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The initial assumption of theories with extra dimension is based on the efforts to yield 
a geometrical interpretation of the gravitation field. In this paper, using an infinitesimal 
parallel transportation of a vector, we generalize the obtained results in four dimensions 
to five-dimensional space–time. For this purpose, we first consider the effect of the 
geometrical structure of 4D space–time on a vector in a round trip of a closed path, which 
is basically quoted from chapter three of Ref. [5]. If the vector field is a gravitational field, 
then the required round trip will lead us to an equation which is dynamically governed 
by the Riemann tensor. We extend this idea to five-dimensional space–time and derive 
an improved version of Bianchi’s identity. By doing tensor contraction on this identity, we 
obtain field equations in 5D space–time that are compatible with Einstein’s field equations 
in 4D space–time. As an interesting result, we find that when one generalizes the results to 
5D space–time, the new field equations imply a constraint on Ricci scalar equations, which 
might be containing a new physical insight.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The idea of the existence of higher-dimensional space–times has a long history. It has been founded by Kaluza [1] and 
Klein [2,3] in the 1920s, as they were trying to unify the gravitational and electromagnetic interactions by assuming a 
five-dimensional space–time (5D). A new version of the idea of Kaluza and Klein appeared later, around the 1970s, which 
is still considered by the majority of the physics community to be the best hope for a completed unified theory of all 
fundamental interactions [4], despite growing opposition against extra-dimensional theories.

All methods about unification are based on the fact that the Riemannian geometry in general relativity can be generalized 
to higher dimensions without implying any constraint on the gravitational field. In other word, as we will discuss in this 
paper, the antisymmetric nature of Riemann’s tensor and the Bianchi identity as a constraint on Riemann’s tensor are 
implied when we consider two and three spatial dimensions of space–time. But no one is concerned by any constraint on 
gravitational field equations when four or more spatial dimensions of space–time are considered!

In this paper, by following the geometrical approach described in Ref. [5] and using the concept of parallel transport [6]
in five dimensional space–time, we get a new second-order differential identity for the Riemann tensor. As we will see 
by doing contractions on the new identity, we can define the gravitational field equations in 5D space–time, which is 
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compatible with Einstein’s field equations in 4D space–time. Also we will prove that in order to convert the new 5D field 
equations to Einsteins’s field equations that are supposed to be correct in all extra-dimensional spaces, the d’Alembertian of 
5D Ricci scalar R should be zero (�R = 0).

The organization of this paper is as follows. In section 2, the geometry of curved space is reviewed. Bianchi identities 
in five dimensional space are obtained in Section 3. In section 4, we will generalize the parallel transportation of a vector 
in a four-dimensional space–time to a five-dimensional one. We will see that this leads us to a new identity. By using this 
identity, the new 5D gravitational equation is derived. We give finally our conclusion in section 5.

2. An overview of the geometrical features of a curved space

Riemannian geometry rests essentially on the consequences derived from the displacement element ds in which the 
related metric tensor is appeared as it follows

ds2 = gμνdxμdxν, μ,ν = 0,1,2,3 (1)

Riemannian geometry requires a symmetric linear connection coefficient, �, in which the infinitesimal parallel transport 
of a vector always preserves the length of the vector. These coefficients have been called Christoffel symbols and defined 
by [7]:

�λ
μν = 1

2
gλσ

(
∂μgνσ + ∂νgσμ − ∂σ gμν

)
(2)

The Christoffel symbols are used to determine the parallel transport of vector Aμ:

Aμ → Aμ + �λ
μνdxλ Aν (3)

where dx is related to the vector displacement of Aμ . The Christoffel symbols measure the curvature of the coordinate axes. 
The covariant derivative is then defined as:

Dμ Aν = ∂μ Aν + �ν
μλ Aλ (4)

This derivative results from the comparison of a vector at coordinate x with its parallel transformed one at x + dx. The 
equations that are written in terms of the covariant derivatives preserve their physical properties under gauge transforma-
tions.

