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The development of quantum Josephson circuits has created a strong expectation for 
reliable processing of quantum information. While this progress has already led to various 
proof-of-principle experiments on small-scale quantum systems, a major scaling step is 
required towards many-qubit protocols. Fault-tolerant computation with protected logical 
qubits usually comes at the expense of a significant overhead in the hardware. Each of 
the involved physical qubits still needs to satisfy the best achieved properties (coherence 
times, coupling strengths and tunability). Here, and in the aim of addressing alternative 
approaches to deal with these obstacles, I overview a series of recent theoretical proposals, 
and the experimental developments following these proposals, to enable a hardware-
efficient paradigm for quantum memory protection and universal quantum computation.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Le développement des circuits quantiques Josephson a généré de grands espoirs pour le 
traitement fiable de l’information quantique. Alors que ces progrès se sont accompagnés 
de diverses expériences de principe sur des systèmes quantiques de petites tailles, il faut 
désormais franchir l’étape importante du passage à l’échelle supérieure en nombre de 
qubits pour les protocoles. Le calcul tolérant aux erreurs avec des qubits logiques protégés 
est cependant habituellement envisagé au prix d’un significatif surcoût en ressources 
matérielles. Chacun des qubits physiques impliqués devra par ailleurs toujours disposer 
de caractéristiques optimales (temps de cohérence, force de couplage et accordabilité). Ici, 
et dans le but d’explorer des approches alternatives pour dépasser ces obstacles, je passe 
en revue un ensemble de propositions théoriques récentes et les premières expériences 
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correspondantes, qui rentrent dans un paradigme de protection de mémoire quantique et 
de calcul quantique universel qui reste peu gourmand en ressources matérielles.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since the first demonstration of a superconducting quantum bit (qubit) a decade and a half ago [1], the coherence time 
of superconducting circuits has witnessed a tremendous increase by about five orders of magnitude, reaching now more 
than 100 μs in the best systems [2,3]. The powerful assets of these systems over their atomic physics counterparts lie in 
the flexibility in the design of the Hamiltonian of a complex system composed of many parts. This flexibility leads to a very 
rich set of functionalities that could be performed by such devices. Furthermore, contrarily to the quantum optics systems, 
no major physical limitations have been observed on various parameters of these Hamiltonians (e.g., coupling strengths or 
nonlinearity of the field modes). Microwaves, unlike light signals, are well controlled using commercial electronics. They are 
deep in the quantum regime when cooled at milli Kelvin temperatures. These properties have rendered the field of quantum 
superconducting circuits (QSC) a very promising framework for quantum information processing (QIP) [4].

This rapid progress has already led to various proof-of-principle experiments on small scale quantum systems (few 
interacting degrees of freedom). Indeed, many earlier experiments within the contexts of NMR-based quantum information 
processing, trapped ions or cavity quantum electrodynamics (QED) with Rydberg atoms, have been successfully replicated 
on these systems. In many of these experiments, the properties of QSC such as strong coupling and nonlinearity together 
with reasonable coherence times have allowed one to achieve better performances than earlier atomic physics and quantum 
optics experiments. Furthermore, the constant progress of the coherence time for these systems make us very confident 
that these performances will keep improving through the following years.

Despite all these achievements, a major scaling step is required towards many-qubit protocols. Indeed, the next, criti-
cal stage in the development of QIP is most certainly the active quantum error correction (QEC) [5–9]. Through this stage 
one designs, possibly using many physical qubits, an encoded logical qubit which is protected against major decoherence 
channels and hence admits a significantly longer effective coherence time than a physical qubit. The usual approach for the 
realization of QEC is to use many qubits to obtain a larger Hilbert space of the qubit register [10,11]. By redundantly encod-
ing quantum information in this Hilbert space of larger dimension one makes the QEC tractable: different error channels lead 
to distinguishable error syndromes. There are two major drawbacks in using multi-qubit registers. The first, fundamental, 
drawback is that with each added physical qubit, several new decoherence channels are added. Because of the exponential 
increase of the Hilbert’s space dimension versus the linear increase in the number of decay channels, using enough qubits, 
one is able to eventually protect quantum information against decoherence. However, multiplying the number of possible 
errors requires measuring more error syndromes. The second, more practical, drawback is that it is still extremely challeng-
ing to build a register of more than on the order of 10 qubits where each of the qubits is required to satisfy close to the 
best achieved properties: these properties include the coherence time, the coupling strengths and the tunability. Indeed, 
building such a register is not merely only a fabrication task but rather, it requires to look for architectures such that, each 
individual qubit can be addressed and controlled independently from the others. One is also required to make sure that all 
the noise channels are well-controlled and uncorrelated for the QEC to be effective.

We have recently introduced a new paradigm for encoding and protecting quantum information in a quantum harmonic 
oscillator (e.g., a high-Q mode of a 3D superconducting cavity) instead of a multi-qubit register [12]. The infinite dimensional 
Hilbert space of such a system can be used to redundantly encode quantum information. The power of this idea lies in the 
fact that the dominant decoherence channel in a cavity is photon damping, and no extra decay channels are added if we 
increase the number of photons we insert in the cavity. Hence, only a single error syndrome needs to be measured to 
identify if an error has occurred or not.

