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Jacques Friedel pioneered the theoretical study of impurities and magnetic impurities in 
metals. He discovered Friedel oscillations, introduced the concept of virtual bound-state, 
and demonstrated that the charge on the impurity is related to the scattering phase-shift at 
the Fermi level (Friedel sum-rule). After a brief review of some of these concepts, I describe 
how they proved useful in two new contexts. The first one concerns the Coulomb blockade 
in quantum dots, and its suppression by the Kondo effect. The second one is the dynamical 
mean-field theory of strong electronic correlations.

© 2015 The Author. Published by Elsevier Masson SAS on behalf of Académie des 
sciences. This is an open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Jacques Friedel est l’auteur de travaux pionniers sur la physique des impuretés dans les 
métaux. On lui doit, outre la découverte des oscillations de Friedel, le concept d’état 
lié virtuel et la découverte du lien entre déphasage et charge sur l’impureté (règle de 
somme de Friedel). Après avoir brièvement décrit certaines de ces notions, je présente 
leur utilisation fructueuse dans deux contextes récents : le blocage de Coulomb dans un 
point quantique et sa suppression par l’effet Kondo, ainsi que la théorie de champ moyen 
dynamique des matériaux à fortes corrélations électroniques.

© 2015 The Author. Published by Elsevier Masson SAS on behalf of Académie des 
sciences. This is an open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Jacques Friedel pioneered the theoretical study of impurities in metals. Encouraged by his thesis mentor (and future 
brother in law) Nevill Mott, he recognised the fundamental interest of the subject – not to mention its practical impor-
tance [1]. His own words, from a 2001 interview that I will quote several times in the following, make this very clear: 
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“Mott m’a mis sur un problème fondamental, celui des impuretés. Quand on change la nature d’un atome de métal, qu’on 
ajoute ou retire un atome de ce cristal, comment les électrons réagissent-ils?” [2]. In just a few years, during his PhD (Bris-
tol, 1952) [3] and in the years immediately following [4–6], he unraveled physical effects and forged key concepts which 
were to become classic in solid-state physics, among which: Friedel’s oscillations of the charge density around an impurity, 
the analysis of these problems in terms of phase-shifts, and the concept of virtual bound-state. Between 1952 and 1961, the 
vast majority of theoretical studies devoted to impurities in metals was performed by Friedel and his first students (André 
Blandin, Émile Daniel, Paul de Faget de Casteljau) [7–10], first at the “École des mines” and then at the Laboratoire de 
physique des solides in Orsay, which Friedel co-founded. For an attempt to analyze some of the developments of this field 
of theoretical solid-state physics between 1952 and 1973 with a “sociology of science” perspective, the reader may want to 
consult the curious and rarely quoted book and article by Giuseppe Morandi and coworkers [11,12].

By the early 1960s, it had become clear that the observation of a minimum in the temperature dependence of the 
resistivity of some metals containing magnetic impurities (“Kondo effect”) was a puzzle of far-reaching fundamental signifi-
cance – for a review of the early experiments, see, e.g., Ref. [13]. Following Kondo’s pioneering theoretical work in 1964 [14], 
the topic attracted enormous international attention and became a central topic of condensed matter physics all over the 
world. Research on this topic at the Orsay laboratory remained very active well into the 1960s and early 1970s, with impor-
tant contributions on the theory side by André Blandin, Bernard Coqblin [15,16] and Marie-Thérèse Béal-Monod [17] and, 
on the experimental side, by Philippe Monod [18] and Henri Alloul [19].

In this article, I would like to describe two recent revivals of magnetic impurity physics in general, and especially of the 
virtual bound-state concept. For an early review of this concept and of its applications by Friedel himself, see Ref. [20].

The first one is about small electronic devices known as quantum dots, in which it has been realized that an odd number 
of electrons trapped on the dot can act as an “artificial magnetic impurity”, and that the resulting many-body effects deeply 
affect the physics of the Coulomb blockade in these devices.

The second one – the dynamical mean-field theory of strong electronic correlations – carries the concepts developed for 
magnetic impurities outside of the context of impurity physics proper. Impurity problems are viewed there as the essential 
building block for constructing a mean-field theory of solids with strongly interacting electrons.

One of the distinguished strengths of deep and lasting concepts is that they can be exported well beyond the realm in 
which they were originally invented. I hope that these two examples will illustrate the lasting beauty of impurity physics 
in a manner of which Friedel would not disapprove.

2. Virtual bound states and phase shifts

Consider an impurity atom embedded in a metallic host, with some of its energy levels not deep enough to trap electrons 
into a bound state. This happens in particular when the impurity level is located within the conduction band of the host. In 
this case, the conduction electrons spend an appreciable time near the impurity, but the wave function is still a Bloch wave 
far from the impurity instead of being localized as in a bound state. Friedel recognized the importance of this situation for 
impurities in metals and introduced the concept of “virtual bound state” to describe it.

The simplest model for this is the following. Let us denote by εd the impurity level (relative to the Fermi level of a 
conduction electron gas, which in the following will always be taken at energy ε = 0), by V a typical matrix element for 
the transfer of electrons between the conduction band and the impurity level and by ρ0

c the conduction density of states 
(assumed here to be constant, corresponding to a wide band). The impurity level acquires a width given by Fermi’s golden 
rule:

� = π V 2ρ0
c (1)

The typical time spent by an electron on the impurity level is of order h̄/�. The additional density of states created by the 
impurity at energy ω (we set h̄ = 1 in the following) counted from the Fermi level has a simple Lorentzian form:

A0
d(ω) = 1

π

�

(ω − εd)2 + �2
(2)

The average number of electrons on the impurity level (which is not an integer, since electrons come and go from the level 
into the metallic host) is therefore:

nd =
0∫

−∞
dωAd(ω) = 1 − 2

π
tan−1 εd

�
(3)

As expected, it varies from nd = 2 for an impurity level well below the Fermi level (εd � 0) to nd = 0 when the level is well 
above. The special case εd = 0 of an impurity level exactly at the Fermi level has an additional “particle–hole” symmetry 
and in this case nd = 1 (half-filled impurity level nd = 1).
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Conduction electrons states are affected by the impurity: their wave-function suffers a phase-shift (see Appendix A for a 
derivation):

δ(ω) = π

2
− tan−1 εd − ω

�
(4)

Conduction electrons with an energy well below that of the impurity level (ω � εd) have δ = 0, while those well above 
(ω � εd) have δ = π . Electrons with an energy equal to that of the impurity level suffer maximal (unitary) scattering 
δ = π/2. In particular, the conduction electrons at the Fermi level are resonantly scattered at the unitary limit by an 
impurity level resonant with the Fermi level.

From (3) and (4), it is seen that the average number of electrons on the impurity level and the phase-shift of conduction 
electrons at the Fermi level are related by:

nd = 2

π
δ(ω = 0) (5)

This is the celebrated Friedel sum-rule. A remarkable aspect of this relation is that it relates a low-energy property (phase-
shift on the Fermi surface) to an equilibrium mean value, the total charge on the impurity, which involves an integration of 
the density of states over all occupied states (hence, the term “sum-rule”).

Until the early 1960s, all the pioneering work of the “Orsay school” on non-magnetic and transition-metal impurities 
in metals was formulated in terms of these concepts – phase shifts and virtual bound states – using a first quantized 
language – wave-functions and scattering theory. Naturally, in a form much more detailed and sophisticated than the simple 
toy-model used here to illustrate these concepts. In particular, the different angular momentum channels of the scattered 
conduction electron waves, as well as the orbital degeneracy of the impurity (neglected above) were taken into account. For 
transition-metal impurities, the key question was: “Under which condition does the impurity possess a magnetic moment, 
depending on the transition-metal element under consideration and on the nature of the host metal?”. To address this 
question, the effect of intra-atomic interactions as well as inter-impurity exchange interactions were considered at the 
Hartree–Fock level, in particular by Blandin [8] (see also [21]).

In the characteristic style of the Friedel school, certainly influenced by the British tradition in solid-state physics, these 
articles were also rich with phenomenological considerations and connections to experimental observations, often intermin-
gled with the theory itself. Most of these papers were written in French and appeared in Le Journal de physique et le radium
(see, e.g., Refs. [5,7–10], among several others).

3. The Anderson impurity model

3.1. The model

In 1961 (incidentally, a year of special significance to me!), Philip W. Anderson published in Physical Review an article 
entitled “Localized Magnetic States in Metals” [22], in which he introduced the following model Hamiltonian:

H imp =
∑

p,σ=↑,↓
Ep c†

pσ cpσ +
∑
pσ

(
V p c†

pσ dσ + V ∗
p d†

σ cpσ

)
+ Hat (6)

The model describes, in an extraordinarily simplified way, a metallic host (first term) coupled by the second (‘hybridization’) 
term to a single-level atom (last term). The atomic level is devoid of any orbital degrees of freedom and is described by the 
following expression:

Hat = εd(n̂d↑ + n̂d↓) + U n̂d↑n̂d↓ , n̂dσ ≡ d†
σ dσ (7)

in which εd is, as above, the atomic level position, and U is a repulsive interaction originating from the Coulomb repulsion 
between two electrons (necessarily with opposite spins) occupying the level simultaneously.

