetic energy X . Eq. (24) in a flat FL metric yields

d

dt
(a3 P ,X φ̇) = 0 (25)

where P ,X ≡ dP/dX .
If X is a constant and P ,X = 0 at X = Xc, the equation of motion yields the solution

φ = √
2Xc t (26)

Given that

ρ + P = 2X P ,X (27)

and the constraint X > 0, a violation of the NEC can take place if P ,X < 0 in some interval of the values of X . This, the 
condition that P ,X = 0 at X = Xc and requiring that P ,X X > 0 at X = Xc in order to prevent the existence of ghosts implies 
that the function P (X) should have a local minimum at Xc, (see Fig. 2). This construction was employed in the so-called 
K–bounce [24], new Ekpyrotic [25] and matter bounce [26] scenarios. Unfortunately, the ghost condensate phase in models 
such as this cannot be smoothly connected with a branch P ,X > 0 at X = 0. Ghost-condensate-type models therefore do 
not admit a stable Poincaré-invariant vacuum state and are thus severely flawed. Consequences of this instability were for 
instance demonstrated explicitly in the case of the new Ekpyrotic scenario in Refs. [27,28].

− Ekpyrotic potential and ghost condensation 

As was mentioned earlier, the contracting phase of a bouncing cosmology is generically unstable under the growth of 
anisotropies and leads to chaotic mixmaster oscillations unless a period of ekpyrotic contraction with w > 1 is invoked or if 
the contraction is sufficiently brief. The smooth transition from ekpyrotic contraction to expansion through a non-singular 
bouncing phase relying on the NEC violation (with w < 1) was first studied in the new Ekpyrotic model [25]. It is obtained 
with a single scalar field rolling down a steep negative potential during the ekpyrotic phase and then undergoing ghost 
condensation. In this approach, the ghost-condensate Lagrangian is thus supplemented with a potential term V (φ). The 
function P (X) realizing the ghost-condensate phase, and the ekpyrotic potential V (φ) are depicted in Fig. 2 As shown for 
instance in [29], however, this model suffers from a gradient instability and from the regrowth of the initial anisotropy 
during the bouncing phase. In addition, the absence of a Lorentz-invariant vacuum remains, as in the ghost-condensate 
model. It also predicts a blue spectrum of curvature perturbations.

• Conformal galileons

Instead of realizing NEC-violations by relying on Lagrangians that are restricted to general functions of the kinetic term only, 
it is possible to construct yet more general NEC-violating theories with Lagrangians that exhibit couplings between various 
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Fig. 2. Top: ghost condensate kinetic function P (X). Bottom: ekpyrotic potential V (φ). Plots obtained from Ref. [29].

scalar-field derivative terms [30]. Such scalar-field theories are called galileon theories and have drawn much interest due 
to the fact that they naturally admit self-accelerating solutions. In galileon theories, the scalar Lagrangian involves higher 
derivative interactions with at most second-order derivatives in the equations of motion and is invariant under (possibly 
conformal or DBI-conformal) Galilean transformations. Galileon theories are a subclass of the theory of generalized galileons, 
which are described by the most general scalar-tensor (Horndeski) action leading to second-order equations of motion. 
Denoting the scalar field by π(x), it reads

SH =
∫

d4x
√−g

{
P (π, X) + G�(π, X)�π + GR(π, X)R+ GR,X

[
(�π)2 − (∇μ∇νπ

)2
]

+ GG (π, X) Gμν∇μ∇νπ − GG,X

6

[
(�π)3 − 3�π

(∇μ∇νπ
)2 + 2

(∇μ∇νπ
)3

]}
(28)

with R the scalar curvature, the functions G� , GR and GG being arbitrary functions of the field π and its kinetic energy X ; 
the last two functions make manifest the non-minimal couplings with the gravitational sector.

Conformal formulations of galileon theories are particularly advantageous because the 4D conformal group reduces to 
the Anti de Sitter, Minkowski and de Sitter symmetry groups for particular solutions to the dilaton equation of motion [31]. 
More importantly, whereas superluminal propagation of perturbations is common in higher derivative theories such as 
galileons, in conformal galileon theories [31], perturbations of the scalar can be shown to travel with a speed at most equal 
to the speed of light in the entire phase space as long as matter fields are excluded [32]. In [31], a simple and almost viable 
example is provided, with the theory described by the Lagrangian

L = f 2e2π (∂π)2 + f 3

�3
(∂π)2�π + f 3

2�3
(1 + α)(∂π)4 (29)

where f , � and α are constant. Provided L features a negative kinetic term, as is the case in Eq. (29), this theory admits a 
time-dependent de Sitter solution,

eπ = 1

−H0t
, with H0 = 2

3

1

1 + α

�3

f
(30)

Here, � is a strong coupling scale. This theory violates the NEC. The sound speed is subluminal for 0 < α < 3, but the 
NEC-violating solution, as is the case for the ghost condensate, cannot be smoothly connected with a Lorentz-invariant 
vacuum solution. This theoretical setup nevertheless does bare a particularly interesting aspect, which was dubbed the 
‘galileon genesis”, namely that the cosmological solution displayed here is an attractor solution. This allows the possibility 
to have either emerging cosmological evolution or bouncing solutions.
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4.2. Semi-classical and quantum bounces

Semi-classical models are those involving quantized scalar fields in classical spacetimes. The vacuum state being ill de-
fined on a curved background, except in the adiabatic limit of slowly varying scale factor, a regularization or renormalization 
scheme is required to cure such semi-classical theories of the infinities that arise in the formal expression for the stress-
energy tensor. These infinities are associated with the inability to properly define the creation and annihilation operators 
and thereby unambiguously remove the infinite vacuum term in the usual way. Renormalization results in the inclusion of 
higher order curvature (counter-) terms in the Einstein–Hilbert action leading to new terms in the Friedmann equations and 
to the possibility of constructing singularity-avoiding cosmologies.

