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We explore experimentally the role played by diffraction in the phenomenon of acoustic 
shielding provided by a plate that is periodically perforated with subwavelength slits 
and immersed in water. We carried out ultrasonic transmission measurements for all 
directions of propagation in order to check the omnidirectionality of acoustic shielding. 
While a single slit acts as a Fabry–Perot resonator in the frequency range of interest, the 
coupling between adjacent slits provides an attenuation frequency band centered around 
the resonant frequency that is mostly independent of the angle of incidence. Beyond the 
incident angle of 45 degrees, however, we observe the appearance of scattered radiation 
that limits the attenuation of ultrasound. This spurious scattering is shown to arise from 
diffraction by the grating of slits.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous étudions expérimentalement le rôle joué par la diffraction dans le phénomène 
d’isolation acoustique que présente une plaque phononique perforée périodiquement par 
des fentes sub-longueur d’onde et plongée dans l’eau. Nous avons effectué des mesures 
de transmission dans le domaine ultrasonore pour toutes les directions de propagation 
dans le but de vérifier l’omnidirectionalité de l’isolation acoustique. Alors qu’une fente se 
comporte comme un résonateur de Fabry–Pérot dans le domaine de fréquence considéré, 
le couplage des fentes voisines produit une bande fréquentielle d’atténuation centrée 
sur la fréquence de résonance et qui est quasiment indépendante de l’angle d’incidence. 
Au-delà d’un angle d’incidence de 45 degrés, cependant, nous observons l’apparition 
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d’un rayonnement diffracté qui limite l’atténuation ultrasonore. Nous montrons que ce 
rayonnement indésirable provient de la diffraction associée au réseau de fentes.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The understanding of wave phenomena has come to a turning point with the arrival of new artificial structures such 
as phononic crystals and acoustic metamaterials. Their counter-intuitive behavior never ceases to surprise and permits to 
overcome many challenges in the acoustic domain: one of these is the omnidirectionality of wave attenuation. In this 
regard, phononic crystals have been demonstrated to exhibit complete band gaps, or frequency ranges where no wave can 
be transmitted, whatever the direction of propagation [1,2]. Furthermore, resonance-based mechanisms can be efficiently 
used to control the propagation of acoustic waves. In 2000, the group of P. Sheng opened the way with the introduction of 
locally-resonant sonic materials that exhibit phononic bandgaps at frequencies that are much lower than those introduced by 
Bragg scattering in phononic crystals. From this starting point, other structures having a periodic distribution of embedded 
resonators, generally in the form of inclusions, have emerged. This is the case of structures with inclusions in the form 
of masses attached to a membrane [3–5], of arrays of pillars on a surface [6–8], or of subwavelength apertures in a plate 
[9–15]. As a result, the transmission of acoustic waves through a periodically perforated plate has been the subject of a great 
deal of attention [13,14]. By coupling resonators together, it has been shown that an acoustic screening effect can occur 
[16–21]. This is in particular the case of structures that are based on the coupling between Fabry–Perot resonators forming 
an array or grating [22]. Under the conditions of finite impedance ratio between the fluid and the solid, the transmission 
of an acoustic wave through a periodically perforated plate shows a series of resonances and antiresonances that permit 
to create, at normal incidence, an acoustic blocking effect, thus breaking the conventional mass-density law for walls. The 
mass-density law states that the amplitude transmittance for a solid panel in the air is proportional to the inverse of the 
product ρt , where ρ and t are the density and the thickness of the solid panel, respectively [23]. Although the idea of using 
periodically perforated plates with subwavelength apertures can be applied to prohibit propagation over a rather broadband 
frequency range, using resonant cavities for waves coming from different directions of incidence may still limit the operating 
angular frequency bandwidth.

In this paper, we theoretically and experimentally investigate the effect of diffraction on acoustic opacity when ultrasonic 
waves impinge the phononic plate for different angles of incidence. Indeed, in addition to being resonators, apertures when 
forming a periodic array also act as a diffraction grating [24,25]. Ultrasonic measurements were carried out and compared 
to a finite element model (FEM) implemented with Comsol Multiphysics. The experimental results show an attenuation 
bandwidth that is maintained up to 45◦ incidence, but that is closed by diffraction. Simple analytical calculations based on 
the grating law confirm this explanation.

