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We review recent progress in making the former gedanken experiments of Maxwell’s 
demon [1] into real experiments in a lab. In particular, we focus on realizations based 
on single-electron tunneling in electronic circuits. We first present how stochastic 
thermodynamics can be investigated in these circuits. Next we review recent experiments 
on an electron-based Szilard engine. Finally, we report on experiments on single-electron 
tunneling-based cooling, overviewing the recent realization of a Coulomb gap refrigerator, 
as well as an autonomous Maxwell’s demon.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous passons en revue des progrès récents qui ont permis de faire des anciennes 
propositions du démon de Maxwell des expériences réelles de laboratoire. En particulier, 
nous nous concentrons sur des réalisations basées sur l’effet tunnel à un électron dans des 
circuits électroniques. Nous montrons d’abord comment la thermodynamique stochastique 
peut être explorée dans ces circuits. Ensuite, nous passons en revue des expériences 
récentes sur un moteur de Szilard électronique. Enfin, nous rendons compte d’expériences 
de refroidissement basées sur l’effet tunnel à un électron, incluant la réalisation d’un 
refrigérateur à gap de Coulomb, ainsi que celle d’un démon de Maxwell autonome.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction to the concept of a Maxwell’s demon, motivation

Classical mechanics describes the evolution of a system with a limited number of degrees of freedom in a deterministic 
manner. Given that the initial configuration is known, the equations of motion give the exact system state at an arbitrary 
time. The most essential constraint is dictated by the first law of thermodynamics, which states that energy must be con-
served. Thermodynamics investigates systems with a macroscopic number of degrees of freedom. In such a case, it would be 
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cumbersome to study the dynamics, if not for the fact that the majority of the degrees of freedom often behave collectively, 
forming a heat bath that interacts with the remaining degrees that form the ‘system’. The approach ultimately accepts that 
the exact state of the heat bath is not known, but it rather follows a probability distribution that is characterized by temper-
ature T . As an immediate consequence, the dynamics of the system are stochastic and – unless all the microscopic degrees 
of freedom are constantly monitored – will evolve to follow a probability distribution Pn , where n is the system state. The 
relevant quantity in this picture is entropy S = −kB

∑
Pn ln(Pn) characterizing the amount of disorder or uncertainty in the 

system. Here kB is the Boltzmann constant.
Entropy has a central role in thermodynamic processes. It is bound by the second law of thermodynamics, which states 

that, on the average, entropy cannot decrease. The entropy of the heat bath is linked to its temperature as �Senv = Q /T , 
where Q is energy or ‘heat’ injected into it. The second law would thus require that when two reservoirs are interacting 
by, e.g., exchanging particles, the only allowed direction for heat flow is from hot to cold. As energy is conserved, the two 
reservoirs would eventually equilibrate to have equal values of T . In 1867, J.C. Maxwell presented a thought experiment to 
challenge the second law. He pictured an intelligent observer that monitors and controls the particle transport between the 
two reservoirs, allowing only high-energy particles to pass from the hot reservoir to the cold one, and only low-energy par-
ticles to pass the other way. Following this simple procedure, one would seemingly violate the second law. It is natural that 
the apparent controversy which, if correct, would permit machines of perpetual motion has generated significant scientific 
discussion.

The concept today known as ‘Maxwell’s demon’ [1] was studied by Leo Szilard in 1929 on a thought experiment with a 
single particle in a box [2]. The box is operated by a Maxwell’s demon, who first inserts a wall to split the box in two equal 
halves. The particle is trapped in either half, and the demon determines the position of the particle by measurement. With 
this information, the demon can allow the one-molecule gas to expand back to the full volume of the box. By ideal gas 
law, kBT = pV , the amount of work performed by the demon is W = − 

∫ V
V /2 p dV = −kBT ln(2), and energy conservation 

demands W = Q . In other words, the demon extracted kB T ln(2) of energy directly from the heat bath of the box. Szilard 
concluded that during the expansion, the entropy of the heat bath is converted into that of the system, which increases by 
kB ln(2) as the initial full certainty on the position of the particle converts into equal probability 1/2 for the particle being 
on either half of the box.

