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Thermoelectric devices are heat engines, which operate as generators or refrigerators using 
the conduction electrons as a working fluid. The thermoelectric heat-to-work conversion 
efficiency has always been typically quite low, but much effort continues to be devoted 
to the design of new materials boasting improved transport properties that would make 
them of the electron crystal–phonon glass type of systems. On the other hand, there are 
comparatively few studies where a proper thermodynamic treatment of the electronic 
working fluid is proposed. The present article aims at contributing to bridge this gap 
by addressing both the thermodynamic and transport properties of the thermoelectric 
working fluid covering a variety of models, including interacting systems.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les dispositifs thermoélectriques sont des machines thermiques pouvant opérer en mode 
générateur ou réfrigérateur en utilisant les électrons de conduction comme fluide de 
travail. Le rendement de conversion chaleur–travail a toujours été typiquement bas, mais la 
conception de nouveaux matériaux thermoélectriques fait l’objet d’efforts conséquents en 
vue d’obtenir des systèmes de type cristal électronique–verre de phonons. Par comparaison, 
il y a cependant un déficit de traitement approfondi des propriétés thermodynamiques 
du fluide de travail thermoélectrique. Le présent article vise à contribuer à combler 
cet écart en examinant les propriétés thermodynamiques et de transport du fluide de 
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travail thermoélectrique dans le cadre de différents modèles, incluant les systèmes en 
interaction.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In a general manner, transport phenomena are irreversible processes: the generation of fluxes within the system upon 
which external constraints are applied are accompanied by energy dissipation and entropy production [1]. Now, assume a 
thermodynamic system in which electric transport and heat transport may take place. Thermoelectric effects may be thus 
viewed as the result of the mutual interaction of two irreversible processes, electrical transport and heat transport, as they 
take place [2,3]. This mutual interaction may be quantified by the so-called degree of coupling [4] upon which the ther-
moelectric conversion efficiency depends. Owing to the coupling of electrical charges with heat transport (the strength of 
which is given by the Seebeck coefficient), thermoelectric systems thus form a most interesting class of heat engines, not 
only for practical purposes, but also from a fundamental viewpoint: some of the theoretical developments of the mathe-
matical relationships between forces and fluxes in coupled transport rest on the analysis of thermoelectric systems [2,5], 
and thermoelectricity is a touchstone for theories of irreversible thermodynamics [6]. On the practical side, thermoelectric 
devices may be used to collect and transform waste heat into electrical power, to pump heat for cooling or heating, and 
for temperature measurement. These devices are particularly reliable, even in hostile places, as demonstrated in the context 
of deep-space probe missions. Indeed, since thermoelectric phenomena are electronic in nature, their energy conversion 
efficiency is not system-size-dependent, their operation does not rely on moving parts, and there is no need for refrigerant 
fluids for coolers.

The thermoelectric performance is governed by the thermoelectric figure of merit [7,8]

Z T = σ S2T

κe + κph
(1)

where σ is the electrical conductivity, S the thermopower (or Seebeck coefficient), κe and κph the electronic and the 
phononic heat conductivities, respectively, and T the system’s temperature. To envisage applications for thermoelectric 
systems other than those for which sustainability and reliability are more important than low-level efficiency and high 
cost, values of Z T greater than 4 are mandatory [9]. The great challenge to increase thermoelectric efficiency relies on 
understanding the microscopic mechanisms that may allow one to control individually σ , S , and κ = κe +κph. However, the 
different transport coefficients are interdependent, making optimization extremely difficult and so far, no clear paths exist 
which may lead to reach that target. A significant example of this interdependence is the Wiedemann–Franz law [10], which 
states that for metallic materials, σ and κe are proportional, thus making metals poor thermoelectric materials in general.

The energy transferred by phonons represents a useless heat leak and recent efforts in materials science and engineering 
focused on strategies to lower lattice heat conduction [11,12], in particular in low-dimensional nanostructures where rough 
surfaces can efficiently scatter phonons [13,14]. On the other hand, even ideally reducing κph → 0, as in the electron 
crystal–phonon glass paradigm [15], would not by itself guarantee Z T � 1, due to the remaining electronic contribution 
κe to the thermal conductivity. However, it must be clearly mentioned that κe accounts for two physical phenomena: heat 
transfer by conduction (Fourier’s law) and heat transfer by electron convection [16], which is the so-called Peltier term of 
the heat flux [17]. Note that the latter represents the actual and global electronic movement within the conduction band of 
the system submitted to a thermal gradient, hence convection only can be seen as the “useful” contribution to heat transfer 
across the system. Here, we will thus rather focus on an aspect of thermoelectricity, which is nearly always neglected: 
investigate suitable strategies to improve the properties of the thermoelectric working fluid itself.

