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In this paper, we have obtained exact analytical solutions for the bound states of a 
graphene Dirac electron in magnetic fields with various q-parameters under an electrostatic 
potential. In order to solve the time-independent Dirac–Weyl equation, the Nikoforov–
Uvarov (NU) and Frobenius methods have been used. We have also investigated the 
thermodynamic properties by using the Hurwitz zeta function method for one of the states. 
Finally, some of the numerical results are also shown.
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1. Introduction

Graphene is a two-dimensional layer of graphite, which has received an enormous attention as it is expected to be an 
appropriate material for developing electronic devices [1–3]. In fact, there is a great challenge in the design of electronic 
devices. This challenge is in confining electrons in graphene. Since Dirac electrons cannot be confined in graphene by 
electrostatic potentials due to the Klein paradox, it was suggested that magnetic confinement should be considered [4–10].

Recently, a series of studies concerning the interaction of graphene electrons moving in magnetic fields perpendicular 
to the graphene surface [11–13] and/or including electrostatic fields parallel to the surface [14] have been carried out in 
order to find a way for confining the charges. In all these works, the Dirac–Weyl equation is considered for studying the 
electrons in graphene. These studies concluded that the charged massless carriers can be confined by appropriate electric 
and magnetic barriers, but only a limited number of examples have been considered. On the other hand, no experiments 
have been reported as yet, and we believe that it is because such field configurations are not easy to implement in the lab-
oratory. However, different configurations of electric and magnetic fields have different effects. Further, under the combined 
effects of electric and magnetic fields, they may be used as near-linearly-controlled frequency filters or switches through 
appropriate designs [15]. For example, the graphene samples are mechanically cut into suitable shapes [16], and suitable 
magnetic fields and electric fields are employed through gates with suitable size to overcome the Klein effect, making them 
possible building blocks of nanoelectronic devices.

In this paper, we are going to obtain the exact analytical solutions of the Dirac–Weyl equation in the presence of both 
electric and magnetic fields with various q-parameters. We will use the Nikoforov–Uvarov and the Frobenius methods. Thus, 
we calculate some of the thermodynamic physical quantities for the final state. We also use the Hurwitz zeta function 
method for the calculation of the partition function.
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2. Theory

The effective Hamiltonian around Dirac points have the form H = ±h̄υF σ · (−ih̄∇), where σ = (σx, σy) are the Pauli 
matrices and υF ≈ 0.86 × 106 m/s is the Fermi velocity in graphene, and the +(−) sign corresponds to the approximation 
that the wave vector k is near the Dirac points which are labeled as K (K ′). Now, we are going to consider a Dirac electron 
moving in graphene under electric and magnetic fields acting toward the x–y plane of graphene. Under these circumstances, 
the low-energy spectrum is correctly described by the Dirac–Weyle equation for massless particle around the K -Dirac point 
in the Brillouin zone, which is given by:

h̄υF

[
σ ·

(
p + e

c
A

)]
ψ(x, y) = (

E − U (x)
)
ψ(x, y) (1)

2.1. First magnetic potential

Firstly, by choosing the vector potential as A(x) = (0, B0 coshq(δx) exp(−δx), 0), the electric potential as U (x) = U0, 
splitting the 2-spinor into its sublattice parts ψ(x, y) = eiky(ψA, iψB)T and using a new variable s = exp(−δx) that maps 
x ∈ (0, ∞) to s ∈ (0, ∞), we obtain the second-order differential equation satisfying the radial wave function ψB (s) as:[

d2

ds2
+ 1

s

d

ds
+ 1

s2

(−η2s2 + β2s − ε2)]ψB(s) = 0(
ψB(0) = 0,ψB(∞) = 0

) (2)

where

η2 = eB0q2

4ch̄4q2δ2
, β2 = − eB0

4ch̄qδ

(
1 + 1

δ
+ 1

4δ

)

ε2 = − 1

4q2δ2

((
(E − U0)

