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On-body communication technology development requires a better knowledge of antenna 
radiation and wave propagation along the body, in both near and far fields. Therefore, 
Green’s functions associated with penetrable cylinders are briefly reviewed, considering 
frequencies at which the body is not much larger than the wavelength and with a 
particular attention given to the near fields. A unified approach based on current sheets 
is provided and an acceleration technique is proposed. This is validated with the help 
of an FDTD software, which also allows the analysis of non-canonical cross-sections. The 
properties of creeping waves launched by sources parallel and perpendicular to the body 
are studied, in particular from the point of view of their phase velocity, and a very simple 
fitting model is proposed. It is also explained how the Green function can be exploited to 
analyze antennas very efficiently with the help of an integral-equation approach.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La technologie de communication corporelle nécessite une meilleure connaissance du 
rayonnement des antennes et de la propagation le long du corps humain, tant en champs 
proches qu’en champs lointains. Par conséquent, les fonctions de Green associées aux 
cylindres pénétrables sont brièvement revues pour des fréquences où le corps n’est pas 
beaucoup plus grand que la longueur d’onde, avec une attention particulière portée 
aux champs proches. Une approche unifiée, fondée sur des nappes de courant, est 
adoptée, et une technique d’accélération est proposée. Ceci est validé à l’aide d’un logiciel 
FDTD, qui permet aussi l’analyse de sections non canoniques. Les propriétés des ondes 
rampantes excitées par des sources parallèles et perpendiculaires au corps sont étudiées : 
en particulier, leur vitesse de phase. Un modèle d’interpolation très simple est proposé. 
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Nous expliquons également comment les antennes en présence du corps peuvent être 
analysées en exploitant les fonctions de Green via la résolution d’équations intégrales.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Over the past 20 years, the flexibility of wireless communications allowed a technological revolution. This is how smart-
phones, with ever increasing contents and applications, are now being used by practically everyone in developed countries. 
This trend is now extending to machine-to-machine communications and to the “internet-of-things”, where objects can in-
teract with each other via the web. In this context, the human body becomes more and more intimately connected with the 
rest of the world. This is even true for different parts of the human body, which may get connected with each other and 
with their environment. For instance, physiological data from the different parts of the body can be gathered at one point 
of the same body before being sent outward; the reverse path can also be followed, from an external source to different 
points along the body surface.

To further develop on-body communications, it is important to know how the waves propagate along the human body 
[1–3] and how the body behaves as a propagation channel [4,5]. Moreover, it is useful to investigate how such waves can 
be efficiently transmitted or received when the antennas are placed very close to the body [6–8]. The latter point includes 
the dramatic change of behavior of antennas when placed very close to the body surface, which can be mitigated using 
specific designs [9,10]. This calls for an accurate representation of fields radiated by sources located near the human body, 
in both near and far fields. In order to gain physical insight into the related radiation mechanisms and in order to avoid 
very time-consuming numerical simulations, the answer to the above question requires a certain level of approximation 
regarding the representation of the body. In many publications about “body area networks”, that approximation consists in 
representing the human torso, or the whole human body, as a cylinder [11–13], as sketched in Fig. 1; skeletons made of 
multiple cylinders have also been considered [14,15].

In this paper, we will first briefly review the fast and accurate calculation of the Green function of the Helmholtz wave 
operator [16,12] in the presence of a penetrable cylinder, i.e. a cylinder with finite permittivity and conductivity and with 
dimensions representing an adult human body. In other words, what is computed is the field around the body when it is 
illuminated by a point-like current source located in its vicinity, considering different orientations of the source. Thanks to 
the introduction of new boundary conditions, a unified approach, in which sources are decomposed into current sheets, will 
be made possible for all source polarizations. Special attention will be given to the field in the immediate vicinity of the 
source, which will be important for antenna analysis. The Green function formulation will then be validated with the help 
of the FDTD (Finite Difference Time Domain) method [17] at relatively low frequencies of a few gigahertz, corresponding 
to popular communication standards, at which the cylinder radius is not much larger than the wavelength. Finally, we will 
explain how the Green function can be exploited to efficiently calculate the behavior of antennas placed very close to the 
human body. This can be done while considering a computational domain strictly limited to the surface of the antennas, 
while the presence of the body will be implicitly accounted for through the use of the Green function. That will be explained 
considering dipoles, i.e. canonical antennas. There, from the numerical point of view, the importance of treating separately 
the incident and scattered fields will be stressed, since it eases the treatment of near-field singularities. From the physical 
point of view, a useful result of such an analysis is the transmittance between antennas, without having to handle the 
difficult question of which definition to consider for the radiation pattern of an antenna located very close to the body. An 
overview of more complex antennas, specifically devoted to BAN applications, will also be provided.