The curvature of a manifold manifests itself when a vector is transported parallel around a closed path. By displacement 
around an infinitesimal square loop with elements dx and dy which is plotted in Fig. 1, the difference between the initial 
gauge field vector Aμ and the transported vector A′ μ , using the Taylor expansion, is given by [5,8]:

�Aμ = A′ μ − Aμ = − [Dσ , Dλ]μρ Aρdxσ dyλ = Rμ
ρσλ Aρ�Sσλ (5)

where �Sσλ represents the area of the performed rectangle, and the curvature tensor Rμ
ρσλ is given by

Rμ
ρσλ = ∂σ �

μ
λρ − ∂λ�

μ
σρ + �

μ
σν�ν

λρ − �
μ
λν�ν

σρ (6)

So �Aμ is non-zero if and only if the space is intrinsically curved. Now if A′ μ moves in the opposite direction along the 
path to reach the point where Aμ exists, we are expecting the difference between Aμ and A′′ μ to be zero, i.e.(

Rμ
ρσλ + Rμ

ρλσ

)
Aρ�Sσλ = 0 (7)

This leads to an anti-symmetric nature of the curvature tensor, which is confirmed by Eq. (6) [7]:

Rμ
ρσλ = −Rμ

ρλσ (8)

This is the first property of the curvature tensor. This tensor is called the Riemann tensor.
We now consider a 3-dimensional closed path and transport the vector Aμ through the path. The path consists of circuits 

round the top and bottom face of the box with elements dx and dy, which are connected by another element of the cube 
with length dz (see the right panel of Fig. 1). By moving the vector from the starting point and transport it around the 
closed path, the vector will be changed by [8]:

�Aμ = (
Dρ Rμ

νσλ

)
Aν�V σλρ (9)

where �V σλν = dxσ dyλdzν is the volume of the box. The concerned cube contains clearly another two similar circuits 
enclosing the two other pairs of faces. If we transport the vector along these two paths, the following result for the new 
transported vector is obtained [5]:

�A′ μ =
(

Dρ Rμ
νσλ + Dσ Rμ

νλρ + DλRμ
νρσ

)
Aν�V σλρ (10)
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Fig. 1. Two- and three-dimensional closed paths. These two figures have been taken from Ref. [5].

Obviously, the total path traverses each side of the box as many times in one direction as the opposite one, so the path is 
equivalent to its own reverse, and consequently the vector Aμ would not be changed, and so �A′μ = 0, and hence [5]

DλRρσμν + Dρ Rσλμν + Dσ Rλρμν = 0 (11)

This is known as the Bianchi identity. This constraint is related to the features of the Riemann tensor, which was obtained 
just by considering the geometrical feature of space–time.

3. Bianchi identity in five-dimensional space–time

We are now going to generalize the method employed in the previous section to five-dimensional (5D) space–time. For 
simplicity, we make the new extra-dimension non-compact, like the other three spatial dimensions. Since we are concerned 
about the very small hyper-volume of space, the result can be generalized to a space with higher dimensions. Therefore, the 
new metric tensor in 5D metric is given by:

ds2 = gμνdxμdxν, μ,ν = 0,1,2,3,4 (12)

The functional form of the covariant derivative will not be changed, and is:

Dμ Aν = ∂μ Aν + �ν
μλ Aλ, μ,ν,λ = 0,1,2,3,4 (13)

The four-dimensional analog of the cube in space coordinates is a tesseract, which consists of 8 cubical cells. So for our 
closed path in 4D, we consider two connected 3D cubical cells, whose extra-dimension is denoted by w . According to what 
we have already done with a three-dimensional cube, for the four-dimensional tesseract we should choose cube pair paths, 
while a transported vector is considered along them. By moving the vector field from the starting point and transport it 
parallel around the closed path, it will be changed into

A′ μ
A = (

1 − dwλDλ

) (
1 − �V ηνρ Dη Rμ

σνρ

) (
1 + dwη Dη

) (
1 − �V ηνρ Dη Rμ

σνρ

)
Aσ

A (14)

After doing some algebra manipulations, we will arrive at

A′ μ
A = (

1 − �T ληνρ DλDη Rμ
σνρ

)
Aσ

A (15)

or

�Aμ = (
Dη Dρ Rμ

νσλ

)
Aν�T σλρη (16)

where �T σλρη is the hyper-volume of the performed box in 5D space–time. A tesseract is comprised of four cube pairs 
paths, so the whole path leads to

Dη DλRρσμν + DλDρ Rσημν + Dρ Dσ Rηλμν + Dσ Dη Rλρμν = 0 (17)

This new identity can be considered as the improved Bianchi identity in 5D space–time. Substituting the Riemann tensor 
into the left-hand side of Eq. (17) automatically confirms its right-hand side (see Appendix A). This confirms the validity of 
the obtained Eq. (17). We try to employ this equation in the next section to achieve the gravitational field equations in 5D 
space–time.