Szilard presumed that the measurement performed by the demon has to involve production of at least an equivalent 
amount of entropy. The thought experiment was later on investigated by Rolf Landauer, who in 1961 concluded that it is 
the act of information erasure that generates at least an equivalent amount of entropy as was decreased by the feedback. 
Upon measurement, the demon must record one bit of information to its memory. Should this information be erased, which 
must be done in order to complete the thermodynamic cycle, energy of at least kB T ln(2) must be spent on the process. This 
statement, known as Landauer’s erasure principle, has a major significance for logical computing. Any logically irreversible 
operation, such as AND or OR, has a fundamental minimum energy cost.

Since the beginning of this millennium, scientific interest in Maxwell’s demon has reignited as experimental access to the 
microscopic degrees of freedom has become available. This development has been spurred by the discovery of fluctuation 
relations [3–7] that describe non-equilibrium processes by equalities. Of particular importance to the Maxwell’s demon 
concept is the Sagawa–Ueda equality [7], which links the information extracted from the microscopic system to applied 
work and the change of free energy. The theorem was promptly verified by an experiment on a system consisting of 
a colloidal particle in an alternating, feedback-controlled electric field [8]. Further experimental progress was made on 
Landauer’s principle by demonstrating that when an erasure protocol on a particle in a double-well potential is taken to 
the adiabatic limit, the energy spent on the process tends to kB T ln(2) limit [9]. Other experiments have demonstrated how 
feedback can be utilized to suppress thermal excitations [10]. Recently, Maxwell’s demon operation was demonstrated on 
an optical system [11].

As the connection between information and thermodynamics has become apparent, further investigation has been 
devoted on configurations involving both the demon and the feedback-controlled system. Such devices are known as au-
tonomous Maxwell’s demons (AMD). AMDs have been proposed to function by using a bit stream as a resource to decrease 
the entropy in the heat bath while increasing entropy in the memory [12]. Others focus on two coupled systems that 
exchange information which is immediately erased, resulting in heat generation in the measuring device [13,14].

In this review, we focus on recent experiments on Maxwell’s demons based on electric circuits that realize the Szilard 
engine protocol, and an autonomous Maxwell’s demon.

2. Energetics in an electric circuit

Electron transport in circuits offers an arena to investigate stochastic thermodynamics of small systems. Quite generally, 
if we consider a charge q overcoming a potential difference ±V , there is energy qV dissipated or extracted in this event. 
Entropy production is then given by �S = ±qV /T in a constant temperature process. Since current is the rate of charge 
transport, average power can be very generally associated with the product I V for an average current I at voltage V .

Nowadays, charges in electric circuits can be controlled and detected routinely down to single electrons: with this capa-
bility, energetics in circuits can be studied in great details, although indirectly. Yet in most recent experimental works, heat 
could be measured directly by observing temperature changes: this is a topic of Section 6.
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Fig. 1. A single-electron box (SEB). The tunnel junction is indicated by the split rectangle, and it has capacitance C and conductance R−1
T . In (a), the gate 

capacitor is denoted by Cg, biased at voltage V g. The net number of electrons tunneled through the junction is given by n. In (b), we show a split SEB that 
has been used in the actual experiments. Apart from rescaled parameters, it is equivalent to the basic SEB in (a).