The remainder of this paper is organized as follows. In Section 2, the main ideas underlying the Green function’s calcula-
tion are reviewed and a way of accelerating the computation is described. Section 3 validates this approach using the FDTD 
method. The latter will be used considering cylinders with cross-sections that are either circular or elliptical, in order to 
also provide more insight into the correlation between propagating EM waves and body shape variations. Section 4 explains 

Fig. 1. (Color online.) (a) Human body and equivalent cylinder, (b) cylinder and cylindrical current sheet, (c) voxelized cylinder used in FDTD simulations.
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Fig. 2. (Color online.) Sketch of parabolic integration contour in complex kz plane.

how the Green functions can be exploited to calculate the transmittance between canonical antennas located close to the 
body. Conclusions are drawn in Section 5.

2. Body Green’s function

In this section, we briefly review the Green function analysis in the presence of the human body, modeled as a cylinder 
with radius a (inner cylinder in Fig. 1b), illuminated by a source at distance ρ ′ from its axis. The fields are decomposed 
into TEz and TMz cylindrical waves, which respectively have zero components of electric and magnetic fields along z. As 
explained in [18] and as recalled in Appendix A, all fields components can be derived from the Hz and Ez components 
for TEz and TMz modes, respectively.1 This is why those components are first derived in the form of cylindrical waves. For 
instance, for the TM mode, one has:

Hz = 1

2π

∞̂

−∞

∑
m

F (m,kz)ej m φ Bm(kρ ρ)e−j kz z dkz (1)

where the Bm function corresponds to the Hankel function H (2)
m , except for fields incident on the cylinder for ρ < ρ ′ , for 

which Bm corresponds to the Bessel function Jm , while k2
z + k2

ρ = k2, where k is the free-space wavenumber. A physical 
interpretation of representation (1) consists in decomposing first the point source into line sources [11] with unit amplitude 
and a phase progression expressed by wavenumber kz (vertical line with arrows in Fig. 1b). For a specific wavenumber kz , 
such a line source radiates a cylindrical wave away from the axis of the line source. That wave is propagating for |kz| < k
and evanescent for |kz| > k. It is important to notice that a pole appears in the electric field for kz = k. This prevents a 
straightforward numerical integration. Hence, the analytical extension of kz to the complex plane needs to be considered. 
An often-used path corresponds to an elliptic one around the pole [19]. However, the derivative of that contour introduces 
a spurious singularity at the start and end points of the half ellipse. This is why we chose a parabolic contour [11], sketched 
in Fig. 2. The contour should be wide enough to avoid any possible pole on the real axis. With such a representation, the 
incident fields from the line source are still not described in a geometry that conforms the circular contour of the scatterer. 
Here, a possible approach exploits the addition theorem of Hankel functions: it allows one to decompose cylindrical waves 
described around one given axis (here the line source) into cylindrical waves around another axis [20,21] (here the axis of 
the cylinder). This has been exploited in [22] and [12] to study the scattering by a cylindrical body. An alternative approach, 
used in [11], consists of extending the methodology described above to decompose the point source into line sources. Now, 
each line source is decomposed into cylindrical sheets. Such a sheet has the same axis as the cylinder and contains the 
line source (see outer cylinder in Fig. 1b). In view of its great simplicity and its physical grounds, this is the approach 
summarized here.

The current sheets, characterized by both spectral coordinates kz and m radiate fields inwards as well as outwards. Those 
radiated inwards, superimposed to the scattered fields, need to satisfy the boundary conditions at the surface of the cylin-
der (see below). The fields from the sheet source and the scattered fields are both expressed through a decomposition of 
the form (1). In the following, the integration and summation will be omitted, while the exponentials will be implicitly 
assumed.2 The fields radiated by the current sheets are obtained by imposing the proper boundary conditions across the 
current sheet. For sources parallel to the cylinder, the boundary conditions simply consist of the well-established conti-
nuity of the tangential electric field and the jump conditions of the tangential magnetic field. Algebraically, for cylindrical 
harmonics, those conditions are enforced via the use of the Wronskian of Bessel functions [18]

J ′
m(x) H (2)

m (x) − Jm(x) H (2)′
m (x) = 2 j

π x
(2)

for x = kρ ρ ′ . This has been done in detail in [11] for source currents that are parallel to the cylinder surface. It is not 
obvious which boundary conditions need to be satisfied when the current sheet is made of currents that are normal to the 
surface. In this case, a first option consists in resorting to the – more traditional – use of the addition theorem [23], 
also exploited in [14]. A potential-based derivation is described in [12] for sources in arbitrary polarizations. In those 
approaches, the derivations are very long and the final expressions remain complex. To overcome those limitations, boundary 
conditions applicable to the case of normal currents are proposed below; this in turn allows a very quick derivation of all 