In this scheme, the logical qubit is encoded in a four-component Schrödinger cat state. Repeated quantum non-demolition 
(QND) monitoring of a single physical observable, consisting of photon number parity, enables then the tractability of single 
photon jumps. We obtain therefore a first-order quantum error correcting code using only a single high-Q cavity mode (for 
the storage of quantum information), a single qubit (providing the non-linearity needed for controllability) and a single 
low-Q cavity mode (for reading out the error syndrome). As sketched in Fig. 1, this leads to a significant hardware economy 
for realization of a protected logical qubit.

Through the next section, I will briefly review our theoretical/experimental results [13,12,14,6] on the encoding and pro-
tecting of quantum information in such Schrödinger cat states, exploring the strong dispersive coupling regime [15] of a 
transmon qubit [16] and a high-Q cavity mode. These methods perform the encoding/protection tasks through entangling 
the cavity photon states to the qubit degrees of freedom. I will explain how this limits the performance of the QEC pro-
cess through exposing quantum information to undesired noise channels. Next, in Section 3, I will review a more recent 
proposal on the possibility of encoding, protecting and performing protected logical operations by engineering a highly non-
standard interaction of a high-Q cavity mode to the environment [17,18]. Finally in Section 4, I will discuss some possible 
improvements and future directions.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. (a) A protected logical qubit consisting of a register of many qubits: here, we see a possible architecture for the Steane code [11] consisting of 7 qubits 
requiring the measurement of 6 error syndromes. In this sketch, 7 transmon qubits in a high-Q resonator and the measurement of the 6 error syndromes is 
ensured through 6 additional ancillary qubits with the possibility of individual readout of the ancillary qubits via independent low-Q resonators. (b) Minimal 
architecture for a protected logical qubit, adapted to circuit quantum electrodynamics experiments. Quantum information is encoded in a Schrödinger cat 
state of a single high-Q resonator mode and a single error syndrome is measured, using a single ancillary transmon qubit and the associated readout low-Q 
resonator.

2. Coupling with a transmon qubit and encoding/protecting quantum information in a cavity mode

The idea consists in mapping the qubit state c0|0〉 + c1|1〉 into a superposition of four coherent states of a quantum har-
monic oscillator (e.g., a high-Q mode of a 3D superconducting cavity) |ψ(0)

α 〉 = c0|0〉L + c1|1〉L = c0|C(0mod4)
α 〉 + c1|C(2mod4)

α 〉, 
where

|C(0mod4)
α 〉 = N0(|α〉 + |−α〉 + |iα〉 + |−iα〉),

|C(1mod4)
α 〉 = N2(|α〉 − |−α〉 − i|iα〉 + i|−iα〉),

|C(2mod4)
α 〉 = N1(|α〉 + |−α〉 − |iα〉 − |−iα〉),

|C(3mod4)
α 〉 = N3(|α〉 − |−α〉 + i|iα〉 − i|−iα〉).

Here, N0 ≈ N1 ≈ N2 ≈ N3 ≈ 1/2 are normalization factors, and |α〉 denotes a coherent state of complex amplitude α. For 
α large enough, |α〉, |−α〉, |iα〉 and |−iα〉 are quasi-orthogonal (note that for α = 2, |〈α|iα〉〉|2 < 10−3) and therefore the 
normalization constants Nk are well-approximated by 1/2. The two states |C(0mod4)

α 〉 and |C(2mod4)
α 〉, playing the roles of 

logical 0 and 1 of the qubit, are orthogonal for any α. Note furthermore that, whenever developed in the Fock states basis, 
the state |C(kmod4)

α 〉 is a superposition of photon number states |n〉 where n ≡ k (mod 4), which explains the choice of 
notation |C(kmod4)

α 〉.
This encoding enables the protection of quantum information against photon-loss events. In order to see this, let us 

also define |ψ(1)
α 〉 = c0|C(3mod4)

α 〉 + c1|C(1mod4)
α 〉, |ψ(2)

α 〉 = c0|C(2mod4)
α 〉 + c1|C(0mod4)

α 〉 and |ψ(3)
α 〉 = c0|C(1mod4)

α 〉 + c1|C(3mod4)
α 〉. 

The state |ψ(n)
α 〉 evolves after a photon-loss event to a|ψ(n)

α 〉/‖a|ψ(n)
α 〉‖ = |ψ [(n+1)mod4]

α 〉, where a is the harmonic oscillator’s 
annihilation operator. Furthermore, in the absence of jumps during a time interval t , |ψ(n)

α 〉 deterministically evolves to 
|ψ(n)

α(e−κt/2 〉, where κ is the decay rate of the harmonic oscillator. Now, the photon number parity operator � = exp(iπa†a)

can act as a photon jump indicator. Indeed, we have 〈ψ(n)
α | � | ψ

(n)
α 〉 = (−1)n , and therefore the measurement of the 
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photon number parity can indicate the occurrence of a photon-loss event. While the parity measurements keep track of the 
photon-loss events, the deterministic relaxation of the energy, replacing α by α(e−κt/2, remains inevitable. To overcome this 
relaxation of energy, we need to intervene before the coherent states start to overlap in a significant manner to re-pump 
energy into the codeword. This energy repumping in the cat state requires a non-linear interaction with the cavity mode. As 
explained through the following paragraphs, it can be performed either through the application of a sequence of well-chosen 
pulses on a qubit-cavity system [12], or through parametric methods [17].