2. Methods

The considered phononic plate is constituted of a 180 × 165 mm2 aluminum plate, perforated with a periodic array of 
slits. The plate thickness is t = 5 mm, and there are 33 slits separated by a pitch, or lattice constant, a = t = 5 mm. The slits 
are d = 0.17 a = 0.85 mm wide and 150 mm tall. Ultrasonic experiments were conducted in a water tank at frequencies of a 
few hundreds of kilohertz. In order to cover a wide frequency range, chirped ultrasonic pulses were generated by a 25-mm-
diameter immersion transducer. We used an Imasonic transducer as the transmitter and a Precision Acoustics hydrophone 
as the receiver. The angles of incidence and of transmission are defined with respect to an axis oriented normally to the 
plate and passing by the center of the slit array. Both the transducer and the hydrophone can be rotated in the XY plane, 
as presented schematically in Fig. 1a.

In what follows, we shall compare the transmission of an ultrasonic pulse, with a center frequency of 200 kHz, through 
the phononic plate for three angles of incidence: at normal incidence θi = 0◦ , at θi = 30◦ , and at θi = 45◦ . Thus, for each 
incident position of the transducer, the hydrophone measures the complete temporal signal for each rotation angle it is 
given, from θtr = −60◦ to +60◦ with a step of 4◦ . For each measurement configuration, the discrete Fourier transform of an 
average of 31 temporal measurements is computed in order to estimate a transmission spectrum. Then, the different spectra 
are combined to present the transmission information as a function of frequency and receiving angle θtr . In Fig. 2, the radial 
axis measures frequencies, and the spectral transmission modulus is represented by using a colorbar. In the following, the 
directional transmission spectrum for a homogeneous plate will be compared to various spectra obtained with the phononic 
plate at different angles of incidence.

3. Experimental results and discussion

In this section, we present the experimental results corresponding to the setup presented above, by distinguishing the 
cases of normal and oblique incidence. In the normal incidence case, θi = 0◦ , Fig. 2 shows a comparison between transmis-
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Fig. 1. (a) Schematic of the experimental set-up used for the directional characterization of the phononic plate. The dotted arrows represent the incident 
direction, making angle θi with respect to the normal to the plate. Transmission angles are also defined with respect to the same axis. (b) Experimental 
directional spectrum obtained for normal incidence (θi = 0◦) and normal transmission (θtr = 0◦).

Fig. 2. Angular spectrograms obtained experimentally for normal incidence, for (a) a homogeneous aluminum plate and (b) the phononic plate.

sion spectra obtained with a homogeneous aluminum plate and with the phononic plate. We observe that the direction of 
propagation of the incident wave is not significantly modified in both cases, since we detect a signal transmitted around 
the receiving angle θtr = 0◦ . Hence, there is no noticeable scattering or diffraction in the case of normal incidence. The 
difference between the two systems is mainly seen in the attenuation spectrum that follows the classical mass density law 
for the homogeneous plate, whereas the phononic plate produces an attenuation range extending from around 150 kHz 
to 200 kHz. In order to confirm these observations, we compare in Fig. 3 the transmission spectra for the homogeneous 
and the phononic plate as extracted from these measurements in the direction of normal transmission. For the phononic 
plate, we further compare with the transmission computed by FEM. In the numerical study, we obviously tried to use the 
same geometrical parameters as those of the experiment. Due to the one-dimensional periodicity of the phononic plate, 
we carried out the simulation on a unit-cell by applying periodic boundary conditions. Specifically, we assume a time har-
monic dependence of the form e−iωt . The plate domain, made of aluminum, is modeled as an elastic medium using Lamé’s 
equations [26]. In the fluid, sound waves are governed by the following equation for the differential pressure p

∇ ·
(
ρ−1∇p

)
+ ω2

ρc2
p = 0 (1)

where ρ is the mass density of the fluid, c is the sound speed in water, and ω is the angular frequency of the acoustic 
pressure wave. The harmonic acoustic pressure in water at the surface of the solid acts as a boundary load in the two-
dimensional solid, in order to ensure continuity of pressure through the interface. The finite element model calculates the 
harmonic displacements and stresses in the solid, using frequency response analysis, and then uses the normal accelera-
tion at the solid surface as a boundary condition for the acoustic domain. The considered physical properties are listed 
in Table 1. It can be observed that the measured shape of transmission agrees well with the simulation result, with the 
noticeable occurrence of resonances at frequencies 120 kHz and 230 kHz, as apparent in Fig. 3.