Our focus here is on single-electron circuits. To set the stage, let us consider a basic example, the single-electron box 
(SEB) [15,16], see Fig. 1a, that has furthermore served as one archeotypal experimental realization of stochastic thermody-
namics over recent years. An SEB is a small capacitor, with total capacitance C� , on which a discrete number n of electrons 
can dwell. The energy (Hamiltonian H) of this capacitor is tunable by the external control parameter, a gate voltage V g, 
which polarizes the charge in the SEB via the gate capacitance Cg, such that H(n, ng) = EC(n − ng)

2. Here EC = e2/(2C�)

is the elementary charging energy for one electron with charge e and ng = Cg V g/e is the normalized gate voltage. For 
this particular basic configuration of SEB, C� = C + Cg, where C is the capacitance of the tunnel junction, admitting single 
electrons in and out of the island. What is important here is that the charges are transported stochastically; the tunneling 
rate is given by the chemical potential difference �μ (corresponding to the voltage V in the general discussion above) 
and the temperature T = 1/(kBβ) of the bath. In particular, for a common situation where the electrodes in the SEB can 
be considered as electronic Fermi seas, i.e. with normal metal leads, the rate in (+) or out (−) of the box is given by 
�± = (e2 RT)

−1�μ±/(1 − e−β�μ± ). Here RT is the inverse tunnel junction conductance, which has a constant value deter-
mined by the parameters characteristic for a particular SEB determined by the fabrication details. For the SEB considered 
here, �μ± = H(n, ng) − H(n ± 1, ng) = −EC[1 ± 2(n − ng)], which does not depend on the nature of the lead electrodes, but 
is purely the charging energy of the capacitor(s). This is at the same time the heat �Q dissipated to the bath consisting of 
the rest of the electrons coupled with the phonon reservoir.

Typically, at low enough temperatures, i.e. for βEC � 1, the tunneling rates above dictate that the charge state n can 
have at most two values. Without loss of generality, we may choose n = 0, 1 in the range ng = 0...1. In this case, �Q =
±EC(1 − 2ng). This means that the heat dissipated to the bath can be monitored by bookkeeping the external control 
parameter ng and the corresponding transitions of n using a single-electron detector. Usually one is interested in the work 
done on the system, W , besides the heat Q = ∑

i �Q i , where the sum is over all the jumps during the measurement. 
Since according to the first law of thermodynamics W = U + Q , one still needs to determine the change in the internal 
energy, U , which is equal to change in H(n, ng) in the process. The quantities U and Q are thus accessible via charge 
detection, and this allows one to investigate stochastic thermodynamics in a circuit with high precision. For instance, one 
can choose a protocol of driving ng repeatedly, and measure the mentioned quantities in each realization of the experiment. 
Then one obtains a test of common fluctuation relations [4,5], e.g., the Jarzynski equality 〈e−βW 〉 = 1, where the average 
is taken over the realizations. This relation was verified in the experiment of Saira et al. [17] within about 3% accuracy 
of the mentioned average, by applying hundreds of thousands of repetitions of the gate protocol. An advantage of the 
single-electron circuits is, indeed, the possibility of repeating the experiment very many times under identical conditions. 
Besides metallic single-electron circuits, another option for these studies is to use semiconducting quantum dots monitored 
by quantum point-contact single-electron detectors [18,19].

The SEB employed in the experiments below has a slightly different architecture from the basic one, see Fig. 1b. One 
typically employs such a split box design to make the system less susceptible to external noise. The set-up then consists of 
a tunnel junction, which has two islands, one on each side of the junction, which are furthermore connected to the biasing 
source via capacitances from each island. Thus the experimental SEB is kind of a symmetric version of that in Fig. 1a, with 
the same Hamiltonian and operation principle but with different effective capacitances.