3.2. Some considerations on influence and style in science

One immediately recognizes in this model the influence of Friedel’s thinking. The first two terms describe the coupling 
of the impurity level with the Fermi sea, leading to the formation of a virtual bound state as described in the previous 
section. This influence is actually acknowledged by Anderson in the introduction of his article, where he emphasizes that 
the key question is the formation (or not) of a local moment and that “Friedel and collaborators have made a start at an 
understanding of this phenomenon.” This is formulated with more generosity in his Nobel lecture1: “More important was 
my first exposure to Friedel’ s and Blandin’ s ideas on resonant or virtual states at that conference2” [23]

1 I remind the reader that the citation for the 1977 Nobel prize to Anderson, Mott and van Vleck mentions both Anderson’s work on magnetic impurities 
and his work on localization.

2 The conference mentioned here is a 1959 Brasenose College, Oxford conference on magnetism in metals, see the article by Emile Daniel in this volume 
who refers to a 1957 conference also organized by the Oxford–Harwell group.
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Anderson’s 1961 article brought in several key innovations. It introduced in a crystal-clear manner the simplest possible 
model in which the physics of a single transition-metal impurity atom can be studied. It recognized the key importance of 
the intra-atomic Coulomb repulsion in the formation of a local moment.3 And, most importantly, it formulated this model in 
the modern language of second-quantization, opening the road to the use of many-body theory techniques which blossomed 
in the 1960s and 1970s and for which the magnetic impurity problem proved to be an invaluable testing-ground.

In fact, the extent to which this problem has been a laboratory for the development of theoretical physics is simply 
amazing. The very elaboration of the renormalization group concept, the first elaboration of a numerical non-perturbative 
renormalization group, the Bethe Ansatz and integrability, boundary conformal field-theory and – last but not least – the 
development of powerful computational algorithms for the many-body problem were either born in the study of the mag-
netic impurity problem, or underwent significant new developments when applied to it (see [24] for a review). Quoting 
again Anderson’s Nobel lecture [23]: “H. Suhl has been heard to say that no Hamiltonian so incredibly simple has ever 
previously done such violence to the literature and to national science budgets.”

Both Friedel and Anderson certainly share a taste for simple formulations, although with very different stylistic choices. 
Two quotations echo each other in this respect in an interesting manner:

• Friedel [2]: “Depuis Bristol, j’ai toujours eu une activité de recherche sur l’électronique des solides. J’ai essayé de 
développer des modèles approximatifs mais simples, compréhensibles et même utilisables par des non-spécialistes. Je 
suis un vrai élève de N.F. Mott en ce que, dans un domaine complexe où 1024 particules sont en interactions fortes, des 
caricatures faites sur un dos d’enveloppe me semblent pouvoir être plus pertinentes que des collections de papillons, 
photos léchées à l’ordinateur mais souvent peu généralisables.”

• Anderson [23]: “One of my strongest stylistic prejudices in science is that many of the facts Nature confronts us with 
are so implausible given the simplicities of non-relativistic quantum mechanics and statistical mechanics, that the mere 
demonstration of a reasonable mechanism leaves no doubt of the correct explanation. Very often, such a simplified 
model throws more light on the real workings of nature than any number of “ab initio” calculations of individual 
situations, which even when correct often contain so much detail as to conceal rather than reveal reality. It can be 
a disadvantage rather than an advantage to be able to compute or to measure too accurately, since often what one 
measures or computes is irrelevant in terms of mechanism. After all, the perfect computation simply reproduces Nature, 
does not explain her.”

3.3. Physics of the Anderson impurity model, in a nutshell

Let me know briefly review the physics of model (6) – covering only a very limited number of key things and not 
following historical order.

Consider first the isolated “atom” V = 0. Hat has four eigenstates: |0〉 with energy 0, the two degenerate states | ↑〉
and | ↓〉 with energy εd and the doubly occupied state | ↑↓〉 with energy 2εd + U . Level-crossings occur for εd = −U and 
εd = 0. The ground state is | ↑↓〉 for εd < −U , the degenerate doublet | ↑〉, | ↓〉 for −U < εd < 0 and the empty state |0〉 for 
εd > 0. Hence, the occupancy of the impurity level as a function of εd has the shape of a “staircase”, see Fig. 1 (which in 
the mesoscopic context of next section can be called the ‘Coulomb blockade’ staircase). At finite temperature, the staircase 
is rounded off, according to the expression (β = 1/kT ): nd/2 = (e−βεd + e−β(2εd+U ))/(1 + 2e−βεd + e−β(2εd+U )).

In the local moment (LM) regime −U < εd < 0, the ground state is degenerate and we are really dealing with an atom 
carrying an S = 1/2 local moment, which will then be coupled to the conduction electron ‘bath’. Note that εd = −U/2 has 
an enlarged, particle–hole, symmetry (a property of the model for arbitrary V ). Extra degeneracies appear for εd ≈ −U and 
εd ≈ 0 in which the occupancy of the level, i.e. the valence of the atom, can easily fluctuate (mixed valent regimes).

The density of states, or more precisely the spectral function that measures transitions corresponding to adding or 
removing a particle on the atomic level reads, for the isolated atom:

Aat
d (ω) = (1 − nd

2
) δ[ω − εd] + nd

2
δ[ω − (εd + U )] (8)

This simply corresponds to sharp atomic transitions between two valence states.
The opposite limit of an atomic level coupled to the conduction electron band, but without interactions (U = 0, arbi-

trary V ) has been described in the previous section. The ground-state is a non-degenerate singlet, and the level hybridizes 
with the conduction electrons to form a virtual bound-state (VBS) of width �. No local moment appears on the impurity 
site.

The whole problem is to understand what happens in between these two extreme limits, either by turning on a weak 
hybridization V starting from the atomic limit, or by turning on interactions starting from the non-interacting VBS. In 

3 Blandin and Friedel had considered early on the effect of interactions [8], mostly in the form of the intra-atomic Hund’s exchange, and derived already 
in 1959 a Hartree–Fock criterion for the appearance of a local moment. A detailed discussion of the similarities and differences regarding the role of 
interactions in Blandin–Friedel and Anderson’s points of views would take us too far from the main topic of this article. For an account by Friedel himself, 
see his 1962 review [20]. The opening sentence of this review is: “Le concept de niveau lié virtuel semble s’être imposé dans l’étude des impuretés de 
transition dissoutes dans les métaux normaux.”
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Fig. 1. Occupancy of the isolated single-level atom, as a function of level position εd, at two temperatures.

particular, can a local moment (with, e.g., a Curie susceptibility of the impurity atom) be sustained despite the coupling to 
the conduction electrons? This question is of course especially relevant in the LM regime.

Anderson [22] (and Blandin–Friedel [8] with their own perspective) made a Hartree treatment of interactions,4 and con-
cluded that a LM is formed when the ratio of interactions to the VBS width � reaches a critical value. However, it became 
clear (I think Schrieffer in particular pointed this out early on) that this phase transition is actually an artefact of the mean-
field treatment, and that the behaviour is actually entirely smooth when increasing U , starting from the non-interacting 
limit. The ground state is a singlet for all finite values of U/�, with no LM remaining at T = 0. This statement is valid 
provided that the conduction band has finite density of states at the Fermi level, i.e. for an impurity atom inserted into a 
metallic host.

Interestingly, this continuity as a function of U took quite a while to be unravelled [25,26], and the focus of attention in 
the early 1960s was more on the physics for � � U , i.e. small V (which is of course the realistic limit from an experimental 
point of view). However, this is a singular limit: the double degeneracy of the LM ground state is lifted as soon as V �= 0.

Of course, the Kondo calculation [14] played an essential role in focusing the attention on that limit. Schrieffer and 
Wolff [27] realised that in the LM regime and at strong coupling U � �, the low-energy sector of the Anderson model can 
be described by an exchange model of the type used by Kondo and many other researchers at the time:

HK =
∑

p,σ=↑,↓
Ep c†

pσ cpσ + JK �Sd · �sc(0) + potential scattering (9)

with:

JK = 2V 2
[

1

εd + U
− 1

εd

]
(10)

Note that strong coupling for the Anderson model corresponds to weak coupling JKρ
0
c � 1 in the Kondo model. Under-

standing the Kondo model in this limit required nothing less than forging the concepts of renormalization group theory, 
providing the first example of its use in condensed matter physics. It became apparent that the singularities discovered by 
Kondo and resulting in the generation of the low-energy scale (with 
 ∼ √

U� a high-energy cutoff):

TK = 
e−1/ JKρ0
c (11)

actually signal the RG flow to strong coupling and the formation of the singlet state for T � TK. In this regime, one can 
consider that the impurity LM has been ‘swallowed’ or screened out by the metallic host.

The formation of the singlet state has a direct consequence for the conduction electrons: the wave-functions are phase-
shifted. Remarkably, the phase-shift at the Fermi level is related to the occupancy of the impurity level by exactly the same 
expression (5) that applies to the non-interacting case5:

δ(0) = 2

π
nd (12)

The Friedel sum-rule is thus valid and unchanged for arbitrary interaction strength U/�. A formal proof, due to Lan-
greth [28], is given in Appendix B.