1 In the following, the z superscript will be omitted in TEz and TMz .
2 Hence, deriving w.r.t. z and φ amounts to multiplying by j m and −j kz , respectively.
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field components, following the same procedure as for tangential sources [11]. This will be described below using the 
same notation as in [11]. To obtain the new boundary conditions for normal currents, fields are integrated over a very 
small surface crossing the interface, similarly to the procedure employed to prove usual boundary conditions. The integrand 
here corresponds to the magnetic-field wave equation. The followed procedure is, to a large extent, similar to that often 
used to obtain the scalar potential associated with a point source ([16], Sec. 3.12). To alleviate the explanations, the details 
of the proof are provided in Appendix B. The spectral representation (cf. (1)) for the current density is, as in [11], J =
I δ(ρ − ρ ′)/ρ ′ . Then, denoting as �P the difference between field P just outside and just inside the current sheet, the 
resulting boundary conditions read:

TM: �Ez = j
η

k

∂ I

∂z

1

ρ ′ ; TE: �
∂ Hz

∂ρ
= ∂ I

∂φ

1

ρ ′2 (3)

The following physical interpretations are possible: in the TM case, the non-zero Ez component arises from consecutive 
dipoles collectively radiating at an angle as a result of their phase shift along ẑ; in the TE case, the non-zero Hz compo-
nent arises from uncompensated magnetic fields radiated from dipoles that are phase-shifted along φ. With the boundary 
conditions (3), the z component of the fields can be immediately established. As explained above, the Wronskian of Bessel 
functions is a very convenient tool. To guide the reader, the procedure will be followed here in detail for the TE case. The 
incident fields read:

Hz = F ◦
m H (2)

m (kρ ρ ′) Jm(kρ ρ) for ρ < ρ ′; Hz = F ◦
m Jm(kρ ρ ′) H (2)

m (kρ ρ) for ρ > ρ ′ (4)

From there, the jump condition on ∂ Hz/∂ρ is directly expressed as:

−kρ F ◦
m

(
J ′
m(kρ ρ ′) H (2)

m (kρ ρ ′) − Jm(kρ ρ ′) H (2)′
m (kρ ρ ′)

)
= j m

ρ ′2 I (5)

where the parenthesis obviously corresponds to the Wronskian (2) for x = kρ ρ ′ . From there, one immediately obtains 
F ◦

m = −m π I/(2ρ ′), and hence the first equation below:

Hz = −m π

2ρ ′ H (2)
m (kρ ρ ′) Jm(kρ ρ) I; Ez = ηkz kρ π

2 j k
H (2)′

m (kρ ρ ′) Jm(kρ ρ) I (6)

while the second one, applicable to the TM case, results from the application of the first jump condition in (3) through a 
similar reasoning. Both results have been given for ρ < ρ ′ , since the fields will be needed for ρ = a < ρ ′ , where boundary 
conditions need to be enforced. The above results are perfectly consistent with those found (after more lengthy derivations) 
in [24]. Expressions for Ez and Hz for the case of sources tangential to the cylinder are found in [11], where the Wronskian 
has been exploited in a similar way.

For each harmonic (each value of m and kz), one needs to determine the scattered TE and TM fields, which are in 
the from of Fm H (2)

m (kρ ρ) with Fm = A′ for denoting the Ez field in the TM case and Fm = B ′ for denoting the H z field 
in the TE case. Similarly, the total fields inside the cylinder are represented using constants C = A and C = B , while the 
Hankel function is replaced by a Bessel function because the domain contains the origin [20]. The vector of coefficients 
p = [A A′ B B ′]T is obtained by imposing the continuity of the tangential electric and magnetic fields across the boundary of 
the cylinder. For a given (m, kz) pair, the resulting system of equations reads:

M p = fi (7)

where vector fi describes the tangential incident fields from the current sheet: fi = [Ei
z Hi

φ Ei
φ Hi

z]T. The components of 
matrix M are obtained by expressing, for the given harmonic, the tangential components of the fields from their axial 
components ([18], Appendix A) described by p. This derivation is a bit tedious and we refer the reader to [11] for finding 
all the entries of the matrix. This is fundamentally different from the two independent 2 × 2 systems of equations obtained 
when studying scattering by planar interfaces [25]. That is due to the fact that TE and TM fields do couple with each other. 
In other words, in general, TE incident fields will give rise to both TE and TM scattered fields.

Numerous studies [8,26,23,13,14,27,28] indicated, theoretically as well as experimentally, that waves launched by sources 
perpendicular to the surface exhibit a slower decay along the body surface. This can be traced back to the excitation of 
TM Zenneck waves [29,30], at intermediate distances and Norton waves [31,1], at larger distances, which have also been 
observed in the case of flat phantoms at high frequencies in [32]. Ultra-wideband antennas exploiting this phenomenon are 
described in [33]. Further insight into those creeping waves can be gained by studying the fields for distances large in terms 
of wavelengths, as it becomes necessary at high frequency. In this case, asymptotic expansions can be used [34,29,35]. This 
allows the determination of the behavior of the fields far from the transmitting antennas, as detailed in [13,2,3], where 
an excellent correlation between results obtained with this approach and measurements has been shown for observation 
points beyond a few wavelengths from the source, around the cylindrical surface.