A more ambitious approach to describe quantum gravitational effects is string theory. The full action of superstring the-
ory possesses scale factor duality and time reversal symmetry, which can be used to construct non-singular cosmologies. 
These require a branch change that smoothly interpolates between contracting and expanding spacetimes. This is the well-
known pre-big-bang cosmology3 [33]. In its original version, this model consists of only the dilaton field and the metric. 
At tree level, it can be shown that a contracting cosmology in the string frame corresponds to an expanding cosmology in 
the Einstein frame. These two frames are simply related by a conformal transformation. It is therefore not clear whether to 
identify such a tree-level cosmology with a bouncing cosmology per se. However, with the inclusion of loop corrections, it 
is possible to show that the cosmology is indeed non-singular, and it is then plausible that one identifies this non-singular 
evolution with branch changing.

Another possibility to smooth out the curvature singularity is the inclusion of a coupling to a matter or radiation fluid in 
the tree-level effective 4D action of string theory [34,35]. In order to study the propagation of cosmological perturbations 
through a bounce, it can either be modeled by a discontinuity across a spacelike hypersurface, in which case it is singular, 
and the behavior of cosmological perturbations transferred through the bouncing phase depends on how the Israel junction 
conditions are implemented, or, alternatively, if one smooths the curvature singularity by including higher-order corrections 
in the effective action, then it becomes possible to actually follow perturbations through the bounce.

Another string way to a non-singular cosmology involves the motion and interactions of higher dimensional (mem)branes 
in yet higher dimensional bulk geometries. While initially, models were based on branes embedded in, e.g., 5-dimensional 
bulk geometries, more recent models, based on either heterotic M-theory or on the compactification of 10-dimensional 
type-II A/B superstring theory manifolds, and on the stabilization of the “moduli” fields,4 have led to interesting brane dy-
namics in warped parts of the geometry. In general, these constructions lead to additional terms in the Friedmann equations 
or unconventional kinetic terms for the inflaton field that can lead to a period of inflation, to bouncing branes and to cyclic 
cosmologies. The ekpyrotic model [36] is one realization of brane cosmology based on heterotic M-theory, while examples 
of bouncing cosmologies in warped string compactifications can be found in, e.g., [37,38].

A final option, also fully quantum, consists in assuming the energy scale at which the bounce takes place to be suffi-
ciently small that a Wheeler de Witt treatment of quantum cosmology would be appropriate. Although one naturally faces 
measurement questions in such a context, there exists ways to treat both background and perturbations on an equal footing; 
a full set of predictions to compare with current data is however not yet available, since only toy models have been written 
down, but it would seem that a consistent model should be attainable in the near future (see Ref. [39] and references 
therein).

5. Conclusions

Although inflation appears to largely dominate the field of primordial cosmology, due, in particular, to the fact that 
many implementations have predicted consequences rather similar to the presently available observations, bouncing alter-
natives are not entirely ruled out. In addition, a contracting phase followed by a bounce can solve the primordial singularity 
problem, which renders such models attractive and worth investigating. It must be conceded however that, currently, most 
bouncing models have difficulties, either because they demand a complicated theoretical framework or because their pre-
dictions disagree with cosmological data.

From a purely theoretical standpoint, one might argue that bouncing cosmologies relying on either ghost condensates or 
unknown quantum gravitational effects [7] in order to successfully avoid the classical singularity should, in view of Occam’s 
razor, be disfavored when compared to much simpler inflationary models involving perfectly well-behaved scalar fields [4]. 
One should nevertheless remember that the singularity problem of big-bang cosmology will need to be addressed at some 
stage, and its solution, however contrived it may look from our perspective, may end up being quite natural within a few 
decades. In other words, one should not refute a theory or a paradigm on philosophical grounds, but instead on whether it 
is able to answer as of yet unanswered physical questions and whether it agrees with the data or not.

From an observational perspective, given increasingly stringent constraints imposed by present-day cosmological data, 
many bouncing models are under pressure as they naturally predict either exactly scale-invariant scalar perturbations, or 

3 At low energy, the four-dimensional effective action of the ekpyrotic model is equivalent to a modified version of the pre-big-bang model.
4 Moduli fields are fields that appear after compactification. They are identifiable with the (a priori unfixed) sizes and shapes of cycles in the higher 

dimensional Calabi–Yau manifold which the theory lives on.
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even slightly blue spectra. Reddening the spectrum often demands new components that may contribute in a non-negligible 
way and produce unobserved isocurvature modes. Furthermore, the bounce itself, involving either NEC violating fields or 
positive spatial curvature, might induce large non-Gaussianities [21]. Present-day bouncing models scarcely agree with all 
existing observational constraints, but it must be noted that neither do most inflationary models [4]. More work is needed 
to reach definite conclusions, perhaps along the lines of purely quantum models?
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