2

h̄2υ2
F

)2

− k2 − 3eB0

4ch̄

) (3)

where δ and q > 0 are the screening and real parameters, respectively, and B0 corresponds to a constant magnetic field 
along the z direction, which is perpendicular to the graphene plane. In this calculation, we applied the deformed hyperbolic 
functions introduced for the first time by Arai [17]. Now, we use the NU method [18] and the parametric NU derived in 
[19] to obtain the following energy-spectrum equation:

β2 = 2(2n + 1 + ε)η (4)

where the constant parameters used in our calculations have been displayed in Table 1 [20]. As a reminder, the NU method 
has been shown in Appendix A. Using Eqs. (3) and (4), we finally arrive at the following transcendental energy formula,

E(k) = sgn(n)

√
h̄2υ2

F

(−[a1n + a2]2 + a3eB0 + k2
)1/2 + U0

a1 = 4δq, a2 = 2qδ

(
δ + 5

4

)
, a3 = 3

4ch̄

(5)

where n > 0 is for the positive energy band and n < 0 is for the negative energy band. Using Eq. (38) in [19] and Table 1 
[20], we obtain the corresponding radial wave function ψB(x) as

ψB(x) = Cn,mx|ε|e−ηx2/2 F
(−n, |ε| + 1;ηx2) (6)

where Cn,m is a constant and

F (−n, γ , z) =
n∑

j=0

(−1) jn!Γ (γ )

(n − j)! j!Γ (γ + j)
z j (7)

is the Kummer confluent hypergeometric function [21]. Now, we write Eq. (7) in terms of Laguerre polynomials as follows: 
Ln

n(x) = Γ (n+ς+1)
n!Γ (ς+1)

F (−n, ς + 1, x), and considering Eqs. (6) and (3) to obtain the radial wave functions. Thus, we have:

ψB(x) = Cn,mx|ε|e−ηx2/2 n!Γ (2|ε| + 1
2 )

Γ (n + 2|ε| + 1
2 )

L
2|ε|− 1

2
n

(
ηx2) (8)

To calculate the normalization constant Cn,m in closed form, we use the normalization condition: 
∫ ∞

0 |ψB(r)|2dr = 1. There-
fore, we have:
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C−2
n,m =

[
n!Γ (2|ε| + 1

2 )

Γ (n + 2|ε| + 1
2 )

]2

×
∞∫

0

x4|ε|e−ηx2[
L|ε|

n
(
ηx2)]2

d
(
ηx2) (9)

Now, we use the integral formula 
∫ ∞

0 xα−1 exp(−λx)Lβ
m(λx)Lγ

n (λx)dx for the calculation of the normalization constant of the 
radial wave function. Thus, we obtain the normalization constant as follows:

Cn,m =
( −24|ε|+1Γ (n + 2|ε| + 1/2)η2|ε|+1

Γ (n + 4|ε| + 1)Γ (n − 1/2)3 F2(−n,2|ε| + 1,3/2;−n + 3/2,2|ε| + 1/2;1)

) 1
2

(10)

where F2(a, b, c; d, e; 1) is defined as the Barnes extended hypergeometric function [21]. Finally, we obtain the normalized 
radial wave function as:

ψB(x) =
√

η

3 F2(−n,2|ε| + 1,3/2;−n + 3/2,2|ε| + 1/2;1)

×
[ −1

((−n + 3/2)δ(n + 2|ε| − 1/2)(−n − 2|ε| − 3/2)δ−1(2|ε| + 1))

] 1
2

(11)

× n!(−ηx2)|ε|
exp

(
−ηx2

2

)
L2|ε|−1/2

n
(−ηx2)

and (a)δ is the Pochhammer symbol in the theory of the special function, defined as (a)δ = Γ (a + δ)/Γ (a).