The article is organized as follows: in Section 2, we cover the thermodynamics and transport properties of the nonin-
teracting working fluid. We then focus on phase transitions in Section 3 and finally consider interacting working fluids in 
Section 4, covering momentum-conserving systems. In Section 5, we discuss the question of optimization of device oper-
ation, as the system’s working fluid is dissipatively coupled with a hot and to a cold temperature bath, and we end the 
article with concluding remarks.

2. The noninteracting thermoelectric working fluid

2.1. The Onsager approach to coupled transport

In the linear response regime, the relationship between currents and generalized forces is linear [18,19] and in the case 
of thermoelectric transport we have{

je = LeeFe + LehFh
j = L F + L F (2)

h he e hh h
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where je is the electric current density, jh is the heat current density, and the conjugated local generalized forces are given 
by Fe = −∇μ/eT and Fh = ∇(1/T ), μ is the electrochemical potential and e < 0 is the electron charge. The coefficients 
Lab (a, b = e, h) are known as kinetic coefficients or Onsager coefficients; we will denote L the Onsager matrix with matrix 
elements Lab .

The Onsager coefficients are subject to two fundamental constraints. First, the second law of thermodynamics requires 
the positivity of the entropy production rate,

ṡ = Fe Je +Fh Jh = LeeF2
e + LhhF2

h + (Leh + Lhe)FeFh ≥ 0 (3)

where s is the local entropy density. Eq. (3) is equivalent to the conditions

Lee ≥ 0, Lhh ≥ 0, LeeLhh − 1

4
(Leh + Lhe)

2 ≥ 0 (4)

Second, assuming the property of time-reversal invariance of the equations of motion, Onsager derived [2] fundamental 
relations, known as Onsager reciprocal relations for the cross coefficients of the Onsager matrix: Lab = Lba .

The kinetic coefficients Lab are related to the thermoelectric transport coefficients: the electrical conductivity σ , the 
thermal conductivity κ , the Seebeck coefficient S , and the Peltier coefficient �, as

σ = −e

(
je

∇μ

)
∇T =0

= Lee

T
(5)

κ = −
(

jh

∇T

)
je=0

= 1

T 2

det L

Lee
(6)

S = −1

e

(∇μ

∇T

)
je=0

= 1

T

Leh

Lee
(7)

� =
(

jh

je

)
∇T =0

= Lhe

Lee
(8)

For systems with time reversal symmetries, � = T S due to the Onsager reciprocal relations [17].
Using Eqs. (1) and (5)–(7), the thermoelectric figure of merit reads

Z T = L2
eh

det L
(9)

Thermodynamics only imposes a lower bound on the figure of merit: Z T ≥ 0, and the thermoelectric conversion efficiency 
is a monotonous increasing function of Z T , the ideal Carnot efficiency being achieved in the limit Z T → ∞. To understand 
why thermoelectric systems boast rather poor performance levels in terms of conversion efficiency, and how one may obtain 
high values of Z T , which ideally should be “only” greater than 4 for practical purposes, we must compute and analyze the 
transport coefficients.

2.2. Transport parameters

For non-interacting systems, Mahan and Sofo showed long ago [20] that the best thermoelectric efficiency can be ob-
tained in systems with energy filtering, namely where the energy width of the main conducting channel is very narrow. This 
result can be understood as follows. We can write the Onsager coefficients as [20,21]:

Lee = 2e2T K0, Leh = Lhe = 2eT K1, Lhh = 2T K2 (10)

where the factor 2 is due to spin degeneracy, and the integrals

Kn ≡
∞∫

−∞
dE(E − μ)n�(E)

(
−∂ f

∂ E

)
(11)

are written in terms of the Fermi distribution function f (E) = {exp[(E − μ)/kBT ] + 1}−1 and of the transport distribu-
tion function �(E), which can be derived both in the semiclassical Boltzmann approach [20] or using Green’s function 
techniques1 [22]. We can therefore write the transport coefficients as follows:

σ = 2e2 K0, κ = 2

T

(
K2 − K 2

1

K0

)
, S = 1

eT

K1

K0
(12)

1 In the Landauer approach, where conductances rather than conductivities are used, similar expressions are derived with the transport distribution 
function substituted by the transmission function [21,24,25].
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The Seebeck coefficient may be seen as the average value of the entropy involved in the thermoelectric transport, (E −μ)/T , 
over a probability density function given by the product of the transport distribution function and the energy derivative of f . 
In metals and degenerate semiconductors, where electrons above the Fermi level carry a heat current that is practically the 
opposite of that carried by the electrons below the Fermi level, the Seebeck coefficient is typically small: since E − μ
changes sign as E varies, it is essential that � presents an asymmetric profile [23] to avoid cancellation of K1.

