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When a fiber Bragg grating strain sensor is embedded inside a structure, the interaction 
of the sensor with the host material can lead to spurious results if the radial strain is 
neglected. In this article, we use numerical simulations to show that the axial and radial 
strains can be simultaneously measured with a single fiber in which a Bragg grating and a 
long-period grating are superimposed. Moreover, we present an optimal architecture of the 
sensor.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Une nouvelle architecture de capteur de déformations à fibre optique basée sur la 
superposition d’un réseau de Bragg et d’un réseau longue période est proposée afin de 
mesurer, à partir de deux signaux linéairement indépendants, les déformations transverse 
et longitudinale dans un milieu hôte. Un dimensionnement du capteur est réalisé par 
résolution numérique des conditions de résonance des réseaux ; il est démontré la 
possibilité d’évaluer simultanément ces déformations sans altération de la précision des 
mesures par rapport aux capteurs de déformation à fibre optique classiques.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fiber Bragg gratings (FBG) are made of periodic modulations of the refractive index of the core of an optical fiber. As a 
consequence, they behave as bandpass filters and reflect a very narrow spectral band of the incoming light, centered on the 
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Bragg wavelength: λB = 2neff�0, where neff is the effective index of the light propagating inside the core and �0 the period 
of the grating. Any change in the period of the grating or in the effective index induces a shift in the Bragg wavelength.

FBGs are often used as strain sensors (see, for example, [1–5]). Indeed, when the fiber is strained, the period of the 
grating is modified. Moreover, due to the photo-elastic effect, the effective index also varies:

�λB

λB
= �neff(ε)

neff
+ ��

�
(1)

What should be underlined is that the variation of the effective index depends on the strains in all directions:

�

(
1

n2
i j

)
= pijklεkl (i, j,k, l = 1,2,3) (2)

where pijkl are the components of the photo-elastic tensor and εkl the components of the strain tensor ε. For a classic 
optical fiber, when the strain is isotropic in the cross section of the sensor, and under the approximation that the effective 
index change is the same as the change in the index of the bulk material:

�neff

neff
= −n2

eff

2
[(p11 + p12)εr + p12εz] (3)

where εr = ε11 = ε22 is the radial strain and εz = ε33 the axial strain [6,7].
When the fiber is glued at two points on the surface of the monitored structure, its axial strain, εz , is exactly the same 

as the strain of the structure. Moreover, as the fiber is free to deform in the transverse plane, its radial strain εr is driven 
by the axial strain: εr = −νεz , where ν is the Poisson’s ratio of the fiber. In this case, the axial strain is the only unknown 
and the measurement of a single Bragg wavelength shift is then sufficient:

�λB

λB
= �neff

neff
+ εz =

{
1 − n2

eff

2
[p12 − ν(p11 + p12)]

}
εz (4)

This is why FBG strain sensors are usually mounted at the surface of the structure. Equation (4) is the classical relation 
between Bragg wavelength shift and strain.

When the fiber is embedded, it is not free anymore to deform in the transverse plane. Its radial strain then depends 
in a non-trivial manner on the interaction between the fiber and the host material. It can not be deduced simply from 
the axial strain. Then the axial and the radial strains must be simultaneously determined. This implies that two linearly 
independent measurements have to be performed at the same point, which in turn requires specific sensors. In order to 
measure these two unknown strains, several architectures are possible. Among them, the most encouraging ones are based 
on: the superposition of two FBG of different periods [8], the use of a Bragg grating written in a birefringent optical fiber 
[9,10], and the superposition of a FBG and a LPG [11–13]. Nevertheless, the sensor made up of superimposed long-period 
and short-period Bragg gratings appears to be the only one to have a resolution on the axial strain measurement similar to 
the resolution of FBG strain gage [14].

The first section is devoted to the study of the limits of the classical relation (4) between the Bragg wavelength shift 
and strain. This study underlines the need for a new architecture of embedded sensors. So, in the second section, we study 
numerically the efficiency of an architecture made of the superposition of a long- and of a short-period grating [14]. Then 
we look for configurations that can fulfill the following requirements:

– the sensor has to measure simultaneously the radial and axial strains with the same precision on the axial strain as the 
FBGs mounted on surface, i.e. 1 με;

– the transmission spectrum of the sensor has to exhibit only two peaks in the range [1400 nm; 1600 nm], one associated 
with the FBG and one to the Long-Period Grating (LPG) in order to avoid any ambiguity in the order of the mode of the 
LPG;

– the response of the sensor must be linear in the range εr,z ∈ [−5000 με; +5000 με].