Through this section, we will explore the first direction, i.e. controlling the state of the quantum harmonic oscillator by 
virtue of its coupling with a physical qubit and through the application of appropriate microwave pulses.

2.1. Encoding quantum information using strong dispersive coupling

By off-resonantly coupling a transmon qubit with a high-Q cavity mode, we can achieve a strong dispersive interaction 
regime [15] where both the qubit and the resonator transition frequencies split into well-resolved spectral lines correspond-
ing, respectively, to the number of excitations in the resonator and in the qubit. More precisely, the qubit admits different 
frequencies {ωn

q}n
q=0 (ωn

q = ω0
q − nχqr ), corresponding to the qubit frequency when the resonator is in the Fock state |n〉. 

Similarly, the resonator admits two different frequencies ωg
r and ωe

r (ωg
r − ωe

r = χqr ), depending on whether the qubit is in 
the ground or excited state. The strong dispersive coupling regime is achieved when χqr � κ, γ , where χqr is the dispersive 
coupling strength, and κ and γ represent, respectively, the line-widths of the resonator and the qubit.

In such a strong dispersive coupling regime modeled by the interaction Hamiltonian H int = −χqr |e〉〈e|a†a, one can apply 
a long-enough pulse with carrier frequency ωn

q to rotate the qubit state only if the resonator is in the Fock state |n〉 [19]. 
These photon-number-selective qubit pulses could be used to entangle the resonator and the qubit. It is also possible to ap-
ply a short pulse with carrier frequency ωr = (ω

g
r +ωe

r )/2 to coherently displace the cavity state independently of the qubit 
state: in this aim, the length of the pulse is required to be shorter than the inverse of χqr to ensure the unconditionality of 
the operation.

In [13,12], we proposed to employ the above photon-number-selective qubit pulses and the unconditional cavity dis-
placements to encode quantum information in a Schrödinger cat state of the quantum harmonic oscillator. While leav-
ing the reader to follow the steps to encode a qubit state c0|g〉 + c1|e〉 into the four-component Schrödinger cat state 
c0|C(0mod4)

α 〉 + c1|C(2mod4)
α 〉 through [12], here we briefly overview the steps to perform the simpler task of transferring this 

superposition to a two-component Schrödinger cat state c0|α〉 + c1|−α〉. We start with the qubit in the state c0|g〉 + c1|e〉
and the cavity in the vacuum state |0〉 and we apply a short unconditional cavity pulse of appropriate phase and amplitude 
to prepare the joint qubit-cavity state c0|g,α〉 + c1|e,α〉. We wait for Twait = π/χ and under the effect of the interaction 
Hamiltonian H int = −χqr |e〉〈e|a†a, the qubit gets entangled to the cavity, generating the joint state c0|g,α〉 + c1|e,−α〉. We 
apply a second unconditional cavity pulse of the same amplitude and phase, bringing the joint state to c0|g,2α〉 + c1|e,0〉. 
Now, we apply a long photon-number selective qubit pulse at frequency ω0

q . Taking α to be large enough so that the overlap 
of the coherent state |2α〉 with the vacuum state is small enough, we can rotate the qubit whenever the cavity is in the 
vacuum state, leaving it untouched when the cavity is in the coherent state |2α〉. An appropriate choice of the amplitude 
of the pulse brings the entangled joint state to an un-entangled state of the form c0|g,2α〉 + c1|g,0〉. Now we apply a final 
unconditional cavity displacement pulse, bringing the cavity state to c0|α〉 + c1|−α〉 while leaving the qubit in its ground 
state.

Such an encoding of quantum information on a Schrödinger cat state with up to 100 average number of photons, as well 
as the extension to three or four component Schrödinger cat states, were successfully implemented using a device similar to 
the sketch of Fig. 1(b) [14]. The performance (achieved fidelity) of the encoding protocol is however limited, mainly because 
of the T1 and T2 decay times of the transmon qubit. In order to achieve the performances required for quantum information 
algorithms, one needs to significantly improve the qubit’s coherence time or rather consider an encoding procedure which 
is less susceptible to the qubit’s decoherence. The approach of Section 3 should enable such a qubit-independent quantum 
information encoding approach.

2.2. Tracking photon-loss events by repeated quantum non-demolition photon-number parity measurements

As mentioned at the beginning of this section, once quantum information is encoded in a logical state of the form 
c0|0〉L +c1|1〉L = c0|C(0mod4)

α 〉 +c1|C(2mod4)
α 〉, repeated quantum non-demolition photon number parity measurements will let 

us track the photon-loss events and therefore undo the effect of decoherence induced by such an error channel. Ideally, one 
could imagine a perfect measurement process, indicating the photon-number parity of the cavity state in a measurement 
time of τM. For such a perfect measurement, a photon-loss event during the measurement process would potentially lead 
to an erroneous measurement result, but a subsequent measurement should reveal the photon jump event. More precisely, 
the only events that might not be captured by such a perfect measurement correspond to the case where two or more 
photon-loss events happen during a single measurement step. For a Schrödinger cat state with a mean photon number n̄, 
such an event happens with a probability given by (n̄κτM)2

2 , where κ is the cavity’s decay rate. This means that, similar to 
any first order error correcting code, after tracking these single photon-loss events, we can decrease the decay rate from n̄κ
to
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κeff = (n̄κτM)2

2τM
= (n̄κτM)

2
n̄κ. (1)