It is interesting to realize that estimating the Green function over whole volumes or surfaces does not take much more 
time than at just one point. Indeed, once the coefficients A, A′ , B and B ′ have been determined (see equation (7) and 
paragraph above) for all cylindrical harmonics kz and m, the fields can be obtained everywhere by propagating all the 
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Fig. 3. (Color online.) Path loss for an electric field (a) perpendicular to the body and (b) parallel to the body (dB scale). Radius a = 15 cm.

harmonics. For instance, for observation along a given radius ρ but for varying values of z and φ, the field computation can 
be carried out in the following newly proposed matrix form (φ along rows and z along columns):

V = F S D + Vi (8)

where Vi is the incident field, F (nφ, m) = e j m φ , S(m, nk) = A′(kz, m) H (2)
m (kρ ρ), D(nk, nz) = e−j kz z (1 + j C ′) �kz/π , where 

function C links the imaginary and real parts of kz (see Fig. 2). An important remark needs to be made regarding incident 
fields. One should also note that, using the approach described above, if the incident field is observed at the same radius 
ρ = ρ ′ as the source, its harmonic decomposition does not converge well. However, to obtain the scattered field, the inci-
dent field needs to be decomposed into cylindrical harmonics only at the level of the cylinder surface, i.e. for ρ = a, while 
incident fields elsewhere can be expressed directly in closed form as the fields due to point sources in free space [36]. This 
enables the fast and accurate simulation assuming a cylindrical model for the body. Other configurations are of interest 
to BAN communications, such as scattering by multiple cylinders and by elliptical cylinders, studied in [14] and [37], re-
spectively. Finally, one should remark that it would also be interesting to analyze magnetic sources, in order to provide a 
fundamental insight into the fields radiated by slot antennas, as can be found in the designs proposed in [38,39] and [40].

3. FDTD analysis of creeping waves

The Finite Difference Time Domain [41,17] technique (FDTD) is one of the most suitable numerical methods in the 
domain of computational electromagnetics, particularly for investigating on-body channel characteristics [7]. Initially, this 
numerical tool has been used to estimate SAR (Specific Absorption Rate) in mobile communications [42]. Later, extensive 
study has been performed using FDTD considering different numerical phantoms [43–45] in on-body communication scenar-
ios. This method is used here to validate the Green functions referred to above and to allow the analysis of wave propagation 
while considering cross-sections other than circular. An in-house parallel FDTD software [46–48] will be used here at the 
relatively low frequency of 2.4 GHz, at which the wavelength is not much smaller than the body’s cross-section. The human 
torso has been approximated as a uniformly shaped homogeneous lossy cylinder, as shown in Fig. 1c. The dielectric prop-
erties of the cylinder are considered to be similar to those of muscle tissue, with conductivity σ = 2.21 S/m and relative 
permittivity εr = 47 [49].

Firstly, the simulation is performed using a circular cylinder of perimeter 94 cm. Later the study has been extended using 
three other elliptical cylinders representing the torso with different major (2a) to minor axis (2b) ratios. The electric sources 
are positioned along the major axis (2a) of the torso. The axial ratio (a/b) of the models with the major axis are considered 
as 1.15, 1.5 and 2. It is worth mentioning that the parameters of the elliptical cylinders are considered to be similar to those 
of the real dimensions of a human body. The heights of the cylinders are set to 1 m. The transmitting source is a single-cell 
point source, placed 3 cm away from the trunk (cylinder) along the radius at a height of 0.5 m. To simulate such a cylinder 
in the FDTD domain, firstly it has been converted into a volumetric mesh with each cell of 4 mm (1/30th of free space 
wave length, see Fig. 1c) using the Binvox [50] open-source software. The cell size has been kept small in order to minimize 
the staircase effect caused by analyzing curved subjects in the FDTD domain. To simulate a volume of 110 × 110 × 280 cells, 
the required computational time was around 30 min. The PC cluster used includes one monitoring node and 15 nodes3 for 
accomplishing the simulation. The closer the point source is to the surface, the stronger the radiated field will be on the 
entire body surface. To analyze the effect of different polarizations in a creeping-wave propagation scenario, two different 
cases have been taken into account: firstly when the source has been positioned in normal direction to the body (Ex) 
and secondly when the transmitter is placed parallel to the body (Ez), as can be seen in Figs. 3a and 3b. Both of these 
figures indicate the path-loss distribution in and around the cross section of the human body (circular cylinder). The unit 
of the color gradients is the dB. Hence lower values in dB designate lower path losses and higher values in dB represent 
higher path losses. It is observed that for the source placed perpendicular to the body, the path loss around the curvature 

3 Each node has a Dual Intel Xeon E5405 (Quad Core 2.0 GHz) central processing unit (CPU). There are 128 cores and 512 GB memory in total providing 
4 GB at each processor
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Fig. 4. (Color online.) (a) Comparison between Green’s functions and FDTD results, (a) magnitude, (b) phase. Radius a = 15 cm.