3. Basic principles of circuit-based Maxwell’s demons

Based on the capability of detecting and manipulating single electrons, the concept of an experimentally feasible 
Maxwell’s demon is quite obvious. It comprises of observing the system by the charge detector, and utilizing this infor-
mation for conditional feedback applied on gate voltage(s), based on the outcome of the said measurement of the system. 
One of the early proposals of the electronic Maxwell demon [20] follows closely the idea of the experiment of Toyabe et al. 
on a microsphere in an alternating electric field [8]. We present this idea here since it illustrates the principle of gaining 
energy with the help of thermal fluctuations in a simple way. The experimental realization of it in a circuit is still to come. 
The idea of [20] is to “lift” electrons up to higher potential with the help of thermal fluctuations and a measurement-
feedback protocol. This way one can in principle store energy in a battery or a capacitor. The circuit (Fig. 2) consists of 
a voltage-biased array of “single-electron boxes”, i.e. a tunnel junction array of minimum three junctions, where each dot 
in between the contacts is monitored by a single-electron charge detector. Each jump of the charge up in the array corre-
sponds to energy extracted from the bath: the tunneling rates introduced earlier allow for such unfavorable processes at 
finite temperature. When such a transition occurs, energy is extracted to the charging degrees of freedom from the bath, 
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Fig. 2. Maxwell’s demon based on a three-junction array of small tunnel junctions [20]. (a) The circuit diagram. Charges on the islands 1 and 2 of a biased 
(voltage V ) array are monitored by the corresponding charge detectors, and feedback is based on the tunneling events observed. The demon is able to 
move charges up in the potential from right to left. (b)–(h) illustrate a cycle of collecting charge at potential V based on feedback. In this cycle, an amount 
of energy eV is stored in the capacitor at a potential V . Each blue arrow indicates a thermally activated tunneling event against bias, and the vertical gray 
lines depict a barrier to prevent tunneling downwards.

i.e. the extra electron moves to a higher energy. As soon as this process takes place, the charge detector observes it and the 
control gates are turned to a new position to prevent the charge from tunneling back to the lower potential. It is possible 
to make this process cyclic as demonstrated in [20], and to convey electrons one by one from the low potential end of the 
array to the high one with the help of the information of the measurement and feedback.

The principle of the two experimentally realized Maxwell’s demons, the Szilard Engine and the autonomous Maxwell’s 
demon, will be introduced along with the description of the experiment in the next Sections.

4. Realization of the Szilard engine in a single-electron box

The original gedanken experiment presented by Szilard consists of a single particle in a box. The work extracted for one 
bit of information in the setup can be derived by the ideal gas law. Yet, as discussed by Szilard, the relevant quantity is 
the change of entropy. Practically any system, where the microscopic degree of freedom can be measured and controlled 
externally at the accuracy of a single bit, is feasible. This also means that an SEB cooled down to meet βEC � 1 can be 
operated as a Szilard’s engine by measuring n with a single-electron charge detector, namely a single-electron transistor 
(SET) which is essentially an SEB connected to two leads at different potentials and whose charge transport depends on the 
nearby potential, and performing feedback by modulating V g, see Fig. 3. In the present experiment, the SEB consists of two 
metallic islands connected by a tunnel junction, a device which effectively operates identically to a single island connected 
to a single lead, as sketched in Fig. 1.

The operation cycle begins with �μ+ = 0 for n = 0 (and therefore �μ− = 0 for n = 1), such that thermal equilibrium 
corresponds to equal 1/2 probabilities for n = 0 and n = 1, that is, for an excess electron to reside either on the left or the 
right island. This is analogous to the Szilard’s engine setup, where the particle is initially in either the left or the right half 
of the box. Next follows the determination of the charge state of the SEB. This is achieved by measuring the current of a 
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Fig. 3. The principle of the Szilard engine operation realized by an SEB. The back-and-forth tunneling events during the slow expansion is the source of 
kB T ln(2) extracted work.