Let us come back to the adiabatic continuity as a function of U/�, explored in great details in particular in a series 
of remarkable papers by Yosida and Yamada (see, e.g., [26] and references therein). First, we note that the physics of the 
electrons on the impurity level does not depend on all details of the conduction electron band (such as the precise form of 
the dispersion Ep and hybridisations V p), but actually only on the hybridisation function (or energy-dependent VBS width):

4 Hartree–Fock is often invoked here, but there is actually no Fock term in this model.
5 While of course the specific relation between εd and nd is U -dependent, and (3), (4) do not apply to the interacting system.
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�(ω) ≡ π
∑

p

|V p|2δ(ω − Ep) (13)

This can be seen formally by “integrating out” the conduction electron environment, leading to the following effective action 
for the dynamics of the impurity level:

Seff = −
β∫

0

dτ

β∫
0

dτ ′ ∑
σ

d†
σ (τ )G−1

0 (τ − τ ′)dσ (τ ′) + U

β∫
0

dτ nd↑(τ )nd↓(τ ) (14)

with:

G−1
0 (iωn) = iωn − εd − �(iωn) , �(iωn) = 1

π

∫
dε

�(ε)

iωn − ε
(15)

Physically, (14) describes electrons that are transferred from the conduction electron bath onto the impurity level at a 
certain time τ and leave it at another time τ ′ to return to the bath. While residing on the impurity, they feel the local 
interaction U . The hybridization function �(ω) is the frequency of these processes in the absence of interactions as dictated 
by Fermi’s golden rule.

The action (14) is that of a local theory with interaction and retardation, in which no spatial degrees of freedom are 
involved. G0(τ ) plays the role of the non-interacting propagator of this theory. For a metallic host (gapless �(ω)), it decays 
at long-time as 1/τ , exactly as any local propagator in a free electron gas. Therefore, this theory obeys all the requirements 
for Fermi-liquid behaviour at low-energy, only in local form. Philippe Nozières pioneered the use of such local Fermi liquid 
concepts in his analysis of the Kondo problem, in which the phase-shift concept plays an essential role [25]. Here, we 
rather look at it from the point of view of the impurity level.6 We can encode the effects of interactions into a local d-level 
self-energy related to the d-level Green’s function by Dyson’s equation:

Gd(iωn)
−1 = G−1

0 (iωn) − d(iωn) = iωn − εd − �(iωn) − d(iωn) (16)

And the retarded self-energy d(ω + i0+) = ′
d(ω) + i′′

d(ω) obeys at T = 0 the following low-frequency behaviour charac-
teristic of a local Fermi liquid:

′
d(ω) = d(0) + ω(1 − 1

Z
) + · · · , ′′

d(ω) = −Aω2 + · · · (17)

When the conduction electron band density of states is very wide and featureless (a convenient approximation often 
justified for magnetic impurities in metals but not in the novel context of Sec. 5), Re�(ω + i0+) � 0 vanishes and 
Im�(ω + i0+) � −� is a constant, so that the d-level density of states (spectral function) reads:

Ad(ω) ≡ − 1

π
ImGd(ω + i0+) = 1

π

� − ′′
d(ω)[

ω − εd − ′
d(ω)

]2 + [
� − ′′

d(ω)
]2

(18)

The shape of this spectral density (Fig. 2) can be discussed qualitatively using the simple considerations on the atomic limit 
(8) as well as the Fermi liquid considerations (17) and the Friedel sum-rule. We focus on the regime where U/� is large 
enough for the different spectral features to be well separated.

At high energies (far from the Fermi level), we expect the atomic transitions in (8) at εd and εd + U to be simply 
broadened, by a width of order � (the width is actually � 2� [31]). From a high-energy perspective, the effect of interactions 
is to split the spectral signature of the VBS at εd into a hole-like spectral peak corresponding to transitions |σ 〉 → |0〉
(transition energy εd) and an electron-like one corresponding to |σ 〉 → | ↑↓〉 (transition energy εd +U ). Properly interpreted, 
the Hartree approximation precisely does this. For temperatures T � TK, when the system is in a LM state, we do not expect 
any other spectral feature and this two-peak structure is a reasonable description of the spectral function (Fig. 2).

In contrast, for T � TK, the formation of the singlet ground state has a dramatic consequence on the low-energy spectral 
features in Ad (Fig. 2). Indeed, from the Fermi-liquid form (17), we see that the T = 0 spectral function can be approximated 
by (neglecting all higher order terms including the ω2 one):

Ad(ω � 0) � Z

π

�̃

(ω − ε̃d)2 + �̃2
(19)

where Z has been defined above in Eq. (17), and:

�̃ = Z� , ε̃d = Z
[
εd + ′

d(0)
]

(20)

Hence at low energy, the formation of the Kondo singlet leads to the appearance of a narrow resonance (Fig. 2), of spectral 
weight Z , with a renormalized width �̃ and position ̃εd. Often called the ‘Kondo’ resonance, the fact that the true low-energy 

6 For a detailed Fermi liquid analysis of the Anderson impurity model, see the recent work by C. Mora et al. [29].
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Fig. 2. Spectral function of the Anderson impurity model (symmetric case εd = −U/2, nd = 1) showing the gradual formation of the low-energy ‘Kondo’ 
resonance as temperature is lowered below TK, as obtained from Numerical renormalisation-group calculations. Reproduced from Ref. [30].

behaviour corresponds to resonant scattering at the Fermi level (in the symmetric case), and that the singularities discovered 
by Kondo are not really physical, was first pointed out, I believe, by Abrikosov [32], Suhl [33] and Nagaoka [34]. The spectral 
weight Z of this resonance in Ad can be shown to be of order TK/�, a very small number at strong coupling deep into the 
LM regime.

For εd = −U/2 (center of the Coulomb blockade plateau with nd = 1), the additional particle–hole symmetry makes the 
discussion easier. Because of this symmetry, Ad(ω) = Ad(−ω), implying that ′

d(0) = U/2 and ε̃d = 0: the resonance sits 
right at the Fermi level. Hence, the height of the resonance is:

Ad(0) = 1

π�
(21)

Note that the spectral weight Z drops out of this expression, and that the height appears as that of an unrenormalized 
VBS now sitting at the Fermi level, i.e. the resonant condition. As expected in that case, the conduction electrons undergo 
resonant scattering from the Kondo singlet, corresponding to a phase shift:

δ = π

2
(22)

This phase-shift simply means that the formation of the Kondo singlet makes the impurity site inaccessible to other con-
duction electrons: their wave functions vanishes on the impurity site thanks to the π/2 phase-shift, which is such that a 
maximum of the Bloch wave becomes a node – a picture that becomes transparent in the strong Kondo coupling limit.

The analysis of the general case requires to relate the Fermi liquid renormalization of the d-level to the phase-shift. 
This is done in Appendix A, in which it is shown that the scattering T -matrix of the conduction electrons is given by 
Tpp′ (ω) = V ∗

p Gd(ω)V p′ , so that the phase-shift at energy ω reads:

tan δ(ω) = � − ′′
d(ω)

εd + ′
d(ω) − ω

(23)

Hence, at T = ω = 0, we obtain (we use δ ≡ δ(0) for simplicity):

εd + ′
d(0) = �

tan δ
(24)

and using the Friedel sum-rule, one finally obtains the position of the resonance and height at the Fermi level, in the general 
case, as:

ε̃d ≡ Z
[
εd + ′

d(0)
] = Z�

tan δ
= Z�

tan(πnd/2)
(25)

Ad(0) = sin2 δ

π�
= sin2(πnd/2)

π�
(26)

Comparing to Sec. 2, we see that the value of Ad at the Fermi level is unrenormalized by interactions. The resonance is in 
general not peaked at the Fermi level however, but the above expression shows that ε̃d is quite close to ω = 0 as long as 
TK � �.
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Fig. 3. Schematic view of a quantum dot (from [35]). A two-dimensional electron gas is created at the interface between a semiconducting layer (in red) 
and an insulating layer (in white). A metallic backgate, as well as top gates, (in blue) allow for the control of the device.

Using the quoted expression of the T -matrix, one can deduce (Appendix A) the expression of the local conduction 
electron density of states at the Fermi energy:

Ac(0) = ρ0
c cos2 δ = ρ0

c cos2 πnd

2
(27)

and derive an expression for the contribution of the impurity to the conductivity:

σimp(T )

σu
=

∫
dω

(
− ∂ f

∂ω

)
1

π�Ad(ω)
(28)

Hence, at T = 0, the contribution to the resistivity is:

R imp

Ru
= π�Ad(0) = sin2 δ = sin2 πnd

2
(29)

In these expressions, Ru (σu) denote the unitary limit (maximal scattering). Hence, we see that in the LM regime with 
δ = π/2 (nd = 1), the Kondo effect leads to a vanishing of the local conduction electron d.o.s (Kondo hole) and to scattering 
at the unitary limit.

4. Quantum dots, Coulomb blockade, and the Kondo effect

Fig. 3 displays a schematic representation of a “quantum dot”. Modern semiconductor elaboration techniques allow one to 
isolate a small region of an electron gas, containing only a few electrons (the dot) connected to reservoirs by tunable tunnel 
barriers [35]. Quantum dots are often referred to as “artificial atoms”, since they have a discrete spectrum of energy levels 
which is determined by the geometric properties of the confining potential (as well as the interaction between electrons on 
the dot).