While a discussion on possible sources of imperfection for such a measurement is left to the next subsection, here we briefly 
overview a first tentative [6] based on proposals within the framework of cavity QED with Rydberg atoms [20,21]. The idea 
consists in employing a single physical qubit coupled dispersively with the cavity mode (possibly the same qubit employed 
for the encoding process) as the meter for the parity measurement. Under the effect of the interaction Hamiltonian H int =
−χqr |e〉〈e|a†a, and in the rotating frame of the cavity mode, the Fock states accumulate a qubit-dependent phase of φ =
χqrta†a when the qubit is in the excited state. Waiting for a time of t = π/χqr , this realizes a unitary operation of the form 
|g〉〈g| ⊗ I + |e〉〈e| ⊗ eiπa†a . Therefore, initializing the qubit in the state (|g〉 + |e〉)/√2, such an interaction enables a photon 
number parity measurement by mapping the even parity cavity states to the final qubit state (|g〉 + |e〉)/√2 and odd parity 
ones to the orthogonal state (|g〉 − |e〉)/√2. A final π/2-pulse on the qubit and its subsequent measurement would reveal 
the photon number parity for the cavity state.

As illustrated through the experiment of [6], such a measurement is QND, in the sense that the parity itself is not 
perturbed by the measurement process. Therefore, by combining this parity tracking with the Schrödinger cat state encoding 
of [14], we should be able to achieve a quantum memory protected against the major decay channel of single photon loss.

Through the next subsection, we will study various limitations of this approach. These limitations mainly concern the 
existence of other decay channels against which the system is not protected.

2.3. Limitations due to un-protected decay channels

The above cat encoding and continuous photon-number parity measurements only protect quantum information against 
the photon loss channel of the storage cavity mode. Therefore, a dephasing channel for the cavity mode, caused for instance 
by fluctuations in its resonance frequency, would potentially lead to the loss of quantum information. However, the decay 
due to this dephasing channel is usually considered to be significantly slower than the dominant photon loss channel, and 
thus such a phenomena does not represent the preliminary limitation of the above approach. The main limitations are 
caused by the invasive use of the ancillary transmon qubit and the necessity in entanglement of the cavity state with the 
qubit. More precisely, each time the encoded cavity state gets entangled to the qubit, we expose quantum information to 
the loss channels of the qubit which are not protected by the scheme.

Through the above scheme, such an entanglement is clearly used for the encoding and decoding process and also the 
recurrent energy re-pumping step. Indeed, while the repeated photon-number parity measurements let us keep track of the 
photon-loss events, they do not compensate for the deterministic energy relaxation in the Schrödinger cat state. In particular, 
even in the case where the parity measurements do not indicate any photon-loss event, the amplitude of the coherent states 
encoding the Schrödinger cat state will deterministically decay with the cavity’s decay rate κ . This will eventually lead to 
a significant overlap of the coherent components and a loss of quantum information due to the non-orthogonality of the 
encoding coherent states. In [12], we have proposed an energy re-pumping process similar to the encoding–decoding ones, 
which explores once again the strong dispersive coupling to a transmon qubit. This process, however, also utilizes the 
possibility of entangling the cavity state to the qubit and therefore exposes the encoded information to the un-protected 
decay channels of the qubit.

Another place, where such a qubit-cavity entanglement is extensively used is through the photon-number parity mea-
surement itself. Indeed, as explained through the previous subsection, the measurement protocol in [6] is based on the fact 
that the Fock states accumulate a qubit-dependent phase of φ = χqrta†a, which for t = π/χqr leads to a unitary operation 
|g〉〈g| ⊗ I + |e〉〈e| ⊗ eiπa†a . While this unitary operation does not affect a given parity state (odd or even), the qubit gets 
entangled to such a state during the evolution. For instance, starting with an even cat state |C(0,2mod4)

α 〉, and at intermedi-
ary times 0 < s < π/χqr , the qubit-cavity state is given by the entangled state (|g,C(0,2mod4)

α 〉 + |e,C(0,2mod4)

αeiχqr s 〉)/√2. Noting 

that |C(0,2mod4)
−α 〉 = |C(0,2mod4)

α 〉, the qubit and cavity get disentangled after a time t = π/χqr , but a qubit decay during the 
evolution can affect the measurement result and/or corrupt the encoded information. Indeed, as discussed through the sup-
plementary material of [6], such qubit-induced errors can be divided into two categories: misinterpreting photon jumps 
due to qubit’s pure dephasing Tφ (and possibly the qubit’s readout inaccuracy), and dephasing of the cat state due to the 
relaxation of the ancilla qubit T1. The first process is usually less important as it only leads to a loss of efficiency in the 
parity measurement and does not cause a complete loss of the encoded information. Indeed, this measurement inefficiency 
can be compensated via multiple repeated measurements and a majority vote. The second type of error is however much 
more detrimental. A T1 relaxation happening at a random time s during the measurement process sends the above entan-
gled state (|g,C(0,2mod4)

α 〉 + |e,C(0,2mod4)

αeiχqr s 〉)/√2 to the unentangled state |g,C(0,2mod4)

αeiχqr s 〉 and the evolution in the phase space 
freezes as the qubit is in the ground state. Therefore, after the full measurement time t = π/χqr , the cat state has acquired 
a random phase eiχqr s in the phase space. Thus the qubit T1 decay leads to cat states dephasing that would be impossible 
to recover from, without an auxiliary correction protocol.