The Carnot efficiency is achieved in the case of energy filtering, i.e. when the transmission is possible only within a tiny 
energy window around a value E = E� . Indeed, in this case from Eq. (11), we obtain Kn ≈ (E� − μ)n K0, and therefore

Z T = σ S2

κ
T = K 2

1

K0 K2 − K 2
1

→ ∞ (13)

On the other hand, the Wiedemann–Franz law is recovered in the limit of a broad and smooth transmission function. 
More precisely, we consider the Sommerfeld expansion [10] of integrals (11) to the leading order in kBT /EF, with kB being 
the Boltzmann constant and EF = μ(T = 0) being the Fermi energy. Such an expansion is valid for a smooth function �(E). 
The transport distribution function is approximated as follows:

�(E) ≈ �(μ) + d�(E)

dE

∣∣∣∣
E=μ

(E − μ) (14)

After inserting this expansion into (11), we obtain the leading order terms of the Sommerfeld expansion of integrals Kn:

K0 ≈ �(μ), K1 ≈ π2

3
(kBT )2 d�(E)

dE

∣∣∣∣
E=μ

, K2 ≈ π2

3
(kBT )2�(μ) (15)

In this derivation, we have used the fact that ∂ f /∂ E is an even function of ε ≡ (E − μ)/kBT . Hence, K0 and K2 are 
determined to the leading order by �(μ). In contrast, (E − μ)∂ f /∂ E is an odd function of ε , so that K1 is determined by 
the derivative d�(E)

dE

∣∣∣
E=μ

. We then derive from Eq. (12)

σ ≈ 2e2�(μ), κ ≈ 2π2k2
BT

3
�(μ) (16)

and from these relations we find the Wiedemann–Franz law

κ

σ T
≈ L (17)

where the constant value

L = π2

3

(
kB

e

)2

(18)

is known as the Lorenz number.
To derive the Wiedemann–Franz law, we have considered only the leading order term in the Sommerfeld expansion, 

i.e. we have neglected in the heat conductivity K 2
1/K0 with respect to K2. This in turn implies that LeeLhh � L2

eh and the 
thermal conductivity κ ≈ Lhh/T 2. When the Wiedemann–Franz law is valid, it is not possible to obtain large thermoelectric 
efficiency, as in this case the figure of merit Z T = L2

eh/det L ≈ L2
eh/LeeLhh 
 1. Consequently, to get large values of Z T , one 

should search for physical situations where the Wiedemann–Franz law is violated. For non-interacting particles, violations 
can occur in small systems where transmission shows a significant energy dependence [26–31] or in bulk systems in the 
vicinity of a phase transition, where the transport distribution function is not an analytic function.

2.3. Anderson transition

We consider first the metal-insulator transition in the three-dimensional Anderson model, and we define σ0(E) =
2e2�(E), so that

σ =
∞∫

−∞
dEσ0(E)

(
−∂ f

∂ E

)
(19)

In this case, σ0(E) corresponds to the T = 0 electrical conductivity of the system when the Fermi energy EF = E . In the 
Anderson transition, a mobility edge Em separates localized states (for E < Em) from extended states (for E > Em), and the 
zero temperature conductivity changes non-analytically at E = Em:

σ0(E) =
{

A(E − Em)x, if E ≥ Em
0, if E ≤ E

(20)

m
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where A is a constant and x the conductivity critical exponent whose value is unknown, in spite of several analytical and 
numerical methods used to attempt its evaluation [32].