is relatively low (as in Fig. 3a) compared to the case when the source is parallel to the body (as shown in Fig. 3b [8]). 
Similarly, it is observed from Fig. 4a that when the source is normal to the body, the magnitude of the electric field falls off 
at a much lower rate than when the source is parallel to the body. To estimate more precisely the degree of variation of the 
field distribution along the boundary, the magnitude of the normal and parallel components of the electric fields around 
the curvature of the body are monitored. Comparison has been made between the results obtained from FDTD and Green’s 
functions approaches for both polarizations of the sources. Fig. 4 indicates a good agreement in both magnitude and phase 
of the electric field’s components. It is observed from the simulated results that for the normally directed source, initially 
the signal strength falls off at a rapid rate within a few centimeters. Later, the signal starts to decrease at a lower decay 
rate. This can be defined as the creeping wave region where the lossy cylinder guides the fields to a certain extent. This is 
evident when at 20 cm distance, for perpendicular polarization, the electric field is near −80 dBV/m, whereas for parallel 
polarization it falls down to almost −120 dBV/m (as in Fig. 4a).

The creeping wave in an on-body communication scenario can also be identified in terms of its phase constant and 
phase velocity [51]. The phase constant β (in rad/cm) can be evaluated from the slope of the plotted curve in the creeping 
wave region (see Fig. 4b). The phase velocity can be estimated from the phase constant as vph = ω/β , with ω the radian 
frequency. It can be estimated from Fig. 4b, for instance, where phases for the vertical case are not truly reliable for distances 
where the magnitude becomes very low (dotted). The associated phase velocity estimate is 0.89 and 0.98 times the speed 
of light, respectively, for normal and parallel directions of the source with respect to the body. This clearly indicates that, 
for a normally directed source, at least in this frequency domain, the phase velocity of the creeping wave is substantially 
lower than the speed of light, which is typical of a slow guided mode.

Besides, there is a noticeable oscillation in field magnitude at the opposite side of the source near the body [11,13]. This 
occurs due to the interference between the waves traveling clockwise and counter-clockwise. Since the waves propagate in 
two directions around the body, a two-wave model is set to fit the electric field distribution. Firstly, the wave propagating 
in a clockwise direction is identified as an exponentially decaying wave. To properly represent the transition region near 
the source, the exponent itself features an exponential transition from a value near the source to its value in the NLoS 
(Non-Line-of-Sight) region. The phase of such a wave simply varies at a linear rate, which means that a constant phase 
velocity is acceptable. A similar approximation is made for the wave propagating in an anti-clockwise direction. The equation 
for the fitted curve hence reads as:

Etot = 10(α exp(−β s)+γ +δ s)/20 ej (ψ s+φ) + 10(α exp(−β (D−s))+γ +δ (D−s))/20 ej (ψ (D−s)−φ) (9)

Here, Etot indicates the complex value of the normal component of electric field (radial electric field in V/m) and the 
field variation is investigated as a function of the distance around the curvature coordinate s. D is the perimeter of the 
cross-section. The coefficients α, β , γ , δ, ψ , φ are those required for the fitting of the wave model. The values of such 
coefficients for a circular cylinder and for an elliptical one are provided in Table 1 for normal polarization. Excellent fitting 
has been achieved, as can be seen in Fig. 5a. This means that a very simple propagation model can accurately represent the 
field along the body, including in the near-field region.

A simple fit has also been obtained for one of the elliptical cylinders, as in equation (9). The parameters for the clockwise 
wave are provided in the second line of Table 1. It is observed that the coefficients are quite similar for circular and elliptical 
cylinders. This essentially means that the propagation of surface waves for the case of normal polarization, in terms of 
both phase velocity and amplitude decay, have a very weak dependence on the cross-section of the cylinder for a certain 
perimeter; in other words, the creeping wave does not really “see” the shape of the scatterer. For the same reason, it 
is expected that the exact position of the source along the curved structure will have little impact. Further work may be 
devoted to estimating to which extent this is verified. However, a short study has been performed on these coefficients from 
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Table 1
Parameters for fitting the electric field distribution around circular and elliptical cylinders.

α
dBV/m

β

cm−1
γ
dBV/m

δ

dBV/m cm−1
ψ

deg cm−1
φ

deg

14.55 0.42 −60.72 −0.943 −32.64 86.4
16.24 0.48 −63.25 −1.02 −34.43 85.0

Fig. 5. (Color online.) Fitting between model and FDTD results, (a) for circular cylinder and vertical and normal polarizations, (b) for elliptical cylinder and 
normal polarization. Radius a = 15 cm.

Fig. 6. (Color online.) Fitting coefficients versus frequency and versus radius. Radius a = 15 cm.