2. The need for a simultaneous measurement of axial and radial strains

2.1. Single fiber in uniaxial tension

When the fiber submitted to a uniaxial tension is free to become deformed in the transverse plane, the radial and axial 
strains are linked by the Poisson ratio. However, even in this case, equation (3) is an approximation. It is right for the 
refractive index of the core n1 and the refractive index of the cladding n2, but not for neff, since neff is not the index of a 
bulk material, but an effective index. Indeed, the light inside an optical fiber propagates in the core and also in the cladding. 
Then, it experiences a refractive index, which is neither the index of the core nor the index of the cladding, but somewhere 
in between.
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Fig. 1. Fiber in uniaxial tension.

By solving the Maxwell equations in the fiber with appropriate boundary conditions, one shows that neff is the solution 
to:

Fc(a1,n1,n2, λ) = qK0(q) J1(h) − h J0(h)K1(q) = 0 with h = u1

√
n2

1 − n2
eff and q = u1

√
n2

eff − n2
2 (5)

where J and K are Bessel functions, a1 is the core radius, and u1 = 2πa1/λ. As we can see, neff depends on both the 
material characteristics and the geometry of the fiber.

When the fiber is strained, the refractive indices of the core and the cladding vary according to equation (3) and the 
change in the core radius is �a1/a1 = −νεz . The exact associated variation of neff must be calculated thanks to equation (5)
using the modified indices and radius. Fig. 1a shows the difference between the exact effective index and the approxi-
mation given by equation (3) for a SMF28 fiber (n1 = 1.4496; n2 = 1.4444; a1 = 4.2 μm) at 1550 nm. The maximum is 
approximately 2·10−5 for a 10000-με axial strain.

For FBG, an error of 10−5 on the effective index induces an error of ten picometers on the Bragg wavelength. This 
corresponds to about ten με according to equation (4). But, as a matter of fact, there is another source of inaccuracy in 
this equation. Indeed, in the resonance equation of Bragg wavelength, neff depends on the Bragg wavelength itself via the 
dispersion equation (5). In order to retrieve the right Bragg wavelength, one has to take into account the variations of the 
characteristics of the fiber with the wavelength. In the transparency regions, the variations of n2 are well described by a 
Sellmeier law:

n2
2(λ) = 1 +

N∑
j=1

A j

(
1 − λ2

j /λ
2
)−1

(6)

where A j and λ j are material parameters. We will subsequently use the coefficients of quenched SiO2 [15]. The index of 
the core is given and n1 = 1.0036n2.

In order to determine λB0, that is the Bragg wavelength of the grating at rest, the resonance condition is used to substi-
tute neff0, the effective index at rest by its expression as a function of λB0: neff0 = λB0/(2�0 in the parameters h and q of 
equation (5), which is solved in λB0 by using a bisection method.

The same procedure is used when the grating is strained, with the following parameters: � = �0(1 + εz), a1 = a10(1 −
νεz) and ni(λ) = ni0(λ) − n3

i0(λ) [p12 − ν(p11 + p12)]εz/2 where i = {1, 2}.
Fig. 1b shows the difference between the Bragg wavelength computed thanks to expressions (4) and (3) and the real 

one calculated with the previous method. The error can reach several hundred picometers, because the variations of n1 and 
n2, and consequently of neff , are of the order of 10−4 when the wavelength changes by few nanometers. This leads to a 
significant error on the strain: as shown by Fig. 1c, it is close to 200 με for an axial strain of 10000 με .

As a conclusion, the relations (4) and (3) are approximated, even for the bare fiber submitted to uniaxial tension. Their 
relative accuracy is of the order of 2%. If one wants to eliminate this source of uncertainty without being obliged to deter-
mine the intrinsic characteristics of the fiber, one has to calibrate the response of the fiber as a function of the strain.