For small dots in semiconductors, the level spacing can be quite large, and focusing on a single energy-level may be a 
reasonable approximation in a range of gate voltage. In this case, the device is well described by a slight generalization of 
the Anderson impurity model, in which the ‘impurity level’ is connected not to a single but to two (left and right) reservoirs. 
The position of the energy level (εd) can be tuned by the overall gate voltage, while the tunnel matrix elements V L, V R
connecting the dot to the left and right reservoirs are also tunable by applying appropriate tensions. The interaction U is 
determined by the capacitive energy of the dot U ∼ e2/C .

In this model, the occupancy (charge) of the dot depends on the “gate voltage” εd according to the staircase of Fig. 1. 
The addition of a new electron costs an energy U , and for a range of gate voltages the charge on the dot may correspond 
to an odd number of electrons (a single one in this simple model), and hence to a half-integer spin. In this situation, the 
device can be seen as an artificial magnetic impurity connected to two conduction electron reservoirs.

One of the simplest measurement on such a device is to apply a small voltage between the drain (R reservoir) and 
the source (L reservoir) and to measure the linear-response conductance G of the device. I emphasize that this is the 
conductance corresponding to transmission of electrons through the dot. Hence, a Landauer-like formula should be applicable 
to describe this process. However, the Landauer approach must be significantly generalized here, since electrons interact on 
the dot. This problem was considered by Meir and Wingreen [36], who established a remarkably simple formula for the 
equilibrium conductance:



438 A. Georges / C. R. Physique 17 (2016) 430–446
Fig. 4. Coulomb blockade staircase and conductance peaks (in units of 2e2/h), as a function of ‘gate voltage’ εd, according to the approximate high-
temperature expression (32).

G = 2e2

h

4�L�R

(�L + �R)2

∫
dω

(
− ∂ f

∂ω

)
π�Ad(ω) (30)

= 2e2

h

∫
dω

(
− ∂ f

∂ω

)
π�Ad(ω) , (�L = �R) (31)

In this expression, Ad(ω) is the equilibrium spectral function introduced above, �R,L are the Fermi golden rules level widths 
associated with tunneling to the two reservoirs, � = �L + �R, and f (ω) = 1/(1 + eω/kT ) is the Fermi function. The second 
expression is obtained for a dot with equal L- and R-coupling, a simplification that we shall make in the following.

This expression is obviously very analogous to Landauer’s formula, with π�Ad(ω) playing the role of the transmission 
coefficient through the device. It is remarkable that such a simple formula applies to an interacting system, and especially 
that the conductance can be expressed in terms of a single-particle spectral function. This is due to the fact that the current 
operator couples one electron on the dot to a non-interacting state in the reservoir, e.g., iV L(d

†
σ cpσ − c†

pσ dσ ). It is also 
interesting to contrast this formula to expression (28), which described the contribution σimp of magnetic impurities to 
the conductivity of a metallic host. It is the inverse of π�Ad that appears in this formula, so that π�Ad plays there the 
role of a scattering rate. In contrast, when considering the transmission conductance, the same quantity plays the role of a 
transmission coefficient!

At high temperature, the spectral function (transparency) has the two-peak structure described in the previous section. 
As a first approximation, one may use in (31) the expression (8) for an isolated dot. One then obtains:

G(T � �) � 2e2

h

π�

kT

[
(1 − nd

2
)

1

4 cosh2 εd
2kT

+ nd

2

1

4 cosh2 εd+U
2kT

]
(32)

A plot of this expression is displayed in Fig. 4, together with the Coulomb blockade staircase itself. As a function of the gate 
voltage εd, the conductance displays two peaks that are located at the “mixed valent” points where two atomic states with 
charge differing by one unit are degenerate. At these points, the charge easily fluctuates and transmission of an electron 
through the dot is possible. In between (LM regime), the charge is blocked by the Coulomb repulsion and the transmission 
conductance is therefore very small (Coulomb blockade).

This is not the whole story however. It was realized in 1988 by Glazman and Raikh [37] and Ng and Lee [38] that the 
Kondo effect should profoundly modify this picture at low temperature. Indeed, at T = 0, it should entirely suppress the 
Coulomb blockade throughout the LM regime and restore transmission conductance to its maximal possible value 2e2/h! 
This remarkable many-body effect can be viewed as a direct consequence of the appearance of the ‘Kondo’ resonance in the 
density of states, and of the Friedel sum-rule. Indeed, at zero temperature, expression (31) reduces to:

G = 2e2

h
π�Ad(0) = 2e2

h
sin2 πnd

2
(T = 0) (33)

in which the second expression makes use of the value of Ad(0) derived above, based on the Friedel sum-rule. This ex-
pression shows that the Coulomb blockade should be essentially suppressed at T = 0, and in particular that maximum 
conductance is restored for nd = 1, precisely in the middle of the valley where the conductance was at a minimum in the 
high-temperature regime! Note that the tiny spectral weight Z ∼ TK/� of the Kondo resonance does not limit the conduc-
tance: it is the value of the density of states that matter. Indeed, we know from Landauer that a single resonant state with 
perfect transmission (π�Ad(0) = 1 for nd = 1) carries a full quantum of conductance.

Another, more physical, point of view on this somewhat “magic” derivation is to think in terms of wave functions. 
This is most easily understood in a simple version of the problem in which a single state would be present on the leads 
(strong Kondo coupling limit), or if one wants more sophistication using a variational wave-function à la Gunnarsson–
Schönhammer [39]. One immediately sees then that the formation of the Kondo singlet is possible because the ground-state 
wave-function contains a small contribution involving both the empty and doubly-occupied configurations (in the single-
level description, this contribution is proportional to V /U ). It is these virtual contributions to other charge states that allow 
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Fig. 5. Conductance through a quantum dot in the Kondo regime: early experiments. Reproduced from Ref. [41].

Fig. 6. Top: Interferometric device recently used in [46] to measure the phase-shift through a quantum dot (QD). Bottom: Gate-voltage dependence of the 
measured phase-shift, evidencing in particular the value δ = π/2 at the center of the Coulomb blockade valley. Reproduced from Ref. [46].

for perfect transmission (no matter how small their contribution to the wave-function). At low T , the dot and the reservoirs 
are strongly entangled by the formation of the singlet, and this coupling must be taken into account from the start when 
considering the conductance.

Experimental observation of this remarkable effect had to wait for the ability to fabricate dots in which the appro-
priate regime can be reached (T � TK < � < U ). Note that expressions (10) and (11) show that the Kondo temperature 
TK � √

�U eπεd(εd+U )/2U� depends exponentially on the Coulomb repulsion U and on εd, and that the Kondo tempera-
ture is smallest at the center of the valley (εd = −U/2, nd = 1). Experimental observation came in 1998, ten years after 
the theoretical prediction, in the remarkable doctoral work of David Goldhaber-Gordon [40,41] and also in the group of Leo 
Kouwenhoven [42] (see also [43]). Measurements from these early experiments [40,41] are reproduced in Fig. 5. The increase
of conductance in the middle of the valley as temperature is lowered is clearly seen there.

What about the phase shift? As suggested in [44], this should be observable by placing a quantum dot in an Aharonov–
Bohm interferometer. Such delicate experiments were soon performed (see, e.g., [45] and additional references in [46]), 
but their interpretation was complicated by the contribution of multiple paths traversing the interferometer. Very recently, 
however [46], a collaboration between the groups of C. Bäuerle in Grenoble and S. Tarucha in Tokyo (as well as that of 
J. von Delft in Munich on the theory side) managed to setup a remarkable experiment and device which overcomes this 
difficulty. Their results, reproduced in Fig. 6, provide a clear observation of the gate-voltage dependence of the phase-shift, 
and in particular of the unitary value δ = π/2 at the center of the valley, in agreement with Friedel’s sum-rule.

5. Dynamical mean field theory

5.1. Atom matter

The second ‘revival’ that I want to briefly discuss here will take us outside of the field of impurity physics properly 
speaking. Here, an impurity atom coupled with an environment will be viewed as a building block for constructing a 



440 A. Georges / C. R. Physique 17 (2016) 430–446
mean-field theory of quantum many-body problems and materials with strong electronic correlations. This is the basic 
concept underlying dynamical mean-field theory (DMFT).

This is best illustrated by considering a ‘simple’ model, such as the Hubbard model:

H =
∑

i

Hat(i) −
∑

i j

ti j

(
d†

iσ d jσ + d†
jσ diσ

)
(34)

The hamiltonian Hat on each lattice site i, given by (7), is that of the single-level ‘atom’ introduced above.7 Often this model 
is referred to as a single band of electrons, subject to a local interaction U between electrons of opposite spins on the same 
site. In this perspective, the first thing one does is to diagonalize the non-interacting (one-body) part of the hamiltonian in 
the form 

∑
kσ εkd†

kσ dkσ , with k the quasi-momentum and εk the tight-binding energy band:

εk = −
∑

j

ti je
ik·(Ri−R j) (35)

Here, I want to adopt a different perspective, and view this model as describing a periodic lattice of atoms8 that can 
exchange electrons through the hopping term ti j due to the overlap of atomic orbitals on different sites. These two points 
of views are equally valid, but they naturally lead to different kinds of approaches. In the former, one will start from 
an electron gas and Bloch waves in momentum-space, and consider what happens when interactions are turned on. The 
latter, in contrast, emphasizes that atoms are the basic building blocks of a solid. Each atom is a small many-body problem in 
itself: one will insist on a correct description of the atomic eigenstates (multiplets), and only then consider the transfer of 
electrons between atoms. The first point of view is mostly a wave-like picture in momentum-space, while the second is a 
real-space (particle-like) picture closer to the intuition of the chemist.