Fig. 4. Four experimental traces on an SEB following the Szilard engine protocol (left panel), showing the detector signal that identifies n in blue, and 
the control parameter ng in red. The measurement of the state n is performed on the points indicated by vertical dashed lines. Determining the applied 
work in 2944 such traces gives a distribution (right panel), which averages to 75% of the fundamental limit kBT ln(2), indicated with a red dashed vertical 
arrow. The contribution on positive W originates from errors in the measurement and feedback process, which results in heat dissipation. Figure adapted 
from [21].

nearby capacitively coupled SET. The measurement changes the entropy of the system by �S = −kB
∑

Pn ln Pn = −kB ln(2). 
After the measurement, the SEB is immediately feedback-controlled with V g such that �μ+ � −kBT if n = 0 was measured, 
and �μ− � −kBT if n = 1. The electron is thereby trapped to its island. These steps are analogous to the wall insertion and 
measurement in the original thought experiment.

The final step to complete the cycle is to drive �μ, the energy difference between states n = 0 and n = 1, back to zero. 
However, this step is performed slowly, such that thermal excitations allow electrons to tunnel back and forth between 
the SEB islands – see the left panel in Fig. 4. It is the fluctuations that are the origin of extracting energy from the heat 
bath; indeed, should no excitations occur such that the system would constantly remain in the original state, exactly the 
same amount of work would be spent on the final step as was gained from the immediate feedback. Conversely, when 
thermal excitations take place and the system is at the excited state, the drive �μ → 0 again extracts electrostatic energy. 
As the charge states are degenerate with equal energy at the end of the cycle, it is also apparent that the amount of 
work extracted equals that of heat removed from the environment. In the special limit of infinitely slow drive, such that 
the system continuously maintains its thermal equilibrium, work equal to kB T ln(2) is extracted from the heat bath. At 
optimized settings, the device was able to extract 75% of the maximum kB T ln(2) energy from the heat bath [21], see the 
right panel in Fig. 4.

In a practical experiment, it is not possible to measure the system state with full certainty, as illustrated in Fig. 5a–b). 
There will exist a finite probability that the measurement outcome m deviates from the actual state n. The quality of the 
measurement is characterized by mutual information, I(n, m) = ln(Pn,m) − ln(Pm) − ln(Pn) = ln(Pn|m) − ln(Pn), where Pm,n

is the joint probability distribution of m and n, and Pn|m is the conditional probability of measuring n when it is actually m. 
If the measurements were perfect, i.e. n = m for every measurement implying Pn|m = δn,m , the mutual information would 
reach its maximum, I(n, m) = − ln(Pn). It can be shown [22] that the amount of mutual information limits the amount of 
work that can be extracted per measurement, as −〈W 〉 ≤ kBT 〈I〉, where 〈...〉 denotes the expectation value.

It has been shown [23] that in the presence of a measurement error, the optimal �μ is determined by the error 
probability ε . Incorrect feedback results in dissipation of additional heat equal to �μ due to relaxation before the next 
quasi-static ramp. In the SEB setup, ε is controlled by the choice of cut-off frequency fcut−off for filtering the SET signal 
[24]. When fcut−off is high, the signal-to-noise ratio is low, giving rise to a possibility of a measurement error. Collecting 
the statistics of ∼ 1000 repetitions for a given fcut−off, the ε – and thus the mutual information I(n, m) – is determined in 
post-analysis as a fraction of the measurement errors. This approach also allowed us to test the Sagawa–Ueda equality with 
mutual information [7], see Fig. 5.
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Fig. 5. Mutual information in feedback processes. Panel (a) shows the same signal under different fcut−off for the low-pass filter. For high fcut−off , the n = 0
signal partially overlaps with that for n = 1 as in panel (b), leading to a chance for a measurement error with probability ε . Panel (c) shows the measured 
(symbols) and simulated (solid lines) average mutual information (green), applied work (blue), and their ratio (red) as a function of ε . Moreover, the setup 
allows one to test the Sagawa–Ueda equality, shown in panel (d). Figure adapted from [24].

Fig. 6. A single-electron refrigerator. A biased (voltage V ) single-electron transistor (panel (a)) is gate-positioned (panel (b)) such that the electrons tunneling 
from the left to the island need to extract an amount of energy ∼ kB T from the bath, whereas those tunneling from the island to the right lead release an 
amount of energy ∼ eV to the bath. Figure adapted from [25].