2.2. Second magnetic potential

Secondly, by choosing the vector potential as �A = (0, {B0 exp(−2δx)/[1 + q exp(−2δx)]}, 0), where δ and q > 0 are the 
screening and real parameters, respectively, B0 corresponds to a constant magnetic field along the z direction, which is 
perpendicular to the graphene plane, and the electric potential as U (x) = U0, splitting the 2-spinor into its sublattice parts 
ψ(x, y) = eiky(ψA, iψB)T and using a new variable s = exp(−2δx) that maps x ∈ (0, ∞) to s ∈ (0, ∞), we obtain the second-
order differential equation satisfying the radial wave function ψB(s) of the same Eq. (2) with

η2 = −
[(

(E − U0)
2

h̄2υ2
F

)2

− k2
]

q2 + 2keB0

ch̄
q +

(
eB0

ch̄

)2

β2 = −2δB0e

ch̄
+ 2

[
(E − U0)

2

h̄2υ2
F

]2

− 2k2 − 2keB0

ch̄
, ε2 = −

[
(E − U0)

2

h̄2υ2
F

]2

+ k2

(12)

Now, to avoid repetitions in our solution, we finally arrive at the following transcendental energy formula for this state,

−D(δ + k) − ξ = [2n + 1 + ξ ]
√

ξq2 + 2kDq + D2

D = eB0

ch̄
, ξ =

[
−

(
(E − U0)

2

h̄2υ2
F

)2

+ k2
] (13)

and obtain the corresponding radial wave function (Eq. (11)) by substituting the parameters of Eq. (12).

2.3. Third magnetic potential

Thirdly, by choosing the vector potential as �A = (0, [B0 exp(−δx)/x], 0), the electric potential as U (x) = U0, splitting the 
2-spinor into its sublattice parts ψ(x, y) = eiky(ψA, iψB)T and using a new variable s = exp(−2δx) that maps x ∈ (0, ∞) to 
s ∈ (0, ∞), we obtain the second-order differential equation satisfying the radial wave function ψB(s) of the same Eq. (2) by 
substituting the following parameters:

−η2 =
[(

(E − U0)
2

h̄2υ2
F

)2

− k2
]

q2 + 2keB0

ch̄
q +

(
eB0

ch̄

)2

β2 = −2δB0e

ch̄
+ 2

[
(E − U0)

2

h̄2υ2
F

]2

− 2k2 − 2keB0

ch̄
(14)

ε2 = −
[

(E − U0)
2

h̄2υ2
F

]2

+ k2

In here, we used the following approximation as [22]:
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1

r2
≈ 4δ2e−2δr

(1 − qe−2δr)2
→ 1

r
≈ 2δe−δr

1 − qe−2δr
(15)

Now, to avoid repetition, we obtain the energy formula corresponding to this stage,

−D(δ + k) − ξ = [2n + 1 + ξ ]
√

ξq2 + 2kDq + D2,

D = eB0

ch̄
, ξ =

[
k2 −

(
(E − U0)

2

h̄2υ2
F

)2] (16)

and the corresponding radial wave function is obtained by substituting the parameters of Eq. (14) in Eq. (11).

2.4. Fourth magnetic potential

At the end, by choosing the vector potential as �A = (0, [B0x − λ/x], 0), where λ is a constant and B0 corresponds to a 
constant magnetic field along the z direction, which is perpendicular to the plane of graphene, and choosing the electrostatic 
potential as U (x) = U0 and using a new variable χ = √

e|B0|/ch̄x, then after simple calculations, we have

d2ψB(χ)

dχ2
+

{
εk,λch̄

e|B0| + eλ

ch̄

(
eλ

ch̄
− 1

)
1

χ2

+ 2ekλ√
ch̄e|B0|

1

χ
+ 2keB0√

ch̄e|B0|
χ − χ2

}
ψB(χ) = 0

(17)

where εk,λ = (E−U0)2

h̄2υ2
F

− k2 + eB0
ch̄ + 2e2 B0λ

c2h̄2 . Now, we choose the radial component of ψB(χ) as:

ψB(χ) = χ eλ/ch̄ exp

[
−1

2
χ

(
χ − 2kB0

|B0|

√
ch̄

e|B0|
)]

F (χ)

Inserting this ansatz into Eq. (17), we will have:

χ
d2 F (χ)

dχ2
+

[
2

eλ

ch̄
+ 2keB0√

ch̄e|B0|
χ − 2χ2

]
dF (χ)

dχ

+
[(

1 + B0

|B0|
)

2ekλ√
ch̄e|B0|

+
(

εk,λch̄

e|B0| + keB0

2
√

ch̄e|B0|
− 2

(
eλ

ch̄
+ 1

)
− B0

|B0|
)
χ

]
F (χ) = 0

(18)

Equation (18) is the biconfluent Heun’s differential equation [23], whose solution is the so-called biconfluent Heun (BCH) 
function, HB:

F (χ) = HB

(
2

eλ

ch̄
− 1,

2keB0√
ch̄e|B0|

,
εk,λch̄

e|B0| + ek2 B2
0

ch̄|B0| − B0

|B0| ,
4ekλ√
ch̄e|B0|

,−χ

)
(19)

Also, after substituting ψA(χ) with ψA(χ) = χ(eλ/ch̄)+1 exp{−χ [χ − (2kB0/|B0|)
√

ch̄/e|B0|]/2}H(χ), we obtain:

H(χ) = HB

(
2

eλ

ch̄
+ 1,

2keB0√
ch̄e|B0|

,
εk,λch̄

e|B0| + ek2 B2
0

ch̄|B0| + B0

|B0| ,
4ekλ√
ch̄e|B0|

,−χ

)
(20)

We can calculate the probability density for an eigenfunction ρn(x) = ψ+
n (x, y)ψn(x, y) = ψ2

A(x) + ψ2
B(x), and the current 

density in the y direction for this eigenfunction jn(x) = eυFψ
+
n (x, y)σyψn(x, y) = 2eυFψA(x)ψB(x) [24]. Also, we can calcu-

late the local density of state using the representation N = ∑
n,m |ψn,m(r)|2δ(E − En,m) [25].

But we would like that to follow the analyses drawn from Eq. (19). To accomplish this, we define the constants A, B , D , 
and the function G representing F as follows:⎧⎪⎪⎨

⎪⎪⎩
A = eλ

ch̄
, B = 1 + B0

|B0| , if G = F

D = εk,λch̄

e|B0| + keB0

2
√

ch̄e|B0|
− 2

(
eλ

ch̄
+ 1

)
− B0

|B0| , if G = F
(21)

Now, by making use of these definitions, Eq. (18) be as
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χ
d2G(χ)

dχ2
+

[
2A + 2keB0

ch̄

√
ch̄

e|B0|χ − 2χ2
]

dG(χ)

dχ

+
[

B
2ekλ

ch̄

√
ch̄

e|B0| + Dχ

]
G(χ) = 0

(22)

Now, we substitute G(χ) = ∑
n Cnχ

n in Eq. (22) and use the Frobenius method; then we can simply obtain the recurrence 
relation as follows:

Cn+2 = −1

(n + 2)(n + 2A + 1)

{[
2k[eλB + B0(n + 1)]√

ch̄e|B0|
]

Cn+1 + (D − 2n)Cn

}

C1 = − ekλB

A
√

ch̄e|B0|
C0

(23)

By using Eq. (23), and assuming that C0 = 1, the first three coefficients of the expansion are as follows:

C2 = 1

2(2A + 1)

[
2k2 Bλ

A

(
(eλB + B0)

ch̄|B0|
)

− D

]

C3 = −1

6(A + 1)

{
k(Beλ + 2B0)

(2A + 1)
√

ch̄e|B0|
×

[
D − 2k2 Bλ

A

(
(eλB + B0)

ch̄|B0|
)]

+ Bekλ

A
√

ch̄e|B0|
(D − 2)

} (24)

At this point, we can obtain an analytical solution to the radial equation by breaking the series expansion of the biconfluent 
Heun function into a Heun polynomial of degree n. By imposing the two conditions Cn+1 = 0 and D = 2n with (n =
1, 2, 3, . . .) on the coefficients, this can be achieved. From the condition D = 2n, it is possible we obtain a formal expression 
for the energy. However, the biconfluent Heun series becomes a polynomial of degree n when [26,27]