2.2. Fiber embedded in transversally isotropic composite materials in uniaxial tension

Once the fiber is embedded in a part, there is a mechanical coupling between the sensor and the studied material. 
In order to understand how the fiber becomes deformed, we study the problem of two concentric cylinders in uniaxial 
tension (see Fig. 2). The central cylinder of radius R i corresponds to the sensor while the hollow cylinder of external 
radius Re corresponds to the host material. The fiber is uncoated; consequently the material chosen to model the fiber is a 
homogeneous and isotropic cylinder of silica. The host material is a transversally isotropic composite material oriented in the 
same direction as the reinforcement fibers (as shown in Fig. 2). Then, in the rest of this paper, the quantities superscripted 
f stand for the FBG, while those superscripted h stand for the host material.
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Fig. 2. Analysis of FBG axial strain taking into account the effect of the mechanical coupling due to the strain of host material exerted on the fiber in the 
radial direction.

The displacement field −→u in the fiber and in the external cylinder is written as (see [16]:

−→u f,h =
{

uf,h
r

−→er

uf,h
z

−→ez
=

{
C f,hr + Df,h

r
−→er

K f,hz −→ez
(7)

where r is the radial cylindrical coordinate, while C f,h, Df,h and K f,h are constants given by the boundary conditions of the 
problem. With the displacement field, we obtain the strain tensor such as: ε = 1

2 (∇−→u + ∇−→uT) and then the stress tensor 
with: ε = D σ with ε = 〈εzz, εrr, εθθ , 

√
2εrθ , 

√
2εzθ , 

√
2εzr〉T, σ = 〈σzz, σrr, σθθ , 

√
2σrθ , 

√
2σzθ , 

√
2σzr〉T and Dij = 0 except 

D11 = 1/E l = D22 = D33 = 1/Et, D12 = D13 = D21 = D31 = −νlt/E l , D23 = D32 = −νtt/Et, D44 = (1 + νtt/Et and D55 =
D66 = 1/(2G), where the subscript l stands for the longitudinal direction −→ez while t stands for the transverse directions 
(which are in the plane of the fiber cross section).

A uniform tensile strain is imposed on the specimen εz ≈ σ h
z /Eh

l , but it remains free to move in the radial direction. The 
boundary conditions allowing us to calculate the six unknown constants are the following:

(i) no radial displacement at r = 0 uf
r(0) = 0 ⇒ Df = 0;

(ii) equality of the axial displacement uf
z = uh

z ⇒ K f = K h = εz; we assume a perfect bonding between the optical fiber and 
the host material. This assumption was verified experimentally before [17];

(iii) continuity of the radial displacement at the interface between the FBG and the specimen uh
r (R i) = uf

r(R i) ⇒ Ch R i + Dh

R i
=

C f R i;
(iv) continuity of the radial stress at the interface σ f

rr(R i) = σ h
rr(R i)

(v) no radial stress on the specimen external surface σ h
rr(Re) = 0.

The radial strain of the optical fiber thus computed is a function of Re and R i , the external and internal radii of the 
instrumented specimen. In order to generalize this result to any geometry of the host structure, the following hypothesis is 
made: R2

i /R2
e � 0. This implies that: εf

r = C f ≈ − κεz where:

κ = −νf E f − νf E fνtt − νtl E l + νtl E lν
f + 2νtl E l(ν

f)2

−E f − E fνtt − Et + Etνf + 2Et(νf)2
(8)

For isotropic materials, νtt = νtl = νh and E l = Et = Eh, where νh is the Poisson ratio of the host material and Eh its 
Young modulus. One can notice that in this case, if νf = νh then κ = νf as expected.

Equation (8) shows that the radial strain εf
r = C f ≈ − κεz is really constant in the sensor, but that it is not equal to 

−νfεz . There is a mechanical coupling between the strain in the specimen and that in the fiber. Consequently, the strain in 
the fiber depends on the material properties in which it is embedded. Thus, using equation (3) and considering εf

r = −νεz

fails to estimate εz . The error done depends on the properties of the couple of materials used for the specimen and the 
optical fiber. Fig. 2 allows us to estimate it when the host material is homogeneous. It shows the relative difference between 
εz , calculated with the approximated relation: εf

r = − νfεz and εz calculated with the correct relation: εf
r = − κεz for 

a given value of �λ
λ

(calculated with p11 = 0.113, p12 = 0.252, neff = 1.447467 [18]). In order to draw this figure, 
we have settled the following material properties for the optical fiber: νf = 0.17 and E f = 70000 MPa. For a fixed Poisson 
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Fig. 3. The two different boundary conditions for the cylinder in thermal load analysis.

Table 1
Difference between the real strains and the strains measured by a single FBG.