We can here express the thermopower S , the ratio κ/σ T and the figure of merit Z T in terms of a single scaling 
parameter,

z ≡ μ − Em

kBT
(21)

We then calculate:

S = kB

e

∞∫
−z

dy y(y + z)x f ′(y)

∞∫
−z

dy (y + z)x f ′(y)

(22)

with f ′(y) = −1/[4 cosh2(y/2)] is the derivative of the Fermi function, and

κ

σ T
=

(
kB

e

)2

∞∫
−z

dy y2(y + z)x f ′(y)

∞∫
−z

dy(y + z)x f ′(y)

− S2 (23)

so that also the figure of merit Z T only depends on the scaling parameter z.
The ratio κ/σ T , the figure of merit Z T and the thermopower2 S , are depicted in Fig. 1, for various values of the critical 

exponent x. For low enough temperatures, that is, for kBT 
 μ − Em, the nonanalytic behavior of σ0(E) at the mobility edge 
is not relevant. We can therefore apply the Sommerfeld expansion and obtain

S ≈ π2

3

kB

e

( x

z

)
,

κ

σ T
≈ L, Z T ≈ π2

3

( x

z

)2
(24)

On the other hand, increasing the temperature, the non-analyticity at Em plays an important role, and the Sommerfeld 
expansion can no longer be applied; the Wiedemann–Franz law is then violated, and relatively large values of Z T may be 
obtained. More interesting enhancements of Z T can be obtained close to electronic phase transitions in interacting systems.

3. Phase transitions

A reasoning by Vining [33] suggests that large values of Z T can be expected near electronic phase transitions. First of all, 
we consider the thermal conductivity κ ′ at zero voltage (Fe = 0), which is related to the thermal conductivity κ measured 
at zero electric current as κ = κ ′ + σ S�. The thermoelectric figure of merit can then be written as

Z T = γK − 1, γk ≡ κ ′

κ
(25)

and we see that Z T diverges if and only if the ratio γk diverges. Of course, there is no such a thing as a liquid–gas phase 
transition in electronic systems, but other types of transitions, involving electron pairing mechanism as is the case for 
superconductivity, exist, and it is worthwhile to focus now on the thermodynamic properties of the working fluid itself 
rather than on transport.

Vining’s initial idea [33] was refined and developed by Ouerdane et al. [34]: the rationale of their analysis rests on 
the facts that thermoelectric transport is essentially a convective process [16], and that convection may be enhanced in 
the vicinity of a phase transition. The key point was then to see how to characterize the thermoelastic properties of the 
electronic working fluid and its capacity for enhanced convective transport. This they did by introducing the thermodynamic 
figure of merit, the meaning of which is physically transparent: it is related to the compressibility of the considered fluid and 
the Prandtl number, given by the ratio of the kinematic viscosity over the thermal diffusivity [35]. As a matter of fact, this 
characteristic number in fluid dynamics provides a direct link between the thermodynamic properties of the fluid and its 
capacity for convective transport.

Now, consider an open system characterized by the number N of particles, the electrochemical potential μ and the 
temperature T . We have [33]:

2 See Ref. [32] also for a detailed discussion of thermopower close to the Anderson transition.
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Fig. 1. Thermopower (in units of kB/e) (top left), ratio κ/σ T (in units of (kB/e)2) (top right), and thermoelectric figure of merit Z T (bottom) as a function 
of the inverse of the scaling parameter z = (μ − Em)/kB T , for different values of the critical exponent x.⎧⎪⎨

⎪⎩
dN =

(
∂N
∂μ

)
T

dμ + (
∂N
∂T

)
μ

dT ≡ CN N dμ + CNS dT

dS =
(

∂S
∂μ

)
T

dμ +
(

∂S
∂T

)
μ

dT ≡ CS N dμ + CS S dT
(26)

where S denotes the system’s entropy. These equations are formally similar to the coupled transport equations (2), with 
the capacity matrix C (with matrix elements Cab , a, b = N, S ) rather than the Onsager matrix L . Note that CNS = CS N due 
to the extended Maxwell relation(

∂N

∂T

)
μ

=
(

∂S

∂μ

)
T

(27)

Moreover, CS S ≡ Cμ is the entropy capacity at constant μ. Finally, the entropy capacity at constant N is

CN ≡
(

∂S

∂T

)
N

= det C

CN N
(28)

where the last equality is derived after setting dN = 0 in (26).
We now consider a thermodynamic cycle consisting of two constant electrochemical potential strokes dμ apart and 

two constant particle number strokes dN apart. The infinitesimal work performed by this cyclic process is −dμ dN and 
we can compare it with the work dS dT performed by a Carnot cycle consisting of two isothermal strokes dT apart and 
two adiabatic strokes dS apart. The ratio between the heat-to-work conversion efficiencies of the above two processes is 
therefore given by