εk,λch̄

e|B0| + 1

4

(
2kB0

|B0|
)2 ch̄

e|B0| = 2n + 2 −
(

1 + 4
eλ

ch̄

(
eλ

ch̄
− 1

))1/2

(25)

with (n = 1, 2, 3 . . .). Finally, we can obtain the energy spectrum from Eq. (25) as follows:

En = sgn(n)

√√√√2υ2
F h̄e|B0|

c

[
n + 1

2
−

√
1 + 4

eλ

ch̄

(
eλ

ch̄
− 1

)/
2 − eλ

ch̄

]
+ U0 (26)

where n > 0 corresponds to electron-like Landau level energy and n < 0 corresponds to hole-like Landau level energy. There 
is a single Landau level exactly at E = 0, corresponding to n = 0, as a result of chiral symmetry and particle–hole symmetry. 
Now, for U0 = 0, λ = 0 and h̄ = c = 1, we have En = ±υF

√
2e|B0|n, which is the known expression giving the relativistic 

Landau levels for massless fermions in the presence of a constant orthogonal magnetic field.
Let us study only the thermodynamical properties for the above case. In fact, we can use the energetic spectrum formula 

(26) to study the thermodynamics properties of such a system in the presence and the absence of a magnetic field. Here, we 
assume that the electrostatic potential is zero. Having calculated the energy, we can immediately obtain the thermodynami-
cal quantities of the system in a systematic manner. The thermodynamics properties of graphene and graphene nanoribbons 
have been studied under electric and magnetic modulations from the theoretical and experimental viewpoints (see [28–32]). 
In order to obtain all thermodynamic quantities of the pseudo-relativistic electrons system, we should concentrate, at first, 
on the calculation of the partition function Z . The partition function Z at temperature T is obtained through the Boltzmann 
factor as Z = ∑∞

n=0 e−(En−E0)β , where β = 1/kBT , kB is the Boltzmann constant [33], and E0 is the ground state energy 
correspondent to n = 0. The partition function Z of this problem at temperature T is obtained as [34]:

Z = exp

(
βυF

√√√√2h̄e|B0|
c

[
1

2
−

√
1 + 4

eλ

ch̄

(
eλ

ch̄
− 1

)/
2 − eλ

ch̄

])

×
n∑

n=0

exp

(
−βυF

√√√√2h̄e|B0|
c

[
n + 1

2
−

√
1 + 4

eλ

ch̄

(
eλ

ch̄
− 1

)/
2 − eλ

ch̄

]) (27)

Since exp(βυF

√
2h̄e|B0|

c [ 1
2 −

√
1 + 4 eλ

ch̄ ( eλ
ch̄ − 1)/2 − eλ

ch̄ ]) ≈ 1, the partition function Z can therefore be written as:

Z =
n∑

exp

(
−βυF

√√√√2h̄e|B0|
c

[
n + 1

2
−

√
1 + 4

eλ

ch̄

(
eλ

ch̄
− 1

)/
2 − eλ

ch̄

])
(28)
n=0
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We assumed that the electrostatic potential is zero in this case. In order to cover all the temperature range, we use the 
Hurwitz zeta function method. Now, by using the formula [35,36]

e−x = 1

2π i

∫
C

dsx−sΓ (s), (29)

Eq. (28) is transformed into

∑
n

e
(−βυF

√
2h̄e|B0 |

c [n+ 1
2 −

√
1+4 eλ

ch̄ ( eλ
ch̄ −1)/2− eλ

ch̄ ])

= 1

2π i

∫
C

ds

(
βυF

√
2h̄e|B0|

c

)−s

×
∑

n

[
n + c(1 − √

1 + 4(eλ/ch̄)[(eλ/ch̄) − 1] − (eλ/ch̄))

4h̄e|B0|
]−s/2

Γ (s)