Note that such a measurement-induced decay is not particular to the above QEC protocol and is related to the concept 
of fault-tolerance for the error syndrome measurements. Indeed, even for the standard multi-qubit codes, one needs to 
ensure a protection of the quantum system playing the role of the meter to avoid the propagation of its errors to the 
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encoded information. We will get back to this through Section 4. Here, we note that, even with a non-fault-tolerant parity 
measurement, it is possible to achieve an improvement of the coherence time for a quantum memory. Indeed, as discussed 
through the supplementary material of [6], considering perfect measurements (in particular qubit Tφ = ∞) of duration τM, 
one needs to consider an appropriate waiting time τW between two subsequent parity measurements, to achieve an effective 
decay rate for the error-correcting code of

κeff =
[

(n̄κ)2(τM + τW)2

2
+ εT1

]
1

τM + τW
,

where εT1 ∼ τM/T1 denotes the loss of cat fidelity due to T1 errors during a measurement step. A simple calculation 
illustrates that the optimal choice for the waiting time τW is given by

τW =
√

2εT1

n̄κ
− τM,

leading to an optimal decay rate of

κeff = (n̄κ)
√

2εT1 . (2)

Therefore, we should be able to observe an improvement of the coherence time with respect to the non-corrected cat state, 
as soon as εT1 < 1/2 (this is already the case with the experimental parameters in [6]). Note, however, that this improve-
ment in the coherence time is most probably much less significant than the case of a fault-tolerant parity measurement, 
leading to an effective rate given by (1).

3. Confining the dynamics to a quantum manifold of protected states by engineered dissipation

In the sequel to the above proposals for encoding and protecting cat qubits, we recently proposed an alternative approach 
that does not require an invasive use of an ancillary transmon qubit [17]. In this approach, Josephson circuits are merely 
used to provide the non-linearity required for a non-classical manipulation of the cavity state. More precisely, we avoid the 
entanglement of the cavity state (where the quantum information is stored) to the qubit degree of freedom.

The idea consists in engineering the coupling of the quantum harmonic oscillator with a bath in such a way that it 
significantly enhances the probability of exchanging simultaneously multiple photons (here four photons) with the environ-
ment. In other words, in a fixed time interval, the probability of exchanging four photons with the bath should significantly 
dominate the probability of exchanging any other number of photons (and in particular a single photon as is the case of 
a regular driven damped harmonic oscillator). By confining the dynamics to a quantum manifold spanned by a number 
of coherent states (here four of them) whose superpositions are used to encode quantum information, such a dissipative 
process will protect the encoded state against photon dephasing decoherence channel. Together with the continuous QND 
monitoring of the photon number parity operator, this also ensures the protection against the dominant single-photon decay 
channel. In order to design circuits that enable such a non-classical interaction between a quantum harmonic oscillator and 
its bath, we exploit the ideas behind recently developed quantum multi-wave mixing parametric devices [22–24].

3.1. Multi-photon driven dissipative process for stabilization of a quantum manifold

In a recent experiment [18], a two-photon driven dissipative process was realized to confine the dynamics to the mani-
fold of quantum states spanned by two coherent states |±α〉 [25]. The setup, similar to the sketch of Fig. 1(b), was comprised 
of two microwave cavities coupled through a Josephson junction. One of the cavity modes (with resonance frequency ωs ) 
is high-Q and plays the role of the storage mode and the other one (with resonance frequency ωr ) strongly dissipates to 
a transmission line and mediates a non-standard interaction of the high-Q mode to the environment. Indeed, by explor-
ing the four-wave mixing property of a Josephson junction and off-resonantly pumping the low-Q resonator at frequency 
ωp = 2ωs − ωr , one engineers an effective interaction Hamiltonian well approximated by

Hint

h̄
= grs(a2

r a†
s + a†2

r as) + χrs(a†
r ar)(a†

sas) + χrr

2
(a†

r ar)
2 + χss

2
(a†

sas)
2,

where ar and as are respectively the field mode operators for the low-Q and high-Q cavity modes. In this Hamiltonian, 
the first term, of strength grs , provides the non-standard interaction between the high-Q mode and the low-Q one. The 
second term, of strength χrs , is the cross-Kerr between the two cavity modes and the last two ones are the self-Kerr 
(or anharmonicities) of the two modes, all induced by their coupling with the nonlinear Josephson junction [26].

The coupling strength grs is given by (εp being the pump amplitude)

grs = εp

ωp − ωr

χrs

2
,

and can therefore be tuned via the pump power. It should however be noted that, as illustrated in the experiment of [18], 
increasing infinitely the pump power will eventually lead to undesired interactions reducing the efficiency of the manifold 
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confinement scheme. Indeed, an important direction for the improvement of this experiment is to design new circuits 
enabling us to achieve higher coupling strengths grs while the induced undesired interactions remain limited.