Free cylinder Fixed sections

Axial strain Radial strain Axial strain Radial strain

Calcul −11400 με 1562 με 0 με −438 με
FBG −11200 με X 209 με X

ratio, the higher the Young’s modulus of the host material is, the more important it is to consider the effect of the radial 
strain exerted on the sensor. Thus, the effect of the radial strain on the measurement of an FBG axial strain will be nearly 
negligible if it is embedded in a pure polyester resin. Conversely, this phenomenon could lead to substantial errors in the 
interpretation of the FBG axial strain in materials such as fiber-charged resins or in transversally isotropic composites. More 
than 1% of error is done using νf instead of κ in equation (1) in the case of an epoxy (E = 3.1 GPa, ν = 0.4) carbon fiber 
transversally isotropic composite (E = 130 GPa, ν = 0.4 [19]) containing 75 percent fiber by volume.

Different ways of performing an accurate measurement with an embedded FBG are available, taking into account the 
effect of the radial strain on the shift of Bragg wavelength:

– to perform an experimental calibration of the sensor [20], which implies to use exactly the same materials as in the 
final environment;

– to use the previous analytical model, which implies having a thorough knowledge of Eh and νh;
– to know εr and use the relations (3) and (1).

The last method requires a sensor capable of measuring simultaneously the radial and the axial strains, as described in 
section 2.

2.3. Thermal loads

We will now consider a fiber embedded in a heat-hardening resin as used in the composite material. We suppose that 
a FBG has been set up in the mold before resin injection. The initially liquid resin is heated and becomes solid. During 
cooling, it imposes a mechanical stress on the fiber axially as well as radially. This case should happen in production 
process monitoring. The following study focuses only on the post-cure process. At this stage, the resin is in a solid state, 
but it keeps on cooling down. In spite of the temperature change, the stiffness and the strength of the resin do not evolve 
anymore. Consequently, its Poisson’s coefficient and its Young’s modulus may be assumed unchanging.

We assume that the FBG is embedded in a 20-mm-diameter epoxy resin cylinder whose Young modulus is 3100 MPa, 
Poisson ratio is 0.4, and thermal expansion coefficient is 114·10−6 K−1. A drop of 100 K in temperature is imposed on the 
structure. As in the previous problem, the displacement and strain field are given by relation (7). Nevertheless, the Hooke’s 
law includes here an additional term relative to the thermal change, i.e.

σ = λtr(ε)I + 2με − (3λ + 2μ)α�T I (9)

where α is the thermal expansion coefficient, μ = E
2(1+ν)

and λ = νE
(1−2ν)(1+ν)

are the Lamé coefficients.
Two different boundary conditions are considered here (cf. Fig. 3). Firstly, the cylinder is free to undergo axial and radial 

deformations. In the second case, the radial surface is free, while the upper and lower sections are fixed. Table 1 shows the 
values of the axial strain obtained if the Bragg wavelength shift is analyzed with equation (4) expanded with a term related 
to the thermal change. For the cylinder free to undergo axial and radial deformations, the analysis of the wavelength shift 
according to equation (4) and the additional term a�T provide an axial strain εz of −11234 με , which gives a relative error 
of 1.45% with the real strain of −11400 με . For the cylinder with fixed upper and lower sections, the drop of 100 K in 
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Fig. 4. Geometry of sensor. The red and green lines represent the variation of the refractive index of the core corresponding to the LPG and the FBG.

temperature causes a radial strain εh
r = −15960 με in the resin and εf

r = − 438 με in the FBG, and therefore a shift in the 
Bragg wavelength of −0.974 nm. The analysis of this data using relation (4) leads us to conclude that the FBG undergoes 
an axial extension of 209 με , while it actually undergoes a purely radial strain.

Of course, the two previous case studies are purely academic. The real difficulty in the analysis of optical signals for 
applications in production process monitoring is that the boundary conditions are very seldom well known. So the real 
boundary conditions would not probably be the same as in any of the two cases studied here, which shows the necessity 
to measure both the axial and radial strains.

3. The dual grating sensor

3.1. Architecture of the sensor

The sensor is made of the juxtaposition of two gratings of same length inside the core of a fiber, surrounded by two 
concentric claddings (see Fig. 4). Both gratings can be written using UV light with the same phase mask technique. The best 
is to write first the Bragg grating with one mask and then the long-period grating with another mask [21]. This procedure 
enables us to superimpose these two gratings without degrading their spectral response [13].