= 1

2π i

∫
C

ds

(
βυF

√
2h̄e|B0|

c

)−s

× ζH

(
s

2
,

c(1 − √
1 + 4(eλ/ch̄)[(eλ/ch̄) − 1] − (eλ/ch̄))

4h̄e|B0|
)

Γ (s)

(30)

where x = βυF

√
2h̄e|B0|

c [n + 1
2 −

√
1 + 4 eλ

ch̄ ( eλ
ch̄ − 1)/2 − eλ

ch̄ ], Γ (s) is the Euler function and

ζH( s
2 , c(1−√

1+4(eλ/ch̄)[(eλ/ch̄)−1]−(eλ/ch̄))

4h̄e|B0| ) is the Hurwitz zeta function. The Hurwitz zeta function ζH [37] is as follows:

ζH (s,α) =
∞∑

n=0

1

(n + α)s
(31)

where 0 < α ≤ 1 is a well-defined series when �e(s) > 1, and can be analytically continued to the whole complex plane 
with one singularity, a simple pole with residue 1 at s = 1. An integral representation of the Hurwitz zeta function is:

ζH(s,α) = 1

Γ (s)

∞∫
0

ts−1 e−tα

1 − e−t
dt, �(s) > 1, �(α) > 0 (32)

The properties of the Hurwitz zeta function ζH(s, α) are as follows [37,38]:

ζH(0,α) = 1

2
− α (33)

ζH(−p,α) = B p+1(α)

p + 1
, p ∈ N (34)

where Br(α) being the Bernoulli polynomials. The asymptotic series corresponding to the Hurwitz zeta function is as:

ζH(1 + z,α) = 1

2
α−z + 1

2
α−1−z + 1

z

∞∑
i=2

BiΓ (z + i)

Γ (z)
α−z−i (35)

with Bi are Bernoulli’s numbers.
The Hurwitz zeta function ζH(s, α) has only singularity—namely a simple pole at s = 1 with residue 1. It can be analyti-

cally continued to the rest of the complex s-plane. Now, for the two poles s = 0 and s = 2, we apply the residues theorem. 
Therefore, the desired partition function is written as:

Z = ϑ/β2υ4
F + ζH (0,ϑ), ϑ =

[
c(1 − √

1 + 4(eλ/ch̄)[(eλ/ch̄) − 1] − (eλ/ch̄))

4h̄e|B0|
]

(36)

Finally, the final partition function can be written by using Eq. (33) as:

Z = ϑ

(
1

β2υ4
− 1

)
+ 1

2
(37)
F
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Fig. 1. Partition function as a function of T for various values of B0.

Fig. 2. Partition function as a function of B for various values of λ.

In Figs. 1 and 2, we show the dependence of the partition function Z of the graphene as a function of T with various values 
of B0 and λ. In fact, this clearly illustrates that the results calculated by the analytical expression for the partition function 
decrease with increasing temperature. Extending the calculated partition function to an interaction-free N-body system can 
be done via Z = Z N . The dependence on N and on volume comes via the dependence on the energy eigenvalues En .

The thermodynamical properties of the system can be obtained from the partition function [34]. In fact, any other 
parameter that might contribute to the energy should also appear in the argument of Z [34], as in the Helmholtz free 
energy F , which is alternatively defined as F = − ln(Z)/β:

F = − ln

{
ϑ

(
1

β2υ4
F

− 1

)
+ 1

2

}/
β (38)

In Fig. 3, we show the dependence of the Helmholtz free energy F function as a function of the T with λ =
(0.00, 1.00, 2.00, 3.00, 4.00). In fact, this clearly illustrates that the results calculated by the analytical expression for the 
Helmholtz free energy function increase with increasing temperature. And the mean energy is:

U = 2ϑ/β3υ4
F

{
ϑ

(
1

β2υ4
F

− 1

)
+ 1

2

}
(39)

Here, the vibrational entropy S that is as S = −∂ F/∂T or
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Fig. 3. Helmholtz free-energy function as a function of T for various values of λ.

Fig. 4. Mean energy function as a function of T for various values of λ.