η

ηC
= −dμdN

dS dT
(29)

As the Carnot efficiency for a cycle operating between temperatures T and T + dT is ηC = dT /T , we obtain
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η = −dμdN

T dS
= −dμ(CN N dμ + CNS dT )

T (CS N dμ + CS S dT )
(30)

and, similarly to thermoelectric transport, one can show [34] that the maximum efficiency of this thermodynamic cycle is a 
monotonous growing function of the thermodynamic figure of merit:

ZthT = C2
NS

det C
= γμN − 1, γμN ≡ Cμ

CN
(31)

We point out that ZthT is purely determined by the properties of the working fluid, without referring to thermoelectric 
transport. Consequently, it does not include any contribution from phonons, which instead affect the thermoelectric figure 
of merit Z T .

As a final step, we use the mapping μ → −p and N → V , with p and V pressure and volume of a gas. We then consider 
the infinitesimal work dp dV performed by a cycle consisting of two isobaric strokes dP apart and two isochoric strokes dV
apart and compare it again with the work dS dT performed by a Carnot cycle. By using the same steps as above for the 
μ − N system, we find that the heat to work conversion efficiency is a monotonous function of the thermodynamic figure 
of merit for the p − V systems:

ZthT = γpV − 1, γpV ≡ C p

C V
(32)

where

C p ≡ T

(
∂S

∂T

)
p
, C V ≡ T

(
∂S

∂T

)
V

(33)

are the heat capacity at constant pressure and volume, respectively. For a classical ideal (noninteracting) gas, 1 < γpV ≤ 5
3 , 

with the upper bound achieved for monoatomic gases. Hence, ZthT ≤ 2
3 . On the other hand, the ratio γpV (and Zth) can 

diverge for condensable gases, at the critical temperature Tc between the gas phase and the two-phase region (gas–liquid 
coexistence). The analogy with a classical gas suggests the possibility of large values of Zth close to electronic phase transi-
tions, strongly improving the thermoelectric properties of the working fluid with respect to noninteracting systems in their 
normal state. Indeed, it has been recently demonstrated [34] that ZthT diverges when approaching from the normal phase 
the critical point for the transition to the superconducting phase, in the fluctuation regime [36].

More specifically, to analyze the thermodynamic properties of the electronic working fluid near the superconducting 
phase transition, one needs a set of four thermoelastic coefficients: βN = (∂N/∂T )μ: analogue to thermal dilatation coeffi-
cient; χT N = (∂N/∂μ)T : analogue to isothermal compressibility; cμN = T (∂S /∂T )μ: analogue to specific heat at constant 
pressure; cN N = T (∂S /∂T )N : analogue to specific heat at constant volume. Application of the extended Maxwell’s relations 
yields β/χT = SN with SN = (∂S /∂N)T , which reflects the notion of entropy per particle introduced by Callen [3] and 
the ensuing thermodynamic definition of the thermoelectric coupling: sth = βχ−1

T /e.
The heat capacity at constant particle number can be derived from the knowledge of the free energy of the fluctuation 

Cooper pairs: cN = (−T /Ncp)∂2Fcp/∂T 2, where Ncp is the number of fluctuation Cooper pairs; the other three thermoelastic 
coefficients β , χT , and cμ are given below. For clarity, we give the derivation steps for χT ; the other two follow similar 
steps. For a many-particle system with energy distribution function f and density of state g , the number of particles N is 
given by:

N =
∞∫

0

g(E) f (E)dE (34)

By definition, χT N = (∂N/∂μ)T , and the first partial derivative of N with respect to μ at constant temperature takes the 
form:

∂N

∂μ
=

∞∫
0

g(E)
∂ f

∂μ
dE =

∞∫
0

g(E)

(
−∂ f

∂ E

)
dE (35)

since the density of state does not depend on μ and ∂ f /∂μ = −∂ f /∂ E . We thus obtain χT as well as the other two 
coefficients in the same fashion:

χT N =
∞∫

0

g(E)

(
−∂ f

∂ E

)
dE

βN = 1

Ta

∞∫
g(E) (E − μa)

(
−∂ f

∂ E

)
dE
0
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cμN = 1

Ta

∞∫
0

g(E) (E − μa)
2
(

−∂ f

∂ E

)
dE

where μa and Ta are the average values of the electrochemical potential and temperature across the considered system. The 
shape of the derivative of the Fermi function is given in Section 2.3.