We call a1 the radius of the core and n1 its refractive index, a2 the radius of the inner cladding and n2 its index, and 
a3 the radius of the external cladding and n3 its index. So that only one mode propagates in the core of the fiber, the 
coefficients a1, n1 and n2 are fixed at the same values as those of a classical SMF28 fiber, as in section 2.

The first grating is a classical fiber Bragg grating. It reflects a narrow bandwidth of the incoming light centered on the 
Bragg wavelength λB. As a consequence, its transmission spectrum exhibits a hole around λB. The value of λB is given by 
the condition of resonance:

λB = 2ncore
eff (a1, n1, n2, λB)�B (10)

where �B is the period of the grating and ncore
eff the effective index of the mode that propagates inside the core. It is given 

by the dispersion equation [22]:

Fc
(
a1,n1,n2,ncore

eff , λ
) = 0 (11)

The second grating is a long-period grating that couples the mode inside the core to resonant inner cladding modes. The 
wavelengths of resonant cladding modes are given by:

λLPG =
[
ncore

eff

(
ai, ni, λ

m
LPG

) − nclad
eff,m

(
ai, ni, λ

m
LPG

)]
�LPG (12)

where �LPG is the period of the grating and nclad
eff,m the effective index of the mth cladding mode. It is given by the dispersion 

equation of the cladding modes [22]:

F g

(
a1,a2,n1,n2,n3,ncore

eff ,nclad
eff , λ

)
= 0 (13)

The light propagating inside the cladding gradually vanishes because of inhomogeneities and micro-bending. The transmis-
sion spectrum of the LPG exhibits then holes around each λLPG.

The coupling coefficient κm between a cladding mode m and the core mode [23]:

κm = ωε0n2
1

2

2π∫
0

dθ

a1∫
0

rdr Em
t ·E∗

0t (14)

gives the strength of the coupling and then the depth of the hole in the spectrum.
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3.2. Principle of the measurement

When the fiber is strained, the period of the gratings, the radii and the indices of the three layers change. The variation 
of the period of each grating depends on the axial strain: � = (1 + εz)�0, where �0 is the period of the grating at rest, 
while the changes of the radii depend on the radial strain: ai = (1 + εr)a0i for i = {1,2,3}, where a0i is the radius at 
rest of the layer i. The variation of the refractive indices depends on both strains, due to the photo-elastic effect: ni =
ni0 −n3

i0 [(p11 + p12) εr + p12εz]/2 for i = {1,2,3}, where p11 = 0.113, p12 = 0.252 are the components of the photo-elastic 
tensor of silica [18]. According to equations (11) and (13), the variations of the radii and of the refractive indices induce a 
variation of the effective indices of the core mode and of the cladding modes. All these changes cause a shift in λB and λLPG, 
which can be expressed in the linear regime as the first system given by equation (15), where α1r and α1z are respectively 
the sensitivity of the FBG to the radial and axial strain, and α2r and α2z are respectively the sensitivity of the LPG to the 
radial and axial strains. In a real experiment, one would measure these two shifts in wavelength and deduce the strains by 
inverting this system:

{
�λB = α1rεr + α1zεz

�λLPG = α2rεr + α2zεz
⇒

⎧⎪⎨
⎪⎩

εz = α1r�λLPG − α2r�λB

D

εr = α2z�λB − α1z�λLPG

D

(15)

where D = α1rα2z − α2rα1z .
The smallest measurable axial �εz and radial �εr strains can be derived from (15) using an uncertainty calculation:⎧⎪⎪⎨

⎪⎪⎩
�εz = |α1r | + |α2r |

|D| δλmin

�εr = |α1z| + |α2z|
|D| δλmin

(16)

where δλmin is the smallest measurable wavelength shift. It is usually of the order of 1 pm. Equation (16) shows that the 
largest D is, the better the resolution is.

3.3. Method to determine optimal architecture

The aim of the study is to find an architecture that meets the specifications described in the Introduction. The parameters 
are a1, a2, a3, n1, n2, n3, λB, and λLPG. The number of parameters can be reduced with the help of physical considerations. 
As stated above, the characteristics of the core and the refractive index of the inner cladding are chosen to be the same 
as those of a single-mode SMF28 fiber. The outer cladding serves to isolate the modes of the inner cladding from the 
environment of the fiber. Its radius must be sufficiently large so that the cladding modes amplitudes fall to zero well before 
the interface between the outer cladding and the external medium. In practice, a3 = a2 + 15 μm is enough. In contrast, the 
refractive index of the outer cladding n3 influences very little the properties of the grating. It can be arbitrarily chosen in 
the range [1.; n2[. We use the value n3 = 0.95 n2, which is compatible with silica. The period of the Bragg grating is fixed at 
501 nm in order to obtain a Bragg wavelength of 1.45 μm. Finally, the only free parameters are a2 and �LPG.