4. Gravitational field equations in five-dimensional space–time

Einstein’s tensor as an outstanding equation in general relativity can be obtained by twice contracting the Bianchi iden-
tity, Eq. (11). So we can write:

giσ g jλ
(

DλRρσ i j + Dρ Rσλi j + Dσ Rλρi j
) = 0

⇒ Di Rρi − Dρ R + D j Rρ j = 0

⇒ Di
(

Rρi − 1
2 Rgiρ

)
= 0

(18)
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where σ , λ, ρ, i, j = 0, 1, 2, 3. The Einstein tensor is then defined by

Gij = Rij − 1

2
gi j R (19)

The Einstein tensor Gij , which is constructed from the Riemann metric and the Ricci tensor, does not have any divergence:

Di Gij = 0 (20)

By considering the conservation law of energy and momentum, i.e.

Di Tij = 0 (21)

we can write

Gij = κ4DTij (22)

or

Rij − gi j
1

2
R = κ4DTij (23)

where κ4D, as the proportional coefficient, is Einstein’s gravitational constant in four-dimensional space–time. Eq. (23) is 
known as Einstein’s field equation, which is the basic equation in theory of general relativity [7].

The general form of Einstein’s field equation can be written as follows:

Rij − gi j
1

2
R + �gi j = κ4DTij (24)

where � is the cosmological constant that is used to justify the expansion of the universe [7].
Let us now apply the contraction to the improved Bianchi identity, Eq. (17), which leads us to (see details of the calcu-

lation in Appendix B):

DμDν

(
Rμν − 1

3
Rgμν

)
= 0, μ,ν = 0,1,2,3,4 (25)

Now, according to the procedure that leads us to the Einstein equation above, we can choose a second-rank tensor that is 
proportional to the bracket term in Eq. (25). The second covariant derivative of this stress tensor should be zero, and we 
call it �μν . Also, in a way similar to the one in Eq. (24), we can add this stress tensor to the concerned second-rank tensor 
in Eq. (25). Therefore, we can write the field equations derived from Eq. (25) as

Rμν − 1

3
Rgμν + �μν = κ5DTμν (26)

where

Dν Dμ�μν = 0 (27)

and κ5D is proportional coefficient that suppose to be a constant. By choosing

�μν = −1

6
Rgμν + �gμν (28)

Eq. (26) will turn into Einstein’s equation in 5D, i.e.

Rμν − 1

2
Rgμν + �gμν = κ5DTμν (29)

But, according to Eq. (27), considering the fact that the covariant derivative of the metric tensor is always zero, the Ricci 
scalar in five-dimensional space–time should now satisfy the following relation:

�5D R = 0 (30)

where �5D stands for the 5D d’Alembertian operator that contains the second covariant derivative (� = DμDμ).
We now say that Eq. (30) can be considered as a constraint on the curvature of 5D space–time when we try to gen-

eralize the 4D Einstein equation to higher dimensions, i.e. Eq. (26). The obtained equation, Eq. (26), with the supposed 
tensor �μν as in Eq. (28), is completely similar to the 4D Einstein field equation. Investigating the general form of the 
assumed second-rank tensor, whose second-order covariant derivative is zero and also satisfies Eq. (26), can be considered 
as an open research area.

In summary, using the improved Bianchi identity, we derive a gravitational field equation that contains the second 
covariant derivatives as in Eq. (25). This equation satisfies automatically the Einstein field equation in 4D space–time. But 
it additionally contains an extra feature, which is related to the constraint, imposed on Ricci’s scalar by Eq. (30). The Ricci 
scalar in 4D space–time is in fact a quantity that provides us with a specified curvature for the universe, but appears as a 
scalar field in 5D space–time, which can describe a universe with a changing curvature. Other features of Eq. (29), which 
obviously contain more information than the Einstein’s equation in 4D space–time, can be considered as a new research 
area in future.
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5. Conclusion

A curved space–time may be defined by measuring the change of a vector when a parallel transport is occurring around 
an infinitesimal closed loop. We began with three-dimensional space–time, where, by transporting a vector around an 
infinitesimal square loop, we could extract the antisymmetric nature of the Riemann tensor. In 4D space–time, the same 
method led us to the Bianchi identity.

A second-order differential identity for the Riemann tensor was obtained as the improved Bianchi identity, when we 
applied parallel transportation to five-dimensional space–time. By doing contractions on the new identity, we could define 
the gravitational field equations in 5D space–time. As we saw, the new 5D field equations that arise from the geometrical 
feature of space–time imply a constraint on Ricci’s scalar. On the other hand, by a proper choice of the stress tensor, we 
arrived at a field equation in 5D space–time whose apparent form is similar to Einstein’s field equation 4D space–time. 
Investigating the features of the new gravitational field, Eq. (29), can be considered as a research task in future.