As shown in Ref. [34], Zth may diverge at finite temperature in the fluctuation regime case, while it does not for the 
standard Bose and Fermi gases. This explains why thermoelectric devices, which use the noninteracting electron gas a 
working fluid, are not very efficient energy conversion devices, despite the intense efforts to improve their performance 
over decades. The fluctuation regime studied in Ref. [34], where phonons are put to work to bind electrons, shows that it is 
possible to prepare highly compressible electrically charged working fluids, but other electronic systems could also present 
enhanced thermoelectric properties as long as they boast a high-compressibility factor.

4. Interacting working fluids

4.1. General considerations

The thermoelectric properties of strongly interacting systems are of great interest, since their efficiency is not bounded 
by limitations due to the Wiedemann–Franz law, which applies for bulk non-interacting metallic-like systems. Moreover, 
experimental results on some strongly correlated materials such as sodium cobalt oxides revealed unusually large ther-
mopower values [37,38], in part attributed to strong electron–electron interactions [39] due to the d or f character of the 
band structure in the vicinity of the Fermi level, and also to the fact that oxides have both spin and orbital degrees of 
freedom, hence high entropy. Further, strong correlations may be acted upon to increase the power factor Sσ 2 through the 
tuning of crystal–field and spin–orbit coupling up to an optimum, as shown for correlated Kondo insulators in Ref. [40].

As a matter of fact, fairly little is known about the thermoelectric properties of strongly correlated systems. Theoret-
ical formalisms include the dynamical mean field theory [41] for non-perturbative computation of the self-energy of the 
many-body systems and of the thermoelectric and thermodynamic properties of, e.g., a hole-doped Mott insulator [42], the 
slave boson formalism [43,44] to treat the large on-site repulsion term in lattice models as in Ref. [40], and the Green–
Kubo approach employed below. Analytical results are thus rare and numerical simulations (Monte Carlo and numerical 
renormalization group), even if based on simple effective Hamiltonian models, such as the single-band Hubbard model or 
the single impurity Anderson model, are challenging. However, on the basis of the Green–Kubo formula, we can discuss a 
thermodynamic argument suggesting that the Carnot efficiency is achieved in the thermodynamic limit for non-integrable 
momentum-conserving systems, which we cover hereafter.

4.2. Momentum-conserving systems

A general thermodynamic argument [45] corroborated by numerical simulations [45–47] predicts that nonintegrable 
systems with momentum conservation achieve the Carnot efficiency at the thermodynamic limit. Such an argument is rooted 
in the Green–Kubo formula, which expresses the Onsager kinetic coefficients in terms of dynamic correlation functions of 
the corresponding current operators, calculated at thermodynamic equilibrium [48,49]:

Lab = lim
ω→0

Re[Lab(ω)], Lab(ω) = lim
ε→0

∞∫
0

dt e−i(ω−iε)t lim
�→∞

1

�

β∫
0

dτ 〈 Ĵa Ĵb(t + iτ )〉 (36)

where β = 1/kBT , 〈 · 〉 = {tr[( · )exp(−βH)]}/tr[exp(−βH)] denotes the thermodynamic expectation value at temperature T , 
� is the system’s volume, and the currents are Ja = 〈 Ĵa〉, with Ĵa being the total current operator. Note that in extended 
systems, the operator Ĵa = ∫

�
d�r ĵa(�r) is an extensive quantity, where ĵa(�r) is the current density operator, satisfying the 

continuity equation

dρ̂a(�r, t)

dt
= i

h̄
[H, ρ̂a] = −∇ · ĵa(�r, t) (37)

where ρ̂a is the density of the corresponding conserved quantity, that is, electric charge for the electric current and energy 
for the energy current 3 and h̄ is the reduced Planck constant. Equation (37) can be equally well written in classical 
mechanics, provided the commutator is substituted by the Poisson bracket multiplied by the factor ih̄. It can be shown that 
the real part of Lab(ω) can be decomposed into a δ-function at zero frequency defining a generalized Drude weight Dab (for 
a = b, this is the conventional Drude weight) and a regular part Lreg

ab (ω):

3 The heat current is the difference between the total energy current Ju and the electrochemical potential energy current μ Jρ : Jh = Ju − μ Jρ = Ju −
(μ/e) Je [18].
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ReLab(ω) = 2π Dabδ(ω) + Lreg
ab (ω) (38)

The matrix of Drude weights can be also expressed in terms of time-averaged current–current correlations directly:

Dab = lim
t̄→∞

1

t̄

t̄∫
0

dt lim
�→∞

1

�

β∫
0

dτ 〈 Ĵa(0) Ĵ b(t + iτ )〉 (39)

Note that it has been shown that non-zero Drude weights, Dab �= 0, are a signature of ballistic transport [50–53], namely in 
the thermodynamic limit the kinetic coefficients Lab diverge linearly with the system size.