In order to determine the best couples of parameters {a2, �LPG}, we proceeded to a systematic exploration of the param-
eters’ space, with �LPG varying from 100 μm to 500 μm by steps of 5 μm, and a2 varying from 15 μm to 70 μm by steps of 
0.5 μm. Values of a2 smaller than 15 μm were not considered because in this case the inner cladding is not large enough 
to isolate the core mode from the outer cladding.

For each couple {a2, �LPG}, we first determined the wavelength of the resonant cladding modes of the unstrained sensor 
using (11), (12), and (13). We only kept the couples for which only one mode was present in the range [1400 nm, 1600 nm]. 
Then we applied a radial strain comprised in the range [−5000 με; +5000 με], the axial strain remaining null. For each 
strain, the new radii and indices were calculated with the help of (11) and (13). This led to the new values of λB and 
λLPG, from which were deduced the shifts �λB and �λLPG. Then a linear regression gave the sensitivity α1r of the Bragg 
wavelength and α2r of the long-period grating to the radial strain. The same procedure was used to calculate the sensitivity 
of the FBG and of the LPG to the axial strain.

4. Results

Fig. 5 shows a cartography of the coupling coefficient κ and of the parameter D for the first five odd cladding modes, as 
a function of a2 and �LPG. Even modes are not considered since their coupling coefficient is almost zero.

The white areas in each graph correspond to configurations where λLPG is outside the range [1400 nm; 1600 nm]. For 
each mode and for both D and κ , the shape of the colored area looks like a comma, which tip is close to the lowest �LPG
and the lowest a2. Above mode 5, the tip is split into two parts, with a dead zone where no mode falls in the desired range. 
The sign of D changes through the critical zone and the coupling coefficient abruptly falls to zero. This corresponds to a 
change in the modal properties of the cladding.
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Fig. 5. Evolution of D and κ as a function of a2 and �LPG.

As stated by (16), the highest sensitivity is obtained with the largest values of D . For each mode, the largest values of 
D are located in the tip of the comma, i.e. for the smallest values of �LPG and the smallest values of a2. What is very 
interesting is that the highest coupling coefficients are also localized at the tip of the comma. This means that a couple 
{a2, �LPG} can provide at the same time a good resolution and a good coupling.

However, it is not possible to choose the configuration with the highest D since other specifications have to be fulfilled. 
In particular, the shifts of wavelength must linearly evolve with the strain in the range [−5000 με; +5000 με]. In order to 
quantify the linearity of the behavior of the long-period grating, we use the estimate Cmoy = (|Cεr | +|Cεz |)/2 where Cεr and 
Cεz are defined as:

Cε =
[

N∑
i=0

(εi − εi)
(
�λm

LPG − �λm
LPG

)][
N∑

i=0

(εi − εi)
2
(
�λm

LPG (εi) − �λm
LPG

)2
]− 1

2

(17)

where N is the number of samples of strain εi for which �λm
LPG was calculated and x is the mean value of x. The parameter 

Cε is the linear correlation coefficient, its value is between −1 and 1. The more |Cε | is close to 1, the more the wavelength 
shift �λm

LPG is linear with the strain ε .
Fig. 6a shows the estimate Cmoy as a function of D for modes 1 to 9. Surprisingly, the values are placed on the same 

curve for all the modes. This curve presents a maximum for D = 1.75 pm2/με2. We choose this value for the sensor. This 
is not a sufficient condition to fix the couple {a2, �LPG}, so we require a complimentary condition: λLPG = 1.55 μm. This 
value is far enough from λFBG, so that no collapsing can occur between the FBG and the LPG resonant wavelengths when 
the strain increases.

The dark lines on the graphics in Fig. 6 correspond to the points where D = 1.75 pm2/με2 and the blue lines to the 
points where λLPG = 1.55 μm. The intersections between these lines give the couples {a2, �LPG} that meet all the require-
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Fig. 6. Determination of the optimal configuration for different modes.