Appendix A

We intend here to evidence that the improved Bianchi identity, which was obtained by a geometrical interpretation of 
5D space–time, is satisfied by the Riemann tensor. For this purpose, by considering the second-order covariant derivative on 
the Riemann tensor, evaluated in locally inertial coordinates, we can write:

Dη DλRρσμν = ∂η∂λRρσμν = 1

2
∂η∂λ

(
∂μ∂σ gρν − ∂μ∂ρ gνσ − ∂ν∂σ gρμ + ∂ν∂ρ gμσ

)
(31)

One has to notice that using the inertial coordinates does not impose any limitation on our calculations because the 
terms that we are neglecting are all proportional to ∂σ gμν , and therefore automatically vanish [7].

So the four terms in Eq. (17) appear as:

∂η∂λRρσμν = 1
2

(
∂η∂λ∂μ∂σ gρν − ∂η∂λ∂μ∂ρ gνσ − ∂η∂λ∂ν∂σ gρμ + ∂η∂λ∂ν∂ρ gμσ

)
∂λ∂ρ Rσημν = 1

2

(
∂λ∂ρ∂μ∂η gσν − ∂λ∂ρ∂μ∂σ gνη − ∂λ∂ρ∂ν∂η gσμ + ∂λ∂ρ∂ν∂σ gμη

)
∂ρ∂σ Rηλμν = 1

2

(
∂ρ∂σ ∂μ∂λgην − ∂ρ∂σ ∂μ∂η gνλ − ∂ρ∂σ ∂ν∂λgημ + ∂ρ∂σ ∂ν∂η gμλ

)
∂σ ∂η Rλρμν = 1

2

(
∂σ ∂η∂μ∂ρ gλν − ∂σ ∂η∂μ∂λgνρ − ∂σ ∂η∂ν∂ρ gλμ + ∂σ ∂η∂ν∂λgμρ

)
(32)

Therefore, the sum of cyclic permutations of the first four indices in the Riemann tensor lead us to:

Dη DλRρσμν + DλDρ Rσημν + Dρ Dσ Rηλμν + Dσ Dη Rλρμν =
1
2 (∂η∂λ∂μ∂σ gρν − ∂η∂λ∂μ∂ρ gνσ − ∂η∂λ∂ν∂σ gρμ + ∂η∂λ∂ν∂ρ gμσ

+ ∂λ∂ρ∂μ∂η gσν − ∂λ∂ρ∂μ∂σ gνη − ∂λ∂ρ∂ν∂η gσμ + ∂λ∂ρ∂ν∂σ gμη

+ ∂ρ∂σ ∂μ∂λgην − ∂ρ∂σ ∂μ∂η gνλ − ∂ρ∂σ ∂ν∂λgημ + ∂ρ∂σ ∂ν∂η gμλ

+ ∂σ ∂η∂μ∂ρ gλν − ∂σ ∂η∂μ∂λgνρ − ∂σ ∂η∂ν∂ρ gλμ + ∂σ ∂η∂ν∂λgμρ

+ ∂σ ∂η∂μ∂ρ gλν − ∂σ ∂η∂μ∂λgνρ − ∂σ ∂η∂ν∂ρ gλμ + ∂σ ∂η∂ν∂λgμρ) = 0

(33)

This result, as we were expecting, confirms the validity of the improved Bianchi identity, i.e. Eq. (17).

Appendix B

Here we are going to evidence how we can extract the second derivative in Eq. (25). The improved Bianchi identity in 
5D space–time is:

Dη DλRρσμν + DλDρ Rσημν + Dρ Dσ Rηλμν + Dσ Dη Rλρμν = 0 (34)

Applying the contraction to this equation will lead us to:

gρμgσν
(

Dη DλRρσμν + DλDρ Rσημν + Dρ Dσ Rηλμν + Dσ Dη Rλρμν

) = 0
⇒ −Dη DλR + DλDμRημ + DμDν Rηλμν + Dν Dη Rλν = 0
⇒ gηλ

(−Dη DλR + DλDμRημ + DμDν Rηλμν + Dν Dη Rλν

) = 0
⇒ Dη DμRημ + DμDν Rμν + Dν DλRνλ − DλDλR = 0

(35)

By using the fact that all the indices are dummy, it is obvious that the first three terms in the last row of Eq. (35) are equal 
to each other; thus we arrive at:

DμDν

(
Rμν − 1

3
gμν R

)
= 0 (36)
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