This interaction Hamiltonian, together with the strong dissipation of the mode ar , leads, after an adiabatic elimination 
of the mode ar (see [27] and supplementary material of [18]), to a strong two-photon dissipation channel for the mode 
as modeled by the Lindblad operator a2

s . Additionally, driving the low-Q mode ar at its resonance frequency, the above 
non-standard interaction translates into a two-photon drive on the storage mode. Consequently, one achieves an effective 
master equation of the form

d

dt
ρ =

[
ε2pha†2

s + ε∗
2pha2

s ,ρ
]
+ κ2phD

[
a2

s

]
ρ,

where D[L]ρ = LρL† − 1/2L†Lρ − 1/2ρL†L. Considering a dissipation rate κr exceeding significantly the interaction 
strength grs , the parameters of this effective model are given by

ε2ph = 2εr g2ph

κr
, κ2ph = 4g2

2ph

κr
,

where εr denotes the amplitude of the drive at resonance with the low-Q resonator. Despite the above-mentioned limita-
tions on the strength of g2ph, it was shown in [18] that with the state-of-the-art coherence times for high-Q resonators, it is 
possible to make the two-photon decay rate κ2ph exceed the natural single-photon dissipation κs of the storage mode. This 
is the regime required to confine and manipulate the dynamics in the degenerate manifold spanned by two coherent states 
|±α〉 where α = √

εr/g2ph. In particular, it was illustrated that starting with the vacuum state, such a two-photon process 
drives the system towards a transient Schrödinger cat state before it decays (due to the single-photon decay) to a classical 
mixture of |α〉 and |−α〉. In order to observe a high-fidelity Schrödinger cat state before its decay, one needs to ensure a 
larger separation between the time-scales κ2ph and κs . For this to happen, one needs to either improve the coherence time 
of the storage cavity significantly or as explained earlier, to design new circuits that enable a significant increase in g2ph
and therefore in κ2ph.

Note however that, for this two-photon process, even if the separation of the time-scales is significantly improved, 
no protection against the single-photon-loss events can be considered. Indeed, under these confinement conditions, the 
eventual single photon jumps translate to phase flip errors in the basis {|α〉, |−α〉}: the application of the annihilation 
operator as sends {|α〉, |−α〉} to {|α〉, −|−α〉}. In order to keep track of this dominant single-photon loss errors, we need 
to go back to an encoding in a four-fold degenerate manifold. As proposed in [17], this could be done by engineering 
a four-photon-driven dissipative process. In principle, if we are able to engineer an interaction Hamiltonian of the form 
g4ph(a4

s a†
r + a†4

s ar), the same type of adiabatic elimination as for the two-photon case leads to an effective master equation 
of the form

d

dt
ρ =

[
ε4pha†4

s + ε∗
4pha4

s ,ρ
]
+ κ4phD

[
a4

s

]
ρ,

which stabilizes the manifold spanned by {|±α〉, |±iα〉} with α = (
2ε4ph/κ4ph

)1/4
. Then, in a similar fashion to that in the 

previous section, by encoding a qubit in the basis {|C0mod4
α 〉, |C2mod4

α 〉}, it is possible to keep track of photon-loss events 
by continuous QND monitoring of photon-number parity. Furthermore, by stabilizing the above manifold, the four-photon 
process will also compensate for the deterministic energy relaxation.

The main question would therefore be an efficient engineering of the interaction Hamiltonian g4ph(a4
s a†

r + a†4
s ar). One 

might think of extending the above two-photon process by applying a pump drive of frequency ωp = 4ωs −ωr and benefiting 
from the six-wave mixing property of the Josephson junctions Hamiltonian. While such a six-wave mixing has never been 
experimentally implemented yet, it turns out that it is impossible to make the desired interaction strong compared to all 
other parasitic interactions such as cross and self Kerr terms. This will significantly limit the efficiency of such a 4-photon 
process. In [17], we suggested that a design similar to that of the Josephson parametric converter [23,24] consisting of a 
ring of Josephson junctions shunted by a cross of 4 linear inductances can overcome such limitations in the strength of the 
4-photon conversion. Such a device would however also depend on a six-wave mixing, and its fabrication and the analysis 
and optimization of its properties, such as tunability and bandwidth, will require a significant theoretical/experimental 
investigation.

3.2. Towards universal quantum computation: quantum Zeno dynamics

As proposed in [17], the multi-photon-driven dissipative processes can be combined with additional (weaker) Hamilto-
nians acting only on the Hilbert space of the storage mode to perform various logical gates required for universal quantum 
computation. Three kinds of gates on a logical qubit were presented in [17].

– Arbitrary rotations around the X axis. The idea consists in applying a squeezing Hamiltonian εX a†2
s +ε∗

X a2
s in the presence 

of the driven dissipative process. Note that, as this Hamiltonian can only imply exchanges of photons in pairs with the stor-
age mode, the photon-number parity remains intact. Also, in the case where εX  κ4ph, the four-photon process keeps the 
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system in the vicinity of the manifold spanned by {|±α〉, |±iα〉}. Therefore, starting with a superposition of the qubit states 
|C0mod4

α 〉 and |C2mod4
α 〉, the above squeezing Hamiltonian should necessarily lead to an operation inside this two-dimensional 

space. Indeed, applying a Zeno-type argument, the first-order (with respect to εX/κ4ph) effect of the above Hamiltonian can 
be represented by its projection on this space:

�|C0,2mod4
α 〉

(
εX a†2

s + ε∗
X a2

s

)
�|C0,2mod4

α 〉 = (εXα∗2 + ε∗
Xα2)

(
|C0mod4

α 〉〈C2mod4
α | + |C2mod4

α 〉〈C0mod4
α |

)
.