Most physics textbooks adopt the first point of view: solid-state physics is presented as the science of the electron gas. 
However, for materials with strong electron correlations, an atomic viewpoint is actually essential.9 More precisely, we need 
for these materials a theoretical description which is able to describe both atomic-like excitations at high energy (such as 
the valence-changing transitions when adding or removing an electron), as well as the low energy excitations which in a 
metallic system will be wave-like quasiparticles (possibly strongly renormalized in comparison to free electrons). Only a 
theory which can adapt to the energy scale under consideration is able to do this.

5.2. Dynamical Mean-Field Theory in a nutshell

The basic concept of DMFT is illustrated in Fig. 7. The idea is to start from the atom and embed it into an effective 
medium with which it can exchange electrons [48] (for a review, see, e.g., [49]). For our simple single-level atom, this is 
precisely the single-impurity Anderson model! The “impurity” here is really no impurity at all: it is just one of the atoms 
of the translationally-invariant system that we have decided to focus on.

The effective medium (or ‘reservoir’, or ‘bath’), in turn, is just a representation of the whole system (minus the atom 
we are focusing on). Hence, it should be self-consistently determined, in order to reflect the fact that all atoms are actually 
equivalent. What is this self-consistency condition?

The answer to this question relies on two elements: a choice of observable and an approximation. The observable we 
shall focus on is the on-site (local) Green’s function of our solid. It is given by:

G loc(iωn) ≡
∑

k

1

iωn + μ − εk − (k, iωn)
(36)

Here, (k, iωn) is the (unknown) self-energy of our lattice model, encoding the effects of interactions, and the normalized 
momentum-sum is over the Brillouin zone. We recall that, given a value of U and εd = −μ, the Green’s function of the 
impurity level in the Anderson impurity model is entirely determined by the hybridisation function �(iωn). Assuming that 
one knows the local Green’s function G loc of our solid, let us find a hybridisation function such that the Green’s function of 
the impurity problem coincides with it, namely demand that:

G loc(iωn) = G imp[iωn,�] (37)

At this point, all that we have done is to introduce a representation of the exact local Green’s function by that of an 
embedded atom (effective impurity).

We now introduce an approximation, which allows one to obtain a closed set of equations determining both � and G loc. 
This approximation is to neglect the momentum-dependence of the self-energy (i.e. in real-space ignoring all non-local 

7 The atomic level can be taken in this context to be (minus) the chemical potential, used to fix the average number of electrons per site n: εd = −μ.
8 The “atoms” are caricatured here as single-level ones, but more realistic aspects of true atomic shells can be included such as orbital degrees of freedom 

and intra-atomic exchange.
9 For additional qualitative considerations along these lines, see Ref. [47].
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Fig. 7. The Dynamical Mean-Field Theory (DMFT) concept. A solid is viewed as an array of atoms exchanging electrons, rather than as a gas of interacting 
electrons moving in a periodic potential. DMFT replaces the solid by a single atom exchanging electrons with a self-consistent medium and takes into 
account local many-body correlations on each site.

terms of the self-energy, keeping the on-site term only) and to approximate the local component by that of the effective 
impurity: i j(iωn) � imp(iωn) δi j . Recalling that for the impurity model, the self-energy is related to G imp and �(iωn) by 
the local Dyson equation imp(iωn) = G−1

0 (iωn) − G−1
imp(iωn) = iωn + μ − �(iωn) − G−1

imp(iωn), and inserting this expression 
into (36), we obtain:

G imp[iωn,�] =
∑

k

1

G imp[iωn;�]−1 + �(iωn) − εk
(38)

This is a self-consistent equation for the hybridisation function �(iωn). The geometry of the lattice and dispersion of the 
band enters this equation10 through εk . A more explicit form of this equation can be given if we specialize the density of 
states associated with εk to a semi-circular one with half-width D (corresponding to an infinite-connectivity Bethe lattice), 
in which case (38) reads:

�(iωn) = D2

4
G imp(iωn) (39)

The prescription is to find � in such a way that the d-level Green’s function associated with the impurity model, specified 
by �(iωn), U and μ (cf. Eq. (14)) also satisfies (38) and can hence be identified with the local Green’s function of our 
solid. Once this is done, the self-energy (approximated by its local component) is obtained as (iωn) = iωn + μ − �(iωn) −
G−1

imp(iωn), and many other physical quantities and response functions can be calculated. In practice this is done by following 
an iterative scheme, which requires repeatedly solving the impurity model in conjunction with (38) until convergence is 
reached. For this purpose, efficient algorithms must be used to calculate the impurity Green’s function, self-energy and 
possibly two-particle response functions of the embedded atomic shell (‘impurity solvers’). Remarkable progress on this 
front, especially for atomic shell with orbital degeneracies or cluster extensions of DMFT, has been achieved in the past few 
years, thanks to continuous time quantum Monte-Carlo techniques (see [50] for a review). Several software libraries have 
been developed and made available on the web [51,52]. For small orbital degeneracy, accurate real-frequency algorithms 
such as the numerical renormalisation group can also be used.

In a nutshell, the DMFT construction involves the solution of a self-consistent ‘impurity’ problem: an atomic shell em-
bedded in a self-consistent medium with which it exchanges electrons [48,49].

5.3. When is DMFT accurate?

The single-site DMFT construction becomes exact in the following limits.

• In the atomic limit ti j = 0, by construction (then, � = 0).
• In the non-interacting limit U = 0. Indeed, in this case the self-energy  = 0, so that it is trivially k-independent.
• Hence, both the limit of a non-interacting band and that of isolated atoms are correctly reproduced by DMFT, which 

provides an interpolating scheme between these extreme cases.
• In the limit of infinite lattice coordination (infinite number of spatial dimensions), first introduced for fermions in the 

pioneering work of Metzner and Vollhardt [53]. The hopping must be scaled as ti j = t/
√

d for this limit to be properly 
defined and non-trivial.

• Being an exact solution of Hubbard-like models in the limit of infinite dimensions, it is thus guaranteed that DMFT 
preserves all sum-rules and conservation laws.

10 The DMFT equations have been written here in the paramagnetic phase with no symmetry breaking whatsoever. These equations are easily generalized 
to phases with long-range order [49], such as an antiferromagnet or an s-wave superconductor. In those phases, and for two-particle response functions as 
well, the DMFT equations depend on additional details of the lattice structure.
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Besides these formal considerations, it is important to emphasize when single-site DMFT is accurate and physically mean-
ingful. Obviously, this is the case when inter-site correlations do not strongly affect single-particle properties. This is true 
when the correlation lengths for any kind of incipient ordering are small, i.e. sufficiently far away from critical boundaries. 
The local approximation (single-site DMFT) is a good starting point when spatial correlations are short-range, which is the 
case in any of the following regimes: high-temperature, high-energy, high doping, large number of fluctuating degrees of 
freedom competing with each other, large orbital degeneracy, large degree of frustration. For further considerations along 
these lines, especially in relation to the high-temperature regime, see [54].

5.4. The Mott transition: from waves to particles

One of the early successes of DMFT is to provide a detailed and consistent theory of the Mott transition. A schematic 
‘generic’ phase diagram of the half-filled Hubbard model as obtained in this approach is depicted in Fig. 8. The corresponding 
evolution of the local spectral function Aloc(ω) as the coupling is increased is also schematically depicted in Fig. 9. In the 
Mott insulating phase, we see that the excitations consist of two broadened versions of the atomic transitions |σ 〉 → |0〉
(around energy εd = −μ) and |σ 〉 → | ↑↓〉 (around energy U − μ), colloquially called (somewhat improperly) the lower 
and upper Hubbard ‘bands’. In the strongly correlated metal, besides these high-energy excitations we also have low-energy 
quasiparticle excitations. Their density of states has a spectral weight and bandwidth reduced by a factor Z < 1 (from 
Eq. (17)) in comparison to the non-interacting system. This corresponds to Brinkman–Rice physics [55]: enhancement of 
the quasiparticle effective mass m∗/m ∼ 1/Z and reduction of the quasiparticle kinetic energy. At the Mott transition, Z
vanishes and m∗/m diverges in the single-site DMFT (as observed, e.g., in La1−xSrxTiO3 [56]).

This illustrates the point made above: in strongly-correlated materials, electrons are ‘hesitant’ entities with a dual charac-
ter. At high-energy they behave as localized, and the relevant excitations are atomic (particle-like) excitations. At low-energy 
in metallic compounds they eventually form wave-like itinerant quasiparticles.

The key features which allow DMFT to handle both types of excitations are that (i) it has by construction a correct 
description of atomic eigenstates and that (ii) the hybridisation function �(ω) = −Im�(ω + i0+) is energy dependent, 
and changes in a self-consistent manner as the coupling, electron density and temperature11 are varied. This hybridisation 
function, or dynamical mean-field, can be viewed as the quantum generalisation of Pierre Weiss mean field in the context 
of classical systems.