2–8 GHz for circular cylinders of 15, 20, and 25 cm. The results are provided in Fig. 6. It can be seen that all coefficients of 
the model have a relatively smooth behavior, which makes interpolation realistic, within the investigated range.

The phase velocities have been calculated from the normal components of electric fields for three elliptical cylinders, 
with axial ratios of a/b = 1.14, a/b = 1.5, and a/b = 2. The corresponding phase velocities obtained are 0.85 c, 0.87 c
and 0.88 c, respectively. Knowing that the phase velocity is 0.89 c for a/b = 1, it is difficult to determine a trend for phase 
velocity versus axial ratio a/b; in other words it is remarkably independent of the exact shape of the cross section. A similar 
observation is made regarding the decay rate of the fields: as can be seen in Fig. 7a, between 10 and 20 cm, the rates of 
change in the electric field’s components are very similar for the three elliptical cylinders. This is in line with the observation 
made in [28], where different cross sections are analyzed with the help of the Method of Moments. In other words, the 
phase velocity and the decay rate vary very little for change in shapes when the perimeter of the body is kept constant. In 
particular, for frequencies of a few GHz, the low phase velocity is typical for the creeping wave excited from normal-to-body 
sources, while a value very close to velocity of light, near 0.98c, has been observed for fields radiated by sources tangential 
to the body. The latter value is very close to the one found in [52] for a similar configuration. Fig. 7b shows values of 
the phase velocity for increasing radii of the cylinder: it can be seen that phase velocity increases with radius, probably 
to approach the speed of light in free space when the surface becomes flat. It is interesting to note that, strictly speaking, 
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Fig. 7. (Color online.) (a) Decay of the normal electric field versus distance for elliptical cylinders with three different values of excentricity, (b) ratio between 
phase velocity and free-space velocity of light, versus cylinder radius for normal sources. Radius a = 15 cm.

Fig. 8. (Color online.) Incident, scattered and total fields around the body, for different distance from body surface (0 to 3.5 cm, by steps of 0.5 cm): 
(a) vertical polarization, (b) normal polarization. Radius a = 15 cm.

the wave corresponding to the surface-wave pole, generally named the Zenneck wave ([29,30], Sec. 7.10), theoretically has 
a phase velocity larger than the speed of light. However, one should keep in mind that the Zenneck wave also decays 
exponentially in the direction of propagation and, as explained in [53] (Section 6.5), the corresponding pole contribution 
being only one among others, it gets canceled for very large distances and what remains is a more rapidly attenuating 
surface field, sometime called the Norton surface wave.4 As a result, the phase velocity for the total fields may actually 
never exceed the speed of light in free space. The consistency of surface waves in the case of normal sources can be further 
analyzed through its decomposition into incident and scattered fields. That is done in Fig. 8 for a frequency of 2.45 GHz and 
a cylinder radius of 15 cm. Fig. 8a refers to vertical (i.e. parallel) sources and vertical fields. One can see how effectively the 
incident field gets short-circuited by the low-impedance surface: the incident and scattered fields have practically identical 
magnitudes and opposite phases, which leads to the very rapidly decaying total fields. As can be seen in Fig. 8b, this is 
not true in the case of the normal source. Very striking is the smooth but not linear (in log scale) behavior of the incident 
field and the quite complex shape of scattered fields, while the total fields produce a very straight dependence in log scale 
versus distance, which corresponds to a clear exponential decay of the total field, consistent with the proposed model (9)

4 As Collin explained in [53], the Norton wave is not – strictly speaking – a surface wave, but it nonetheless corresponds to what is usually referred to 
as the surface-wave field. The Zenneck wave appears as an eigensolution for propagation with a complex wavenumber along the interface when one of 
the media is lossy; the Norton wave corresponds to the asymptotic behavior of the total fields when such an interface is illuminated by a normal current 
source.
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away from the source. The dependence of the total field strength away from the interface, in the air, is quite weak, which 
is consistent with Zenneck waves.

4. Antenna analysis

Body Area Network antennas need to be placed very close to the body. Therefore, their radiation properties have es-
sentially nothing in common with those they would have in free space, since the new radiating structure may now be 
considered as the superposition of the antenna and the body. As a result, unless specific designs are considered, both the 
impedance and the radiation pattern of the antenna are fundamentally impacted. Moreover, the quantity of interest does no 
longer correspond to far-field patterns, but it consists of the progression of the field along the surface of the body [54]. This 
leads to new rules for the design of body-area network antennas; those rules should for instance focus on the capability of 
the antenna to excite creeping waves along the body [1], and more generally on its ability to improve the link budget along 
the body [40], while preserving a low profile for the radiator. For instance, an antenna exploiting surface waves launched 
by a horizontally polarized antenna is proposed in [55]. The resilience of the antenna against direct effects of the body 
proximity have been mitigated through specific designs, through the use of screening backplanes [40], ferrite substrates [10]
and inverted-F structures [56], naturally protruding from a ground plane [9], or through the use of short monopoles feed by 
a stripline [9,57].