The way in which the dynamic correlation functions in Eq. (36) decay determines the ballistic, anomalous, or diffusive 
character of the heat and charge transport, and it has been understood that this decay is directly related to the existence 
of conserved dynamical quantities [50,51]. For quantum spin chains and under suitable conditions, it has been proved that 
systems possessing conservation laws exhibit ballistic transport at finite temperature [54].

The following argument [45] highlights the role that conserved quantities play in the thermoelectric efficiency. The decay 
of time correlations for the currents can be related to the existence of conserved quantities by using Suzuki’s formula [55], 
which generalizes an inequality proposed by Mazur [56]. Consider a system of size � along the direction of the currents (we 
denote its volume as �(�), and in the thermodynamic limit � → ∞) and Hamiltonian H , with a set of M relevant conserved 
quantities Q m , m = 1, . . . , M , namely the commutators [H, Q m] = 0. A constant of motion Q m is by definition relevant if 
it is not orthogonal to the currents under consideration, in our case 〈 Ĵe Q m〉 �= 0 and 〈 Ĵh Q m〉 �= 0. It is assumed that 
the M constants of motion are orthogonal, i.e., 〈Q m Q n〉 = 〈Q 2

n 〉δmn (this is always possible via a Gram–Schmid procedure). 
Furthermore, we assume that the set {Q m} exhausts all relevant extensive conserved quantities. Then using Suzuki’s formula, 
we can express the finite-size Drude weights4

dab(�) ≡ 1

2�(�)
lim

t̄→∞
1

t̄

t̄∫
0

dt〈 Ĵa(0) Ĵ b(t)〉 (40)

in terms of the relevant conserved quantities:

dab(�) = 1

2�(�)

M∑
m=1

〈 Ĵa Q m〉〈 Ĵ b Q m〉
〈Q 2

m〉 (41)

On the other hand, the thermodynamic Drude weights can also be expressed in terms of time-averaged current–current 
correlations as

Dab = lim
t̄→∞

lim
�→∞

1

2�(�)t̄

t̄∫
0

dt〈 Ĵa(0) Ĵ b(t)〉 (42)

If the thermodynamic limit � → ∞ commutes with the long-time limit t̄ → ∞, then the thermodynamic Drude weights 
Dab can be obtained as

Dab = lim
�→∞dab(�) (43)

Moreover, if the limit does not vanish, we can conclude that the presence of relevant conservation laws yields non-zero gen-
eralized Drude weights, which in turn imply that transport is ballistic, Lab ∼ �. As a consequence, the electrical conductivity 
is ballistic, σ ∼ Lee ∼ �, while the thermopower is asymptotically size-independent, S ∼ Leh/Lee ∼ �0.

We can see from Suzuki’s formula that for systems with a single relevant constant of motion (M = 1), the ballistic 
contribution to det L vanishes, since it is proportional to Dee Dhh − D2

eh, which is zero from Eqs. (41) and (43). Hence, det L
grows slower than �2, and therefore the thermal conductivity κ ∼ det L/Lee grows sub-ballistically, κ ∼ �α , with α < 1. 
Since σ ∼ � and S ∼ �0, we can conclude that Z T ∼ �1−α [45]. Hence Z T diverges in the thermodynamic limit � → ∞. 
This general theoretical argument applies for instance to systems where momentum is the only relevant conserved quantity. 
Note that these conclusions for the thermal conductance and the figure of merit do not hold when M > 1, as it is typical for 
completely integrable systems. In that case, we have, in general, Dee Dhh − D2

eh �= 0, so that thermal conductance is ballistic 
and therefore Z T is size-independent.