5. Single-electron refrigerator

Before presenting the autonomous Maxwell’s demon (AMD), we first introduce a recently demonstrated device, a single-
electron refrigerator [25,26]. Its working principle is closely related to that of the AMD, but without information-based 
feedback.

In tunnel junctions, the particle (electron) current is in general associated with the energy current [27]. The experiments 
demonstrate that tunnel currents in contact with electrodes having unequal density of states (DOS), in particular when one 
of the conductors has a gap in its DOS, can produce electronic refrigeration of the un-gapped or the lower gap conductor. 
Basic examples of this phenomenon are tunnel junctions between a normal conductor and a superconductor (NIS junc-
tions) [27], or a degenerate semiconductor reservoir coupled with another one via a quantum dot [28]. Recently, a similar 
effect was discussed in a system with equal DOS on the two sides of a tunnel barrier, but in the presence of large Coulomb 
energy on one electrode [25]. The idea is that the electrons need to extract energy from the bath upon tunneling against 
local bias. This is illustrated in Fig. 6. Electrons are transported from left to right with the help of bias voltage V . In doing 
so, they need to overcome the Coulomb barrier in the first step while tunneling through the left junction. This extracts 
energy from both the left electrode and the island. The first event is immediately followed by the energetically favorable 
tunneling through the second junction, which then dissipates a large amount of energy, ∼ eV , to the island and the right 
electrode. The optimized positions of the levels are such that the left barrier is of the height ∼ kBT � eV . The left electrode 
cools down in this process, and in practise it is possible to engineer the structure such that the left and right ends of the 
island are thermally isolated from each other, and the left side of the island cools down as well.

This effect was experimentally demonstrated in recent experiments by Feshchenko et al. [26], where in a carefully de-
signed SET structure, combining normal metals and superconductors for optimized thermal isolation, a temperature drop of 
up to 15% could be achieved at bath temperatures around 100 mK. The predicted and measured cooling improves dramati-
cally towards lower temperatures.
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Fig. 7. The operation principle of the autonomous Maxwell’s demon. Figure adapted from [29].

6. Realization of an autonomous demon in coupled single-electron circuits

The single-electron refrigeration paves the way for the realization of an autonomous Maxwell’s demon based on single-
electron phenomena. The energy barrier induced by Coulomb interaction induces a single-sided cooling effect on the SET; 
however, in total the heat Q (and therefore entropy Q /T ) generated in the device is positive. The cooling effect can be 
introduced to both junctions on the SET by feedback control, illustrated in Fig. 7a, provided that it can be accurately deter-
mined whether an electron is on the island (n = 1) or not (n = 0). For n = 1, the potential of the island is set such that the 
electron experiences an energy cost when it tunnels to the drain electrode, and for n = 0, it is set to yield an energy cost 
for the electrons that would tunnel from the source electrode.

It turns out that such a process can be realized autonomously by coupling two normal metallic SETs capacitively to each 
other, as depicted in Fig. 7b. One of the devices takes the role of the demon, measuring and feedback-controlling the other. 
Just like a single-electron refrigerator, the feedback-controlled SET – the system – is voltage biased. This increases the rate at 
which electrons tunnel against Coulomb repulsion, giving rise to increased cooling power. The tunnel junctions of the demon 
are designed to have a low resistance. This enables it to immediately react to the tunneling events in the system; when an 
electron enters the island from a source electrode, an electron tunnels out of the demon island as a response, exploiting 
the mutual Coulomb repulsion between the two electrons. Similarly, when an electron enters to the drain electrode from 
the system island, an electron tunnels back to the demon island, attracted by the overall positive charge. The cycle via such 
interaction between the two devices realizes the scheme described in the previous paragraph.