In view of the complexity of the interaction between body and antenna and of the link between surface waves and 
their sources, numerical analysis is highly advisable. Here we consider the integral-equation approach, which presents the 
important advantage of limiting the unknown currents to the surface of the antenna itself. Indeed, the presence of the 
body and the radiation condition are implicitly included through the use of the Green functions described in Section 2. This 
will be explained below considering the canonic example of wire antennas. In a nutshell, using those Green’s functions, 
the unknown currents are obtained by imposing the boundary conditions that the fields need to satisfy on the surface 
of the antennas. In turn, the method directly yields the transmittance between antennas accounting for both radiation 
and propagation effects. For instance, if the antenna is metallic, the additional condition to be satisfied is that the tangential 
electric field Et be zero everywhere, except at the feed point, where it is imposed by the source voltage. For linear antennas, 
the integral equation reads:

Et(r) =
ˆ

l′
G inc(r, r′) I(r′) dl′ +

ˆ

l′
Gscat(r, r′) I(r′) dl′ (10)

where I is the current along the wire and G are the Green’s functions tensors related to free space and to scattering by the 
cylinder, respectively. In their discretized form, the currents are decomposed into a set of pre-determined basis functions 
and the pertaining coefficients are obtained by solving a system of linear equations that enforce the boundary conditions 
on the antennas; this is the essence of the Method of Moments (MoM) [58].

To put this method into practice for antennas near cylinders, it is important to treat separately the incident and scattered 
fields. Here, by “incident field”, we mean the field radiated when the antenna is in free space, while the “scattered field” 
only includes the effect of scattering by the cylinder. Then, the matrix that characterizes the system of equations can be 
regarded as the sum of two contributions, relating to the incident and scattered fields, associated with the two terms in (10). 
The incident fields actually should not be taken in harmonic form (1), because it does not converge when the observation 
point lies at the same radius as the source point. Instead, the matrix relating to the incident fields simply corresponds to 
the MoM matrix that one would have for the antenna in free space and as such fully includes the treatment of the singular 
aspect of the near fields [58], while the matrix relating to scattered fields is computed based only on the fields scattered 
by the body, which are in general regular. Mathematical expressions for those matrices can be found in [59] for antennas 
parallel to the body and in [24] for antennas normal to the body.

An example is given below for the impedance of an antenna parallel to the body, versus its distance from the body 
surface. The body radius is 15 cm, its relative permittivity is 47 − j 16, the frequency is 2.45 GHz, the antenna length is near 
half-wavelength and its radius is 0.5 mm. Fig. 9a shows the reflection coefficient with respect to a reference impedance of 
50 �5 for two wire lengths, corresponding to wavelengths of 0.5 and 0.475, respectively. It can be seen that the matching 
of the antenna strongly fluctuates versus its distance from the body surface. The latter tends to “short-circuit” the antenna 
because of its low impedance, due primarily to its high real permittivity and, to a somewhat lower extent, to its conductivity.

The Green functions are exploited here to estimate the mutual coupling coefficients between antennas for vertical and 
normal polarizations. Contrary to the Green function taken alone, this mutual coupling result fully includes the effect of the 
antennas in the transmittance. This allows one to provide absolute levels without having to cater separately for the effect of 
antennas and of propagation losses. First, vertically oriented half-wave dipoles are placed at 1 cm from the body surface and 
they are azimuthally moved apart; the coupling coefficient is represented versus angular separation with a dashed curve 
in Fig. 9b. As can be expected from the Green function for this polarization, the coupling coefficient also rapidly falls off 
versus distance. It is not easy to say whether the flat region (dotted) is due to a creeping wave or to numerical roundoff; 

5 The reflection coefficient is calculated as � = (Z − 50)/(Z + 50), where Z is the complex antenna impedance.



798 K. Ali et al. / C. R. Physique 16 (2015) 789–801
Fig. 9. (Color online.) (a) Matching of a vertically polarized antenna versus its distance from the cylinder’s surface, (b) mutual coupling in dB in vertical–
vertical (solid) and normal–normal configurations (dash–dot).

the latter is more plausible, which means that the coupling may be actually lower than calculated here. The coupling 
between normally-oriented antennas is shown considering radially-oriented half-wave antennas with one end located at 
0.5 cm from the body surface. In this case, the coupling coefficient presents a slower and more steady decay versus the 
angular distance, a result that has been successfully validated in [24] through comparisons with data measured on an actual 
body. The very good comparison between measurements and simulations obtained in [24] for the normally-oriented case 
probably proceeds from the robustness mentioned in Section 3 of surface waves against the local curvature of the body. It is 
interesting to note that the integral-equation approach described here can be extended to the analysis of more complex and 
miniaturized antennas, possibly including dielectric material. That study can be implemented via the use of an equivalence 
surface [60,61], in order to distinguish the analysis of the inner part of the antenna from its interaction with the body. 
This should allow the analysis of more complex antennas, specifically devoted to the improvement of the budget link for 
body-to-body configurations.