This corresponds to the σx Pauli matrix in the logical qubits basis. Therefore, selecting the argument of εX such that 
(εXα∗2 + ε∗

Xα2) �= 0 (the optimal choice is εX in quadrature with respect to α2 or equivalently ε4ph), the above squeez-
ing Hamiltonian induces a Rabi oscillation around the X axis of the effective qubit. It has been illustrated, via numerical 
simulations, that a modest separation of time scales of 

∣∣κ4ph/εX
∣∣ = 20 leads to gate fidelity in excess of 99.9% [17].

An important property of this gate is its tolerance to the photon-loss events during the operation. Indeed, an eventual 
single-photon-loss event would change the qubit basis to |C3,1mod4

α 〉, while the squeezing Hamiltonian will continue to 
induce a Rabi oscillation in this new basis. Therefore, a photon-number parity measurement after the operation will reveal 
this photon jump event and no quantum information is lost. This could be interpreted as fault-tolerance of the gate with 
respect to the decoherence of the cavity.

– Two-qubit entangling gates. Assume two effective qubits achieved by four-photon-driven dissipative processes applied 
on two cavity modes a1 and a2. Similarly to the previous gate, one can apply an interaction Hamiltonian of the form 
εX X

(
a2

1a†2
2 + a2

2a†2
1

)
to produce an effective Hamiltonian of the form

2|α|4εX X

(
|C0mod4

α 〉〈C2mod4
α | + |C2mod4

α 〉〈C0mod4
α |

)⊗2

which is equivalent to the entangling Hamiltonian 2|α|4εX Xσ 1
x ⊗ σ 2

x for the logical qubits. Once again, a modest separation 
of time scales of 

∣∣κ4ph/εX X
∣∣ = 20 leads to gate fidelity in excess of 99.5% [17]. This gate is also tolerant to single-photon-loss 

events happening on one or both of the cavity modes. Indeed, a parallel photon-number parity measurement on the two 
modes after the operation will reveal such jump events and no information will be lost.

– π/2-rotation around the Z axis.
Such a single qubit gate, which is needed to achieve a complete set of universal gates, is perhaps the hardest to be 

performed in a fault-tolerant way. This is due to the fact that, by rendering each of the coherent states |±α〉, |±iα〉 stable 
points, the four-photon process protects the system against the transition between the two states |+x〉 =N (|α〉 +|−α〉) and 
|−x〉 =N (|iα〉 +|−iα〉). In [17], we proposed an approach that consists in turning off the four-photon process and make use 
of the induced Kerr effect on the storage Hamiltonian. Indeed, applying an effective Hamiltonian of the form −χKerra†2

s a2
s for 

a time duration of π/8χKerr, one achieves an effective π/2-rotation around the Z axis of the cat qubit [28]. It was discussed 
in [17] that, as soon as the photon-number parity measurements are performed at a much faster rate than the Kerr effect, 
this gate is fault-tolerant with respect to single-photon loss channel. Indeed, noting the commutation relation

aseitχKerra†2
s a2

s = e2itχKerra†
sas eitχKerra†2

s a2
s as,

a single-photon-loss event during the Kerr effect would lead to an extra rotation in the phase space by an angle of 2tχKerr , 
where t is the random time at which the loss event happened. However, by continuously monitoring the photon-number 
parity (feasible as the parity observable commutes with the Kerr Hamiltonian), we can keep track of the times at which 
these loss events happen and therefore also the accumulated phase (with a resolution given by the parity measurement 
duration divided by the gate duration). This fault-tolerance however requires the operation to be much slower than the 
measurement duration. Also note that assuming the cavity dephasing rate to be much weaker than the Kerr strength, 
turning on the four-photon process after the gate would approximately correct for the phase noise accumulated throughout 
the gate duration.

In [29], an alternative approach was proposed, which avoids the necessity of turning off the four-photon process during 
the operation. The idea consists in reducing adiabatically towards zero the strength of the drive at resonance with the 
low-Q cavity (this reduction should be slow with respect to the four-photon-decay rate) so that the four components of 
the Schrödinger cat state collide with each other near the zero drive strength. Next, one re-pumps the Schrödinger cat 
state by increasing the strength of the same drive, changing however the phase of the drive (shifting it by φ). It was 
shown in [29] that this is equivalent to a rotation by an angle of 2φ around the Z axis of the qubit. While this gate 
benefits from the advantage of not requiring the four-photon decay to be turned off, it is not fault-tolerant with respect 
to the single-photon decay channel. Indeed, during the time the components of the Schrödinger cat state overlap, quantum 
information is extremely sensitive to this decay channel, and a single photon loss can erase the superposition. In order to 
see this, we note that at zero drive strength the cat states |C0mod4

α 〉 and |C2mod4
α 〉 respectively converge to the two Fock states 

|0〉 and |2〉. A single photon-loss event then would project any superposition of these Fock states onto the Fock state |1〉, 
erasing the encoded information.

A third direction, avoiding the necessity of turning off the four-photon process, while ensuring the fault-tolerance with 
respect to the major decay channels, would be to engineer an effective Hamiltonian of the form χmod4 cos(πa†

sas/2). Through 
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a Zeno type dynamics, this Hamiltonian would directly lead to a phase accumulation of rate 2χmod4 between the two states 
|C0mod4

α 〉 and |C2mod4
α 〉:

χmod4�C0,2mod4
α

cos(πa†
sas/2)�C0,2mod4

α
= χmod4(|C0mod4

α 〉〈C0mod4
α | − |C2mod4

α 〉〈C2mod4
α |).