In the Mott insulating phase, �(ω) has a gap, identical to that of Aloc(ω), as clear, e.g., from (39). The shape of �(ω) for 
ω ∼ −μ and ω ∼ U − μ determine the broadening and lineshape of the lower and upper Hubbard bands (cf. broadening of 
a VBS). At low-energy however, �(ω) has no spectral weight: the Kondo effect cannot take place and the degeneracy of the 
spin-1/2 doublet is not lifted. Hence, the Mott insulator is a paramagnet with fluctuating local moments.

In contrast, in the metal, �(ω) has low-energy spectral weight and the Kondo effect screens out this local moment. The 
excitations are quasiparticles described in the single-site DMFT by a local Fermi-liquid theory (17). It is important to realize 
however that this is a self-consistent Kondo effect, in which �(ω) is constrained to have a similar shape than Aloc(ω). In 
particular, the widths of these functions are both of order Z D (the Brinkman–Rice scale). The kind of Kondo problem we 
get close to the Brinkman–Rice transition is thus in a very different regime (intermediate coupling) than the weak-coupling 
Kondo problem of a physical magnetic impurity in a very broad band discussed in the previous sections [57,58]. Hence, Z
no longer depends exponentially on U has above, but actually vanishes as Uc − U . Furthermore, in this situation, the true 
Kondo scale cannot be identified with Z D: it is actually a smaller scale [59] (not parametrically, but the renormalisation 
factor is small). This explains why the Fermi-liquid scale TFL (below which, e.g., T 2 resistivity is observed) is actually much 
smaller than the Brinkman–Rice scale (at which quasiparticles excitations are fully incoherent and the Mott–Ioffe–Regel 
value is reached [60]).

Hence, in a strongly correlated system, the formation of quasiparticles as temperature or energy are reduced, and most 
importantly the scale below which they form, depend on how the local atomic multiplets are screened in the solid-state 
environment. This is why starting from a proper description of the atomic physics and describing how this gradual screening 
process takes place is essential. Remarkably, it recently became apparent that this is not only true for metals very close to 
the Mott transition, but also for quite itinerant metals which are far from this transition, in which the physics is dominated 
by effects due to the Hund’s coupling, such as iron-based superconductors and transition-metal oxides of the 4d series like 
ruthenates (for a review, see, e.g., [61]). In a nutshell: atoms matter.

6. Conclusion

In this note, I have tried to illustrate how the physics of impurities and the concepts introduced by Friedel have proven 
fertile in other contexts. In his scientific work, Friedel harmoniously combined the two ways of looking at a solid emphasized 
above: the atomic picture and the electron-gas picture. He mentioned this, for example, in his 2001 interview [2]: “On 
reconnaît là la dichotomie atomes-électrons qu’il est d’ailleurs difficile de maîtriser dans un domaine aussi étendu.” I hope 
to have convinced the reader that the concept of an effective impurity or self-consistently embedded atom, which is at the 

11 The change as a function of temperature is crucial for example to describe the transfers of spectral weights observed in strongly correlated materials.
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Fig. 8. Generic (schematic) phase diagram of the half-filled Hubbard model, obtained from DMFT, as a function of interaction strength and temperature 
normalized to the half-bandwidth D . For a lattice with frustration (e.g., with next-nearest neighbour hopping), the transition temperature into phases with 
long-range spin ordering is reduced. Then, a first-order transition from a metal to a paramagnetic Mott insulator becomes apparent. Adapted from Ref. [62].

Fig. 9. Schematic evolution of the momentum-integrated spectral function (total density of states) as the coupling is increased, for the half-filled Hubbard 
model in its paramagnetic phase, according to single-site DMFT. The low-energy (quasiparticle) part of the spectrum gradually narrows down, while the 
corresponding spectral weight is transferred to the lower and upper Hubbard bands (atomic-like excitations). Adapted from Ref. [63].

heart of the dynamical mean-field theory of materials with strong electronic correlations, can be viewed as an attempt to 
reconcile and combine these points of view.
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Appendix A. Conduction electrons T -matrix and phase-shift

A direct examination of perturbation theory, or the functional integral technique, leads to the following expression for the 
conduction electron Green’s function (which depends on two momenta, since the system is not translationally invariant!):

Gc
pp′ = Gc0

p δpp′ + Gc0
p Tpp′(ω)Gc0

p′ (40)

in which the scattering T -matrix reads:

Tpp′(ω) = V ∗
p Gd(ω)V p′ (41)

Defining the phase-shift in the standard manner:

Tpp′(ω) = −|Tpp′(ω)|eiδpp′ (ω) (42)

we obtain (considering for simplicity, real V p ’s):

tan δ(ω) = ImGd(ω + i0+)

ReGd(ω + i0+)
= � − ′′

d(ω)

εd + ′
d(ω) − ω

(43)

Using the Fermi-liquid expansion of d, we thus obtain the T = 0 expression of the phase-shift at the Fermi surface as:

tan δ(0) = �

εd + ′
d(0)

(44)

Hence leading to the expression of the d-level spectral function at the Fermi level:

Ad(0) = 1

π

�[
εd + ′

d(0)
]2 + �2

= 1

π�
sin2 δ (45)

and, by summing the above expression for Gc over momenta, to the local conduction electron density of states at the Fermi 
level:

Ac(0) = ρ0
c cos2 δ (46)

Appendix B. Langreth’s proof of Friedel’s sum rule for the Anderson impurity model

Langreth’s proof [28] is non-perturbative, applies at T = 0, and uses the formalism of Luttinger and Ward. It is in the 
same spirit than the derivation of Luttinger’s theorem based on this formalism. See also the earlier work of Langer and 
Ambegaokar [64] devoted to the Friedel sum-rule in an interacting system.

The case of an infinite bandwidth is considered. This is important, actually: for a finite bandwidth and a hybridization 
function �(ω + i0+) having a non-vanishing real part, additional terms are involved and the displaced (screening) charge 
no longer coincides with the occupancy of the impurity level.

Let us consider the retarded impurity’s Green’s function: G−1
d (ω + i0+) = ω − εd + i� − d(ω + i0+) and take the 

frequency derivative of its logarithm:

− ∂

∂ω
ln Gd(ω) =

[
1 − ∂d

∂ω

]
Gd(ω) (47)

Noting that:

− 1

π

0∫
−∞

dω Im Gd = nd

2
(48)

we integrate the above relation to obtain:

πnd

2
= Im ln Gd(ω = 0) − Im ln Gd(ω → −∞) + Im

∫
dω

∂d

∂ω
Gd(ω) (49)

The last term will be shown to vanish, so that we get (we use ImGd < 0, the above definition of the phase shift, and a 
branch-cut of the ln on the negative real axis):

πnd

2
= (δ − π) − (−π) = δ (50)
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To prove that the last term vanishes, we integrate it by part:∫
dω

∂Gd

∂ω
d(ω) (51)

and observe that the self-energy is obtained from the Luttinger–Ward functional as:

d(ω) = δ�[Gd]
δGd(ω)

(52)

so that the above reads:∫
dω

∂Gd

∂ω

δ�[Gd]
δGd(ω)

= δ� (53)

This is the change of the Luttinger–Ward functional when all frequencies are shifted. Being a scalar functional with no 
external frequency, and leaving aside the (exotic but documented in other systems [65]) possibility of an anomaly, we 
conclude that δ� = 0.

References

[1] A.P. Sutton, O. Hardouin-Duparc, Jacques Friedel: 11 February 1921–27 August 2014, Biogr. Mem. Fellows R. Soc. 61 (2015) 123–143, http://dx.doi.org/
10.1098/rsbm.2015.0020.

[2] B. Bensaude-Vincent, H. Arribart, Entrevue avec Jacques Friedel, history of recent science and technology project, http://authors.library.caltech.edu/5456/
1/hrst.mit.edu/hrs/materials/public/FriedelJacques/Jacques_Friedel_intro.htm, October 2001.

[3] J. Friedel, The distribution of electrons round impurities in monovalent metals, Philos. Mag. 43 (337) (1952) 153–189.
[4] J. Friedel, On some electrical and magnetic properties of metallic solid solutions, Can. J. Phys. 34 (12A) (1956) 1190–1211, http://dx.doi.org/10.1139/

p56-134.
[5] J. Friedel, Sur la structure électronique des métaux et alliages de transition et des métaux lourds, J. Phys. Radium 19 (6) (1958) 573–581, http://

dx.doi.org/10.1051/jphysrad:01958001906057300.
[6] J. Friedel, Metallic alloys, Nuovo Cimento 2 (1958) 287, lectures notes at the 1956 Varenna summer school.
[7] P. de Faget de Casteljau, J. Friedel, Etude de la résistivité et du pouvoir thermoélectrique des impuretés dissoutes dans les métaux nobles, J. Phys. 