The above reasoning is not limited to quantum systems and has no dimensional restrictions; it has been illustrated 
by means of a diatomic chain of hard-point colliding particles [45], where the divergence of the figure of merit with the 
system size cannot be explained in terms of the energy filtering mechanism [57], in a two-dimensional system connected to 

4 Note that hereafter we shall use the simple thermal average correlator 〈 Ĵa(0) Ĵ b(t)〉 rather than the Kubo–Mori inner product ∫ β

0 dτ 〈 Ĵa(0) Ĵ b(t + iτ )〉; 
see Ref. [54] for a discussion of the assumptions needed to justify the use of the simple thermal-averaged expression.
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Fig. 2. Thermoelectric transport coefficients for the two-dimensional multiparticle collision dynamics gas of interacting particles as a function of the system 
size � (for details see [46]). The dashed curves correspond from top to bottom to σ ∝ �, κ ∼ log�, S = 2, and Z T ∼ �/ log�.

reservoirs [46], with the dynamics simulated by the multiparticle collision dynamics method [58] and in a one-dimensional 
gas of particles with nearest-neighbor Coulomb interaction, modeling a screened Coulomb interaction between electrons 
[47]. In all these (classical) models, collisions are elastic and the component of momentum along the direction of the charge 
and heat flows is the only relevant constant of motion. Results for the two-dimensional multiparticle collision dynamics 
model are reported in Fig. 2. While the electrical conductivity grows ballistically, σ ∝ �, the thermopower saturates to a 
value S = 2 that can be also predicted analytically for this model [46]. Finally, the thermal conductivity grows according 
to the prediction of hydrodynamic theories [59,60], namely κ ∝ log � in two dimensions. These results for the transport 
coefficients imply that the figure of merit diverges with the system size, Z T ∝ �/ log �, and therefore the Carnot efficiency 
is achieved in the thermodynamic limit.

We point out that it is a priori not excluded that there exist models where the long-time limit and the thermodynamical 
limit do not commute when computing the Drude weights. However, numerical evidence shows that for the models so far 
considered, these two limits commute [45–47]. Finally, we note that divergence of Z T has been also predicted, on different 
theoretical considerations, for an ideal homogeneous quantum wire with weak electron-electron interactions, in the limit of 
infinite wire length [61].

5. Discussion and concluding remarks

Research in thermoelectricity remains widely regarded as a strategic activity in view of the critical problems related to 
energy production and storage, and considering that thermoelectric devices may be designed for specific purposes involving 
powers over a range spanning ten orders of magnitude: typically from microwatts to several kilowatts. However, despite 
all the money and efforts invested in the field of thermoelectricity over several decades, no one has managed yet to make 
decisive progress to break the glass ceiling over performance, thus enabling the much sought-after wide-scale applications. 
Non-interacting model systems provide a wealth of results and a solid socle to understand many aspects of the basic 
mechanisms that govern thermoelectric transport and energy conversion, and we saw that they also shed light on the 
reasons why in terms of performance of current devices, we are still in the range of what became standard 30 years ago.

It must also be said that the performance of a thermoelectric system does not rely solely on the intrinsic properties of the 
thermoelectric working fluid, but also entails its interaction with its environment: poor thermal contacts with heat source 
and sink deteriorates significantly the overall energy conversion process. It is thus worthwhile to consider the optimization 
of the working conditions of thermoelectric devices, which necessitates a sound understanding of the coupling of these heat 
engines with their environment [16,62,63] to ensure the highest possible efficiency at maximum output power. Finite-time 
thermodynamics is very well suited for such a purpose. Interestingly, thermoelectricity provides model systems that, in turn, 
are extremely useful in the development of theories in irreversible thermodynamics [6], and more generally in finite-time 
thermodynamics, which to date continues to attract much attention [64,65]. Indeed a number of outstanding questions in 
these fields related to finite-time optimization may be advantageously tackled using thermoelectric systems as case studies 
since their basic operation allows for a physically transparent description of the phenomena at stake [66–69].

However, optimization procedures for device operation, as necessary as they are, do not improve the fundamental energy 
conversion performed by the working fluid. The understanding of general mechanisms to improve thermoelectric efficiency 
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by means of strongly interacting systems is only beginning to emerge. In particular, regimes near electronic phase transi-
tions might be favorable for higher-efficiency thermoelectric conversion. Nonlinear momentum-conserving systems are also 
interesting, due to the ballistic nature of electrical conductivity combined with the anomalous behavior of thermal conduc-
tivity. Such dependence of thermal conductivity, growing slower than ballistically with the system size, is characteristic of 
the hydrodynamic regime. In this respect, it might be useful to remark that the hydrodynamic regime has been observed in 
graphene up to almost room temperature [70].

To conclude, it is our hope that our theoretical results and analysis will help identify areas where genuine and significant 
progress is yet to be made to stimulate experimental research in the proposed directions.
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