Engineering a quantum circuit leading to such an effective Hamiltonian is a current research topic and remains to be done.
Before finishing this section, let us mention that the design and the implementation of quantum circuits that provide the 

above required Hamiltonians in a controlled manner (with the possibility of switching them on and off) lead to a significant 
theoretical/experimental project on parametric multi-wave mixing methods.

4. Future directions and conclusion

In this last section, we briefly introduce a few important directions for further improvements.
One main topic in this regard concerns the fault-tolerance of the parity measurement protocol. Indeed, a QND photon-

number parity measurement, which is less sensitive to the T1 decay of the qubit, playing the role of the meter, would 
greatly enhance the expected performance of the QEC protocol in both sections 2 and 3. Indeed, while dealing with a 
quantum memory, as illustrated in Subsection 2.3, this would improve the expected effective decay rate from n̄κ

√
2τM/T1

(for the current non- fault-tolerant protocol) to n̄κ(n̄κτM/2) (for the fault-tolerant case). For the parameters of the exper-
iment [6], this improvement is a factor of about 20–30, i.e. under a fault-tolerant parity measurement the error-corrected 
memory would admit a lifetime that is 20–30 times longer than that of the non-fault-tolerant protocol. With the continuous 
increase of the coherence times in these circuits, this improvement will be even more drastic in the future. Indeed, while 
the effective decay rate in the case of the non- fault-tolerant parity measurement will decrease only as the square-root of 
the inverse of the coherence time of the qubit, the effective decay rate for the fault-tolerant case will decrease linearly with 
the inverse of the coherence time of the storage cavity. Note moreover that the recent improvement in coherence times of 
microwave resonators with respect to superconducting qubits further intensifies this difference between the performance 
of fault-tolerant and non-fault-tolerant schemes. In practice, one possibility to ensure such a fault-tolerance of the error 
syndrome measurement is to actively protect the meter (here the transmon qubit) against the problematic decay channel 
(here T1 decay). Remembering that phase-flip errors of the transmon qubit do not imply an erasure of quantum information, 
and potentially lead to erroneous syndrome measurements that could be corrected for by subsequent measurements (see 
Subsection 2.3), one only needs to take care of bit-flip errors. Thus replacing the transmon qubit by a three-qubit bit-flip 
code [10] is, in principle, enough to protect the system against the propagation of the errors of the meter. Finally, noting 
that one does not even need to fully correct or even detect such bit-flip errors, but merely replace them with phase-flip 
errors, we should be able to further simplify this protection protocol. Such a photon-number parity measurement, together 
with an experimental realization of the four-photon driven dissipative process and the associated logical gates, based on 
Zeno-type dynamics, provide a full set of fault-tolerant (with respect to the decoherence channels of the involved quantum 
systems) gadgets for universal quantum computation.

Another important direction concerns the extension to higher-order error correcting codes. The above protocol, based 
on repeated monitoring of photon-number parity observable, enables the protection against single photon losses during 
a measurement step. Indeed, two quantum jumps during a measurement step lead to an effective bit-flip error in the 
code space: it sends the state |C0mod4

α 〉 to |C2mod4
α 〉 and vice versa. By remaining in the code space, such an error is neither 

tractable by parity measurements nor by any other type of measurements. One therefore needs to think of another encoding 
of quantum information to correct for multiple jumps. Throughout the supplementary material of [12], we provided some 
preliminary ideas based on encoding quantum information in a superposition of 2n coherent states to achieve an nth order 
code. This consists in encoding the information in two logical qubit states of the form

|0L〉 = |C0mod(2n)
α 〉 = N (

2n−1∑
k=0

|eikπ/nα〉),

|1L〉 = |Cnmod(2n)
α 〉 = N (

2n−1∑
k=0

|(−1)keikπ/nα〉).

A repeated monitoring of the observable corresponding to the number of photons modulo n would then enable us to track 
up to (n − 1) quantum jumps during a single measurement step. Such an encoding, however, comes at the expense of 
increasing the required average number of photons (to avoid the overlap of the coherent components). Indeed, it turns out 
that when considering such an encoding in Schrödinger cat states with much larger number of components, the protection 
stops improving the coherence time and this coherence time will even start to decrease for very large values of n. Here a 
possible direction to bring these ideas closer to a real nth order correction, leading perhaps to a threshold theorem, would 
be to consider a few coupled cavity modes, instead of a single one, to avoid the requirement for encoding in Schrödinger 
cat states of very large size.

I have overviewed a series of recent theoretical proposals to achieve hardware-efficient quantum computation with 
protected qubits encoded in Schrödinger cat states of a single superconducting cavity. The preliminary, but very significant, 
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experiments in this regard have illustrated the great promise that such an approach provides for a fast development of 
the field of quantum information processing within this framework. These proposals can be extended and improved in 
various directions. Design and implementation of fault-tolerant photon-number parity measurements, of a device enabling 
the four-photon driven dissipative process, and the required Hamiltonians for the fault-tolerant gates are some of these 
directions, which require a significant investigation of both theoretical and experimental aspects. Furthermore, extensions of 
the protocols towards more efficient fault-tolerant gates (in particular rotations around the Z axis of the logical qubit) and 
towards higher-order codes require an intensive research on the theoretical side.
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