With thermometry as well as thermal insulation by superconducting leads, it is possible to measure the operation of 
the device as a change in the local temperature of the system as well as the demon, see Fig. 8. In the experimental 
realization presented in [29], two-sided cooling of ∼ 1 mK was measured in the system at the operation temperature 
of about 50 mK. The demon was simultaneously measured to experience a temperature rise of a few mK. The directly 
measurable amount of cooling is possible because the rate of thermally excited electron tunneling events is of the order 
of a few MHz, which is high compared to the electron–phonon relaxation rate (∼ 10 kHz) [30], but low compared to 
the electron–electron interaction rate (∼ 1 GHz) [31], the latter being responsible for local electron equilibrium in each 
electrode. In comparison, the demon produces the feedback by the tunneling event in it within about 1 ns (= (1 GHz)−1).

7. Discussion of information and feedback in a Maxwell’s demon

The experiment described in Section 6 shows that cooling can be achieved even without particles acting as energy 
carriers. The setup also allows us to investigate the nature of information in an autonomous Maxwell’s demon. The config-
uration has two degrees of freedom, n for the number of electrons in the system island, and N for the demon island. The 
information content of such a state is − ln(Pn,N), and the mutual information is I = ln(Pn,N) − ln(Pn) − ln(P N). Each tun-
neling event changes mutual information: if n changes to n ± 1, mutual information changes by �I = ln(Pn±1,N) − ln(Pn,N)

as Pn, P N = 1/2 remain constant. Similarly, N changing to N ± 1 results in �I = ln(Pn,N±1) − ln(Pn,N).
Consider the steps taken in the cycle. The transitions in the system generally bring the configuration to an energetically 

unfavorable – and therefore to a more unlikely – state. Correspondingly, �I < 0, implying that the transitions tend to break 
the correlation between the system and the demon, and instead produces information content. The demon in contrast 
brings the setup back to the energetically favorable state, and thus those events have �I > 0. The overall information 
content decreases, as the demon has now measured the system. In other words, there is an information flow between the 
two SETs, directed from the system to the demon.
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Fig. 8. (a) A scanning electron micrograph of the autonomous Maxwell’s demon. The parts are false colored to identify the left system lead (dark blue), the 
system island (light blue), and the right system lead (green), as well as the demon leads (red) and the demon island (orange). Panels (b) and (c) show the 
measured (b) and numerically estimated (c) temperature in the autonomous Maxwell’s demon (AMD) as a function of control parameter ng. At the optimal 
operation point ng = 0.5, the system cooling down is signaled by a decrease in the temperatures of both the leads, TL and TR, of the system, while the 
demon heats up, indicated by an increase in Td. Figure adapted from [29].

As discussed in [14], this information flow gives rise to the cooling in the system within the bounds of the second law. In-
deed, the maximum cooling power is bound by −〈Q̇ 〉 ≤ kBT 〈 İ〉, where the dot denotes time derivative. Correspondingly, the 
demon must in turn generate heat by at least an equivalent amount, 〈Q̇ 〉 ≥ kBT 〈 İ〉. It can further be shown that as the de-
mon reaction rate is high, the generated heat coincides with the information produced (the latter becomes an equality). The 
experiment thus allows us to directly measure the information flow between the two devices based on the heat observed.

8. Perspectives and conclusions

The experiments briefly reviewed here are of “proof-of-principle” type. They demonstrate that logical operations can be 
performed at a cost which is not far from the fundamental lower bound of kB T ln 2, which is orders of magnitude below 
the energy cost per bit operation in present-day computers. Therefore the presented experiments constitute a step towards 
reversible computing [32,33]. These devices also show a way how to cool critical elements in a circuit with information as 
a fuel.

The devices presented are based on principles of classical physics. On the level of basic research, it will be interesting 
to investigate quantum systems with superpositions and entangled states as elements of Maxwell’s demons. In particular, a 
simple qubit circuit, e.g., made of a superconducting circuit, could provide a basis to study a quantum Szilard’s engine [34].
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