5. Conclusions

Waves propagating along the body surface can be studied in first approximation while considering a cylindrical body, for 
which Green’s functions can be computed analytically. In this operation, the conversion of point sources into a spectrum 
of line sources, and then into current sheets, plays a critical role. We extended this procedure to all source polarizations. 
We also proposed a matrix-form acceleration for the case where fields need to be observed over whole surfaces. The waves 
around the body analyzed in this way have been validated with the help of an FDTD software and a very simple and 
accurate model has been established. Waves radiated by sources perpendicular to the body surface are not strongly affected 
by the curvature of the body; their phase velocity is substantially low compared to the free-space wave velocity and it 
slowly increases as the radius of the body increases. Finally, we explained how the Green function can be exploited in an 
integral-equation scheme to determine the behavior of simple antennas in the presence of the body. In turn, this also allows 
the determination of coupling between two antennas located above the body surface while considering unknown currents 
on the antennas only. Such direct coupling analysis avoids the difficult issue of the contribution of the antennas themselves 
to the link budget along the body surface, for which radiation patterns cannot be used. Further research should focus on 
the analysis of more complex antennas that include a very short extension, though with substantial current level, normal to 
the body.

Appendix A. Field derivations

All field components can be derived from the components along z. This appendix recalls the corresponding relations, 
reproduced from [18]:

k2
ρ

−→
E s = −j kz ∇s Ez + j k η ẑ × ∇s Hz; k2

ρ
−→
Hs = −j kz ∇s Hz − j k/η ẑ × ∇s Ez (11)

with ∇s = ρ̂
∂

∂ρ
+ φ̂

jm

ρ
and ẑ × ∇s = φ̂

∂

∂ρ
− ρ̂

jm

ρ
(12)
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Fig. 10. (Color online.) Surface S of integration: (a) TM case, (b) TE case.

Appendix B. Boundary conditions

The boundary conditions across a sheet of normal currents are derived here. This derivation shares important steps with 
that providing the scalar Green’s function [16]: integration of the wave equation over an infinitesimal domain, writing of 
the Laplacian as the derivative (or surface divergence ∇s·) of another function and use of a relation of the Gauss’ theorem 
family. The integrated wave equation for the magnetic field reads¨

S

∇2 −→
H·−−→dS + k2

¨

S

−→
H·−−→dS = −

¨

S

∇ × −→
J ·−−→dS (13)

where −→J = I δ(ρ − ρ ′) ρ̂/ρ ′ . The infinitesimal surface S encloses a portion of the current sheet (Fig. 10).
In the TM case, since Hz = 0, the normal to the surface must be along φ̂ (Fig. 10a), hence requiring the φ component of 

the vector Laplacian in cylindrical coordinates [62]. Exploiting ∇·−→H = 0, it can be obtained6 as (∇2 −→
H)φ = ∂/∂ρ {(∇ × −→

H)z}+
∂2 Hφ/∂z2. Equation (13) then becomes¨

∂/∂ρ {(∇ × −→
H)z} dS +

¨
∂2 Hφ/∂z2 dS + k2

¨
−→
H · −−→

dS = −
¨

∇ × −→
J · −−→

dS (14)
ˆ

[(∇ × −→
H)z]ρ

+
ρ− dz + (k2 − k2

z )

¨
−→
H · −−→

dS = −
˛

−→
J · −→

dl (15)

j
k

η
�Ez dz + k2

ρ ·0 = −(I(z + dz) − I(z))/ρ ′ (16)

where �P = P (ρ+) − P (ρ−). The final right-hand side results from integrating twice the Dirac delta function of the current 
sheet along the contour. Result (16) provides the first condition in (3).

In the TE case, since Hz �= 0, the normal to the surface is taken along ẑ (Fig. 10b). Following essentially the same 
procedure as for the TM case, we have:¨

(∇s ·∇Hz + ∂2 Hz/∂z2)dS + k2
¨

−→
H · −−→

dS = −
¨

∇ × −→
J · −−→

dS (17)
˛

∇Hz . n̂l dl + (k2 − k2
z )

¨
−→
H · −−→

dS = −
˛

−→
J · −→

dl (18)

� {∂ Hz/∂ρ} ρ ′ dφ + k2
ρ ·0 = (I(φ + dφ) − I(φ)) /ρ ′ (19)

where n̂l is the unit vector normal to the edge. This provides the second condition in (3).
The corresponding result for flat surfaces can be written as �−→

E = j η/k ∇ J . It can be verified that the TM condition (16)
coincides with that result and that the TE condition (19) coincides for ρ ′ tending toward infinity. It has also been verified 
that, following the procedure described in Section 2, conditions (3) produce exactly the same expressions for TE and TM 
fields as when the addition theorem is used.7
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