Radium 17 (1) (1956) 27–32, http://dx.doi.org/10.1051/jphysrad:0195600170102700.
[8] A. Blandin, J. Friedel, Propriétés magnétiques des alliages dilués. Interactions magnétiques et antiferromagnétisme dans les alliages du type métal 

noble-métal de transition, J. Phys. Radium 20 (2) (1959) 160–168, http://dx.doi.org/10.1051/jphysrad:01959002002-3016000.
[9] E. Daniel, Effet des impuretés sur la densité électronique dans les métaux. I, J. Phys. Radium 20 (10) (1959) 769–783, http://dx.doi.org/10.1051/jphysrad:

019590020010076900.
[10] E. Daniel, Effet des impuretés sur la densité électronique dans les métaux. II, J. Phys. Radium 20 (11) (1959) 849–859, http://dx.doi.org/10.1051/

jphysrad:019590020011084900.
[11] C.F. Napoli, G. Ratto, G. Morandi, Theoretical Review of the Friedel–Anderson Model and an Essay on the Dynamics of Contemporary Research, Editrice 

Universitaria, Ferrara, 1981.
[12] G. Morandi, Dynamics and development of the Friedel–Anderson model. A study in the sociology of modern physics, Eur. J. Phys. 5 (2) (1984) 120, 

http://stacks.iop.org/0143-0807/5/i=2/a=011.
[13] M.D. Daybell, W.A. Steyert, Localized magnetic impurity states in metals: Some experimental relationships, Rev. Mod. Phys. 40 (1968) 380–389, 

http://dx.doi.org/10.1103/RevModPhys.40.380.
[14] J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32 (1) (1964) 37–49, http://ptp.oxfordjournals.org/content/32/1/37.full.

pdf+html, http://ptp.oxfordjournals.org/content/32/1/37.abstract.
[15] B. Coqblin, A. Blandin, Stabilité des moments magnétiques localisés dans les métaux, Adv. Phys. 17 (67) (1968) 281–366, http://dx.doi.org/10.1080/

00018736800101306.
[16] B. Coqblin, J.R. Schrieffer, Exchange interaction in alloys with cerium impurities, Phys. Rev. 185 (1969) 847–853, http://dx.doi.org/10.1103/PhysRev.

185.847.
[17] M.-T. Béal-Monod, R.A. Weiner, Negative magnetoresistivity in dilute alloys, Phys. Rev. 170 (1968) 552–559, http://dx.doi.org/10.1103/PhysRev.170.552.
[18] P. Monod, Magnetic field dependence of the Kondo resistivity minimum in CuFe and CuMn alloys, Phys. Rev. Lett. 19 (1967) 1113–1117, 

http://dx.doi.org/10.1103/PhysRevLett.19.1113.
[19] H. Alloul, Susceptibility and electron-spin relaxation of Fe in Cu below T K : A NMR study of 63Cu satellites, Phys. Rev. Lett. 35 (1975) 460–463, 

http://dx.doi.org/10.1103/PhysRevLett.35.460.
[20] J. Friedel, Concept de niveau lié virtuel, J. Phys. Radium 23 (10) (1962) 692–700, http://dx.doi.org/10.1051/jphysrad:019620023010069200.
[21] A. Blandin, Magnetic impurities in metals, J. Appl. Phys. 39 (1968) 1285.
[22] P.W. Anderson, Localized magnetic states in metals, Phys. Rev. 124 (1961) 41–53, http://dx.doi.org/10.1103/PhysRev.124.41.
[23] P.W. Anderson, Local moments and localized states (Nobel lecture, 1977), in: Nobel Lectures, Physics 1971–1980, World Scientific, Singapore, 1992.
[24] A. Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press, Cambridge, UK, 1993.
[25] P. Nozières, A ‘Fermi-liquid’ description of the Kondo problem at low temperatures, J. Low Temp. Phys. 17 (1974) 31.
[26] K. Yosida, K. Yamada, Perturbation expansion for the Anderson hamiltonian. III, Prog. Theor. Phys. 53 (5) (1975) 1286–1301, http://dx.doi.org/10.1143/

PTP.53.1286, http://ptp.oxfordjournals.org/content/53/5/1286.full.pdf+html, http://ptp.oxfordjournals.org/content/53/5/1286.abstract.
[27] J.R. Schrieffer, P.A. Wolff, Relation between the Anderson and Kondo hamiltonians, Phys. Rev. 149 (1966) 491–492, http://dx.doi.org/10.1103/PhysRev.

149.491.
[28] D.C. Langreth, Friedel sum rule for Anderson’s model of localized impurity states, Phys. Rev. 150 (1966) 516–518, http://dx.doi.org/10.1103/PhysRev.

150.516.
[29] C. Mora, C.P. Moca, J. von Delft, G. Zaránd, Fermi-liquid theory for the single-impurity Anderson model, Phys. Rev. B 92 (2015) 075120, http://dx.doi.org/

10.1103/PhysRevB.92.075120.
[30] T.A. Costi, A.C. Hewson, V. Zlatic, Transport coefficients of the Anderson model via the numerical renormalization group, J. Phys. Condens. Matter 6 (13) 

(1994) 2519, http://stacks.iop.org/0953-8984/6/i=13/a=013.

http://dx.doi.org/10.1098/rsbm.2015.0020
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/{F}riedelJacques/Jacques_{F}riedel_intro.htm
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/{F}riedelJacques/Jacques_{F}riedel_intro.htm
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib6672696564656C5F31393532s1
http://dx.doi.org/10.1139/p56-134
http://dx.doi.org/10.1051/jphysrad:01958001906057300
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib6672696564656C5F6C656374757265735F31393538s1
http://dx.doi.org/10.1051/jphysrad:0195600170102700
http://dx.doi.org/10.1051/jphysrad:01959002002-3016000
http://dx.doi.org/10.1051/jphysrad:019590020010076900
http://dx.doi.org/10.1051/jphysrad:019590020011084900
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib6D6F72616E64695F626F6F6Bs1
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib6D6F72616E64695F626F6F6Bs1
http://stacks.iop.org/0143-0807/5/i=2/a=011
http://dx.doi.org/10.1103/RevModPhys.40.380
http://ptp.oxfordjournals.org/content/32/1/37.full.pdf+html
http://ptp.oxfordjournals.org/content/32/1/37.full.pdf+html
http://ptp.oxfordjournals.org/content/32/1/37.abstract
http://dx.doi.org/10.1080/00018736800101306
http://dx.doi.org/10.1103/PhysRev.185.847
http://dx.doi.org/10.1103/PhysRev.170.552
http://dx.doi.org/10.1103/PhysRevLett.19.1113
http://dx.doi.org/10.1103/PhysRevLett.35.460
http://dx.doi.org/10.1051/jphysrad:019620023010069200
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib626C616E64696E5F7265766965775F31393638s1
http://dx.doi.org/10.1103/PhysRev.124.41
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib616E646572736F6E5F6E6F62656Cs1
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib686577736F6E5F626F6F6B5F31393933s1
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib6E6F7A69657265735F31393734s1
http://dx.doi.org/10.1143/PTP.53.1286
http://ptp.oxfordjournals.org/content/53/5/1286.full.pdf+html
http://ptp.oxfordjournals.org/content/53/5/1286.abstract
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.150.516
http://dx.doi.org/10.1103/PhysRevB.92.075120
http://stacks.iop.org/0953-8984/6/i=13/a=013
http://dx.doi.org/10.1098/rsbm.2015.0020
http://dx.doi.org/10.1139/p56-134
http://dx.doi.org/10.1051/jphysrad:01958001906057300
http://dx.doi.org/10.1051/jphysrad:019590020010076900
http://dx.doi.org/10.1051/jphysrad:019590020011084900
http://dx.doi.org/10.1080/00018736800101306
http://dx.doi.org/10.1103/PhysRev.185.847
http://dx.doi.org/10.1143/PTP.53.1286
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.150.516
http://dx.doi.org/10.1103/PhysRevB.92.075120


446 A. Georges / C. R. Physique 17 (2016) 430–446
[31] D.E. Logan, M.P. Eastwood, M.A. Tusch, A local moment approach to the Anderson model, J. Phys. Condens. Matter 10 (12) (1998) 2673, http://stacks.iop.
org/0953-8984/10/i=12/a=009.

[32] A.A. Abrikosov, On the anomalous temperature dependence of the resistivity of non-magnetic metals with a weak concentration of magnetic impurities, 
Sov. Phys. JETP 21 (1965) 660.

[33] H. Suhl, Dispersion theory of the Kondo effect, Phys. Rev. 138 (1965) A515–A523, http://dx.doi.org/10.1103/PhysRev.138.A515.
[34] Y. Nagaoka, Self-consistent treatment of Kondo’s effect in dilute alloys, Phys. Rev. 138 (1965) A1112–A1120, http://dx.doi.org/10.1103/PhysRev.138.

A1112.
[35] M. Kastner, Artificial atoms, Phys. Today (January 1993) 24.
[36] Y. Meir, N.S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68 (1992) 2512–2515, http://dx.doi.org/

10.1103/PhysRevLett.68.2512.
[37] L.I. Glazman, M.E. Raikh, Resonant Kondo transparency of a barrier with quasilocal impurity states, Sov. Phys. JETP 47 (1988) 452.
[38] T.K. Ng, P.A. Lee, On-site Coulomb repulsion and resonant tunneling, Phys. Rev. Lett. 61 (1988) 1768–1771, http://dx.doi.org/10.1103/PhysRevLett.61.