We now consider ultrasonic waves that are incident on the phononic plate with an incident angle of 30◦ . We observe, 
in the directional transmission spectrum of Fig. 4a, that the attenuation frequency band is roughly maintained. Indeed, 
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Table 1
Material properties considered for numerical simulations. cl and 
ct are the longitudinal and shear velocities, respectively.

Material Density (kg/m3) cl (m/s) ct (m/s)

Aluminum 2700 6420 3040
Water 1000 1480 −

Fig. 3. Measured transmission spectra for the homogeneous aluminum plate (blue line) and the phononic plate (black line), for normal incidence and normal 
transmission. Numerical simulation with FEM in the case of an infinitely periodic phononic plate is also shown for comparison purposes (red line).

Fig. 4. Angular spectrograms obtained experimentally for the phononic plate, for an angle of incidence of (a) θi = 30◦ and (b) θi = 45◦ . The white lines 
show the frequency localization of the orders of diffraction m = 0 and −1 obtained analytically from the grating law as θm = arcsin( mλ

a + sin θi).

the amplitude around the frequency 175 kHz is greatly reduced, as was the case at normal incidence. We also observe the 
presence of two transmitted plane waves. One of these is such that θtr = θi and is thus the expected undiffracted transmitted 
wave. The second wave we observe, as we argue next, is an order of diffraction of the grating constituted by the periodic 
array of slits. This order of diffraction is clearly apparent in the directional transmission spectra of Fig. 4, extending from 
around 200 kHz to 350 kHz. Besides, it can be seen that the transmission angle for this order of diffraction is dispersive, i.e. 
it depends on frequency.

The experimental results can be simply understood from the grating law applied to the periodic array of slits. Indeed, 
the phononic plate can be considered as a diffraction grating that obeys the law [27,24]:

a(sin(θm) − sin(θi)) = mλ (2)

where m is a relative integer identifying the diffraction order and λ = 2πc/ω is the wavelength in water. Thus, for an angle 
of incidence of 30◦ , and by considering only the −1 and 0 orders of diffraction, we obtain analytically the curves in Fig. 4. 
In Fig. 4a, in the angular range θtr = [−60◦ : +60◦], we can observe the m = 0 order of diffraction for which θm = θi for all 
frequencies. The m = −1 order of diffraction is in contrast dispersive since sin(θtr) = sin(θ−1) = sin(θi) − λ

a . From the grating 
law, it can be observed that there is an onset frequency starting from which the order of diffraction becomes propagating. 
This onset frequency is

ωm = 2πc

a

1

1 − m sin θi
(3)

For θi = 45◦ , the onset frequency for m = −1 is about 200 kHz, which is still above the target acoustic shielding frequency 
range. Correspondingly, we notice in the experimental spectrogram of Fig. 4a that attenuation is maintained around 175 kHz. 
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Fig. 5. Frequency dependence of the propagation angle for order of diffraction m = −1 for θi = 15◦ (black line), θi = 30◦ (blue line), and θi = 45◦ (red line).

This is not the case for the angle of incidence θi = 45◦ , as can be seen in Fig. 4b. Actually, the m = −1 diffraction order 
becomes propagating around this frequency and the acoustic shielding frequency range is affected. Based on the grating law, 
we show in Fig. 5 the frequency dependence of the propagation angle for order of diffraction m = −1, for different angles 
of incidence. For θi = 45◦ , diffraction starts at 175 kHz, which is about the center of the attenuation frequency band.

4. Conclusion

In summary, we have demonstrated experimentally that diffraction can strongly limit the omnidirectional character of 
ultrasonic screening in the case of a phononic plate composed of a periodic array of sub-wavelength resonant slits. We 
have obtained transmission extinctions up to 20 dB, with a relative bandwidth of 15%, up to an angle of incidence of 45◦ . 
Above this value, however, acoustic shielding appears to be degraded. We have shown that this degradation results from 
the m = −1 order of diffraction becoming propagating in the frequency range of interest. Because the onset frequency for 
a particular order of diffraction is chiefly determined by periodicity at the interface between solid and water, irrespective 
of the resonant frequency of the slits, it should be possible to design a phononic plate exhibiting omnidirectional acoustic 
screening. For instance, filling the slits with a different fluid in order to shift down the resonance frequency could provide 
a solution. Overcoming the diffraction limitation to acoustic screening may enable a much wider range of applications, 
particularly for underwater acoustics and ultrasonics.
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