Fig. 7. Optimal gratings.

ments. Table 2 summarizes the characteristics of long-period gratings given by these intersections for the five first modes. 
All these gratings present very similar sensitivities α2r and α2z and close periods �LPG. In contrast, they exhibit quite differ-
ent coupling coefficients. The coupling coefficients of mode 1 are almost twice the coupling coefficient of mode 9. Moreover, 
the radius of the inner cladding for mode 1 is smaller than those of other modes, which makes it less sensitive to bending. 
That is an other interesting feature.

At this step, we retain two configurations: LPG1: {a20 = 15.45 μm, �LPG = 399.25 μm} with mode m = 1 and LPG2: 
{a20 = 26.14 μm, �LPG = 383.93 μm} with mode m = 3. The last requirement that they have to fulfill is to present a single 
peak in the range [1400 nm; 1600 nm] whatever the strain.

Figs. 7 show the transmission spectrum of LPG1 and LPG2 together with the variation of the resonant wavelength as 
a function of the period of the grating: the straight line corresponds to the variation when the grating is at rest and 
the dashed lines to the maximum redshift and the maximum blueshift. The lengths of the gratings have been chosen to 
maximize the depth of the hole in the transmission spectrum. For LPG1, mode 1 is the only one resonant in the desired 
wavelength range. In fact, no other mode is resonant in the range of wavelengths [1300 nm, 1700 nm] for the considered 
range of strain [−5000 με; +5000 με]. For LPG2, we can see that modes 2 and 4 are close to the border. However, these 
modes do not interfere since their coupling coefficients are negligible. These two configurations can then be used.

We finally present in Fig. 8 the whole spectrum of the sensor with LPG1. The green solid line corresponds to the sensor 
at rest, the blue dash-dot line to the strain that gives a maximal blueshift and the red dashed line to the strain that gives a 
maximal redshift. We can notice a slight shift of λLPG in the absence of strain. This shift is due to the juxtaposition of the 
FBG. We can also notice the apparition of several narrow holes for wavelengths smaller than λB . These holes correspond to 
the coupling between cladding modes and the core mode induced by the FBG. However, these complementary holes do not 
induce confusion since their wavelengths are always smaller than λB.

Fig. 8 shows the variation of the wavelength shifts of the FBG and the LPG as a function of εz and εz . As expected, the 
response of the sensor is quite linear. The deviation from linearity does not exceed 50 με for a strain of 5000 με , i.e. 1%. The 
sensitivity of the FBG to the axial strain is α1z = 1.068 pm/με , and the one of the LPG is α2z = 0.434 pm/με . The sensitivity 
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Fig. 8. Response of the sensor to axial and radial strains.

of the FBG to the radial strain is α1r = −0.555 pm/με and the one of the LPG is α2r = −1.895 pm/με . From this values, 
and assuming that the smallest measurable wavelength shift is 1 pm, we deduce from (16) that the smallest measurable 
radial strain is �εr = 1.4 με and the smallest measurable axial strain is �εz = 0.85 με .

5. Conclusion

In this article, we studied an optical fiber sensor designed to discriminate axial and radial strains when embedded in a 
material host. The sensor is made of the juxtaposition of a fiber Bragg grating and of a long-period grating inside the core 
of a three-layer optical fiber. The specifications were designed to obtain a linear response of the sensor and a resolution 
similar to that of the classical strain gauge for the axial strain resolution, i.e. 1 micro-strain. Among all the parameters, we 
identified two relevant ones: the radius of the inner cladding and the period of the long-period grating. We then searched 
optimal values of these parameters and found several configurations. The most promising ones are associated with cladding 
mode orders 1 and 3. These configurations present smaller radii of inner cladding, which makes the sensor less sensitive 
to bending, and higher coupling coefficients that allow smaller lengths for the gratings. They allow us to measure the axial 
strain with a resolution of 0.85 με and the radial strain with a resolution of 1.4 με . This result is a real advance in strain 
measurement, since a classical embedded strain fiber sensor can not discriminate axial and radial strain. Moreover, the 
resolution on axial strain of a FBG mounted on a surface is of the order of 1 με . The range of measurable strain with a 
linear response is [−5000 με; +5000 με]. In this range, the deviation from linearity is less than 1%. All these properties 
can make this sensor a very useful tool for the measurement of strain inside structures. The next step is to investigate its 
sensitivity to bending.
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