1768.
[39] O. Gunnarsson, K. Schönhammer, Photoemission from Ce compounds: exact model calculation in the limit of large degeneracy, Phys. Rev. Lett. 50 

(1983) 604–607, http://dx.doi.org/10.1103/PhysRevLett.50.604.
[40] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Kondo effect in a single-electron transistor, Nature 391 

(1998) 156–159, http://dx.doi.org/10.1038/34373, arXiv:cond-mat/9707311.
[41] D. Goldhaber-Gordon, J. Göres, M.A. Kastner, H. Shtrikman, D. Mahalu, U. Meirav, From the Kondo regime to the mixed-valence regime in a single-

electron transistor, Phys. Rev. Lett. 81 (1998) 5225–5228, http://dx.doi.org/10.1103/PhysRevLett.81.5225.
[42] S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven, A tunable Kondo effect in quantum dots, Science 281 (1998) 540, http://dx.doi.org/10.1126/

science.281.5376.540, arXiv:cond-mat/9804211.
[43] F. Simmel, R.H. Blick, J.P. Kotthaus, W. Wegscheider, M. Bichler, Anomalous Kondo effect in a quantum dot at nonzero bias, Phys. Rev. Lett. 83 (1999) 

804–807, http://dx.doi.org/10.1103/PhysRevLett.83.804.
[44] U. Gerland, J. von Delft, T.A. Costi, Y. Oreg, Transmission phase shift of a quantum dot with Kondo correlations, Phys. Rev. Lett. 84 (2000) 3710–3713, 

http://dx.doi.org/10.1103/PhysRevLett.84.3710.
[45] Y. Ji, M. Heiblum, D. Sprinzak, D. Mahalu, H. Shtrikman, Phase evolution in a Kondo-correlated system, Science 290 (5492) (2000) 779–783, 

http://dx.doi.org/10.1126/science.290.5492.779, http://www.sciencemag.org/content/290/5492/779.full.pdf, http://www.sciencemag.org/content/290/
5492/779.abstract.

[46] S. Takada, C. Bäuerle, M. Yamamoto, K. Watanabe, S. Hermelin, T. Meunier, A. Alex, A. Weichselbaum, J. von Delft, A. Ludwig, A.D. Wieck, S. 
Tarucha, Transmission phase in the Kondo regime revealed in a two-path interferometer, Phys. Rev. Lett. 113 (2014) 126601, http://dx.doi.org/10.1103/
PhysRevLett.113.126601.

[47] A. Georges, Dynamical mean-field theory: materials from an atomic viewpoint beyond the Landau paradigm, in: DMFT at 25: Infinite Dimensions, 
Springer, Berlin, 2014, http://www.cond-mat.de/events/correl14/manuscripts/.

[48] A. Georges, G. Kotliar, Hubbard model in infinite dimensions, Phys. Rev. B 45 (1992) 6479–6483.
[49] A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimen-

sions, Rev. Mod. Phys. 68 (1996) 13–125.
[50] E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Continuous-time Monte-Carlo methods for quantum impurity models.
[51] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L. Messio, P. Seth, TRIQS: a toolbox for research on interacting quantum systems, Comput. 

Phys. Commun. 196 (2015) 398–415, http://dx.doi.org/10.1016/j.cpc.2015.04.023, http://www.sciencedirect.com/science/article/pii/S0010465515001666.
[52] The ALPS project (Algorithms Libraries for Physics Simulations), http://alps.comp-phys.org/.
[53] W. Metzner, D. Vollhardt, Correlated lattice fermions in d = ∞ dimensions, Phys. Rev. Lett. 62 (1989) 324.
[54] A. Georges, Thinking locally: reflections on dynamical mean-field theory from a high-temperature/high-energy perspective, Ann. Phys. 523 (2011) 

672–681, http://dx.doi.org/10.1002/andp.201100042, arXiv:1112.5212.
[55] W.F. Brinkman, T.M. Rice, Application of Gutzwiller’s variational method to the metal-insulator transition, Phys. Rev. B 2 (1970) 4302–4304, http://

dx.doi.org/10.1103/PhysRevB.2.4302.
[56] M. Imada, A. Fujimori, Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70 (1998) 1039.
[57] G. Moeller, Q. Si, G. Kotliar, M. Rozenberg, D.S. Fisher, Critical behavior near the Mott transition in the Hubbard model, Phys. Rev. Lett. 74 (1995) 

2082–2085, http://dx.doi.org/10.1103/PhysRevLett.74.2082.
[58] G. Kotliar, Landau theory of the Mott transition in the fully frustrated Hubbard model in infinite dimensions, Eur. Phys. J. B 11 (1) (1999) 27–39, 

http://dx.doi.org/10.1007/s100510050914.
[59] K. Held, R. Peters, A. Toschi, Poor man’s understanding of kinks originating from strong electronic correlations, Phys. Rev. Lett. 110 (2013) 246402, 

http://dx.doi.org/10.1103/PhysRevLett.110.246402.
[60] X. Deng, J. Mravlje, R. Žitko, M. Ferrero, G. Kotliar, A. Georges, How bad metals turn good: Spectroscopic signatures of resilient quasiparticles, Phys. 

Rev. Lett. 110 (2013) 086401, http://dx.doi.org/10.1103/PhysRevLett.110.086401.
[61] A. Georges, L. de’ Medici, J. Mravlje, Strong electronic correlations from Hund’s coupling, Annu. Rev. Condens. Matter Phys. 4 (2013) 137, arXiv:1207.

3033.
[62] G. Kotliar, Driving the electron over the edge, Science 302 (2003) 67.
[63] G. Kotliar, D. Vollhardt, Strongly correlated electron materials: insights from dynamical mean field theory, Phys. Today March (2004) 53.
[64] J.S. Langer, V. Ambegaokar, Friedel sum rule for a system of interacting electrons, Phys. Rev. 121 (1961) 1090–1092, http://dx.doi.org/10.1103/PhysRev.

121.1090.
[65] A. Georges, O. Parcollet, S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63 (2001) 134406.

http://stacks.iop.org/0953-8984/10/i=12/a=009
http://stacks.iop.org/0953-8984/10/i=12/a=009
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib616272696B6F736F765F31393635s1
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib616272696B6F736F765F31393635s1
http://dx.doi.org/10.1103/PhysRev.138.A515
http://dx.doi.org/10.1103/PhysRev.138.A1112
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib6B6173746E65725F70687973746F646179s1
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib676C617A6D616E5F31393838s1
http://dx.doi.org/10.1103/PhysRevLett.61.1768
http://dx.doi.org/10.1103/PhysRevLett.50.604
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1103/PhysRevLett.81.5225
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/10.1103/PhysRevLett.83.804
http://dx.doi.org/10.1103/PhysRevLett.84.3710
http://dx.doi.org/10.1126/science.290.5492.779
http://www.sciencemag.org/content/290/5492/779.full.pdf
http://www.sciencemag.org/content/290/5492/779.abstract
http://www.sciencemag.org/content/290/5492/779.abstract
http://dx.doi.org/10.1103/PhysRevLett.113.126601
http://www.cond-mat.de/events/correl14/manuscripts/
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib67656F726765735F6B6F746C6961725F646D6674s1
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib67656F726765735F7265766965775F646D6674s1
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib67656F726765735F7265766965775F646D6674s1
http://dx.doi.org/10.1016/j.cpc.2015.04.023
http://www.sciencedirect.com/science/article/pii/S0010465515001666
http://alps.comp-phys.org/
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib6D65747A6E65725F766F6C6C6861726474s1
http://dx.doi.org/10.1002/andp.201100042
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib696D6164615F6D69745F726576696577s1
http://dx.doi.org/10.1103/PhysRevLett.74.2082
http://dx.doi.org/10.1007/s100510050914
http://dx.doi.org/10.1103/PhysRevLett.110.246402
http://dx.doi.org/10.1103/PhysRevLett.110.086401
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib67656F726765735F48756E645F7265766965775F616E6E7265765F32303133s1
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib67656F726765735F48756E645F7265766965775F616E6E7265765F32303133s1
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib6B6F746C6961725F6D6F74745F736369656E63655F32303033s1
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib6B6F746C6961725F646D66745F70687973696373746F646179s1
http://dx.doi.org/10.1103/PhysRev.121.1090
http://refhub.elsevier.com/S1631-0705(15)00250-9/bib67656F726765735F706172636F6C6C65745F32303031s1
http://dx.doi.org/10.1103/PhysRev.138.A1112
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.61.1768
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/10.1103/PhysRevLett.113.126601
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://dx.doi.org/10.1103/PhysRev.121.1090

	The beauty of impurities: Two revivals of Friedel's virtual bound-state concept
	1 Introduction
	2 Virtual bound states and phase shifts
	3 The Anderson impurity model
	3.1 The model
	3.2 Some considerations on inﬂuence and style in science
	3.3 Physics of the Anderson impurity model, in a nutshell

	4 Quantum dots, Coulomb blockade, and the Kondo effect
	5 Dynamical mean ﬁeld theory
	5.1 Atom matter
	5.2 Dynamical Mean-Field Theory in a nutshell
	5.3 When is DMFT accurate?
	5.4 The Mott transition: from waves to particles

	6 Conclusion
	Acknowledgements
	Appendix A Conduction electrons T-matrix and phase-shift
	Appendix B Langreth's proof of Friedel's sum rule for the Anderson impurity model
	References