S = kB ln(Z) − kBβ
∂

∂β
ln(Z)

= kB ln

{
ϑ

(
1

β2υ4
F

− 1

)
+ 1

2

}
− 2ϑ

/
β3υ4

F

{
ϑ

(
1

β2υ4
F

− 1

)
+ 1

2

} (40)

In Figs. 4, we show the dependence of the Helmholtz free energy F function as a function of T with λ. In fact, this clearly 
illustrates that the results calculated by the analytical expression for the entropy increase with increasing temperature. And 
the specific heat can be found as C = ∂U/∂T or

C = −kBβ2 ∂U

∂β
= −4kBϑ

(
ϑ

[
1 − 3β2υ4

F

] + 3β2υ4
F

2

)/(
ϑ

[
1 − β2υ4

F

] + β2υ4
F

2

)2

(41)

Also, with the energy spectrum specified or the partition function, and using the Gibbs statistics, the thermodynamic po-
tential for the electrons, Ωe, and the holes, Ωh, as

Ωe = − kBT

π�2

[
2

∞∑
ln

{
1 +

(
ϑ

(
1

β2υ2
− 1

)
+ 1

2

)
.eμ

}
+ ln

(
1 + exp(μ/kBT )

)]
(42)
B F
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and Ωh = (−μ, T ), we can calculate the quantum capacitance of the graphene quantum dot placed in the magnetic field by 
using Eqs. (2) and (4) and the method given in Ref. [39] with Eq. (42), and the total charge density Q = e(N − P ). Finally, 
using the above equations, we can easily find other thermodynamic quantities.

3. Conclusion

Exact solutions of the Dirac–Weyl equation in the presence of both electric and magnetic fields with various q-parameters 
were obtained by using the Nikoforov–Uvarov and Frobenius methods analytically. In addition, we calculated some of the 
thermodynamic physical quantities for the final state. We also used from the Hurwitz zeta function method for the calcula-
tion of the partition function.

Appendix A. Nikoforov–Uvarov method

We give a brief description of the conventional NU method [18]. This method is based on solving the second-order 
differential equation of hypergeometric type by means of special orthogonal functions

ψ ′′
n (s) + τ̃ (s)

σ (s)
ψ ′

n(s) + σ̃ (s)

σ 2(s)
ψn(s) = 0 (A.1)

where σ(s) and σ̃ (s) are polynomials of degree at most 2, and τ̃ (s) is a polynomials of degree at most 1. If we take the 
following factorization ψn(s) = φ(s)yn(s), (A.1) becomes:

σ(s)y′′
n(s) + τ (s)y′

n(s) + λyn(s) = 0 (A.2)

where

π(s) = σ(s)
d

ds

(
lnϕ(s)

)
(A.3)

τ (s) = τ̃ (s) + 2π(s), τ ′(s) < 0 (A.4)

where π(r) is a polynomial of order at most one.
The yn(s) can be expressed in terms of the Rodrigues relation:

yn(s) = an

ρ(s)

dn

dsn

[
σ n(s)ρ(s)

]
(A.5)

where an is a normalization constant and the weight function ρ(s) must satisfy the differential equation:

ω′(s) −
(

τ (s)

σ (s)

)
ω(s) = 0, ω(s) = σ(s)ρ(s) (A.6)

The function π(s) and the parameter λ in the above equation are defined as follows:

π(s) = σ ′(s) − τ̃ (s)

2
±

√(
σ ′(s) − τ̃ (s)

2

)2

− σ̃ (s) + kσ(s) (A.7)

λ = k + π ′(s) (A.8)

The determination of k is the essential point in the calculation of π(s). It is simply defined by setting the discriminate of 
the square root to zero. Thus, a new eigenvalues equation is:

λ = λn = −nτ ′(s) − n(n − 1)

2
σ ′′(s) n = 0,1,2, . . . (A.9)

For a more simple application of the method, we develop a parametric generalization of the NU method, which is valid for 
any potential under consideration by an appropriate coordinate transformation s = s(r).
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