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Faster-than-Nyquist signalization enables a better spectral efficiency at the expense of 
an increased computational complexity. Regarding multicarrier communications, previous 
work mainly relied on the study of non-linear systems exploiting coding and/or equali-
zation techniques, with no particular optimization of the linear part of the system. In 
this article, we analyze the performance of the optimal linear multicarrier system when 
used together with non-linear receiving structures (iterative decoding and direct feedback 
equalization), or in a standalone fashion. We also investigate the limits of the normality 
assumption of the interference, used for implementing such non-linear systems. The use of 
this optimal linear system leads to a closed-form expression of the bit-error probability 
that can be used to predict the performance and help the design of coded systems. 
Our work also highlights the great performance/complexity trade-off offered by decision 
feedback equalization in a faster-than-Nyquist context.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Les communications au-delà de la cadence de Nyquist permettent une augmentation 
de l’efficacité spectrale en contrepartie d’une complexité plus élevée. Concernant les 
communications multiporteuses, les travaux menés jusque-là se sont principalement 
focalisés sur l’étude des systèmes non linéaires exploitant des techniques de codage 
et/ou d’égalisation, sans considération ou optimisation particulière de la partie linéaire 
du système. Dans cet article, nous analysons le comportement du système linéaire 
multiporteuse optimal lorsqu’il est utilisé seul ou avec des structures de réception non 
linéaires (décodage itératif et égalisation à retour de décision). Nous nous intéressons 
également aux limites de l’hypothèse de normalité de l’interférence, laquelle est utilisée 
lors de l’implémentation de ces systèmes non linéaires. L’utilisation du système linéaire 
optimal permet d’obtenir une expression analytique de la probabilité d’erreur, laquelle 
peut alors être utilisée pour prédire les performances et aider à la conception de systèmes 
codés. Ce travail met aussi en avant le bon compromis performances/complexité offert par 
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l’égaliseur à retour de décision dans le contexte des communications au-delà de la cadence 
de Nyquist.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Most current communication systems enable perfect reconstruction of the transmitted symbols: synthesis and analysis 
families, used respectively for transmission and reception, are biorthogonal (they are Riesz bases). In the scope of bandlim-
ited transmission, this is only guaranteed when the Nyquist criterion is respected, which imposes a symbol rate R lower 
than the bilateral bandwidth B (R ≤ B) [1]. On the contrary, overriding this criterion makes it possible to transmit at a 
higher symbol rate R ′ while keeping the same bandwidth (R ′ > B), which improves spectral efficiency (defined as the ratio 
between the bitrate of the transmission D and the bilateral bandwidth B of the signal). However, this technique, referred to 
as faster-than-Nyquist (FTN), induces an interference between pulse-shapes (or inter-pulse-interference – IPI).

In a context of overcrowded radiofrequency resources, FTN communications allow for a reduction of the spectral occu-
pancy at a given bitrate or, equivalently, for a higher bitrate at a given spectral occupancy. Unlike a more classical way to 
improve spectral efficiency consisting in an augmentation of the modulation alphabet’s size (every other parameters being 
fixed), FTN systems do not rise the sensitivity to the noise if IPI is properly compensated at the receiver’s side. Moreover, 
lots of transmission systems are designed to work with multipath, and potentially mobile, channels. Through such chan-
nels, multicarrier modulations are particularly efficient as they permit to choose matched pulse-shapes according to the 
time–frequency selectivity of the channel, thus reducing equalization complexity at the receiver’s size [2]. FTN transmission 
technique can be extended to this family of modulations [3]. In this case, denoting T0 the multicarrier symbol duration and 
F0 the inter-carrier spacing, one can show that transmission and reception families are no longer biorthogonal if F0 T0 < 1
(they can, however, form overcomplete frames), which leads to IPI in both time and frequency.

This article is based on the use of the optimal multicarrier linear system with respect to the signal-to-interference-plus-
noise ratio (SINR) criterion, as developed in [4], and which relies on the use of tight Gabor frames in transmission and 
reception. We will investigate the performance of this system in combination with decision feedback equalization (DFE) and 
low-density parity check coding (LDPC).

This article is constructed as follows. Section 2 presents the input–output relations of the system, based on frame theory. 
This theoretical framework allows for the determination of the SINR, as well as the closed-form expression of the bit-error 
probability for a transmission over an additive white Gaussian noise (AWGN) channel. Section 3 goes into the details of 
two interference mitigation techniques. The first one is based on a LDPC code, while the other one uses a DFE structure. 
Section 4 underlines the limits of the Gaussian approximation of the interference by means of simulations and then presents 
the performance of the two interference mitigation structures mentioned in Section 3. Conclusion and perspectives are 
finally given in Section 5.

2. Optimal linear multicarrier system with AWGN

2.1. Input–output relation of the linear multicarrier system

We denote c = {cm,n}(m,n)∈� ∈ �2(�) a sequence of zero-mean, independent, and identically distributed (IID) coefficients, 
with variance σ 2

c and � ⊂ Z2. The equivalent baseband multicarrier signal is defined by

s(t) =
∑

(m,n)∈�

cm,n gm,n(t), t ∈ R (1)

with g = {gm,n}(m,n)∈� a Gabor family with parameters F0, T0 > 0 and whose elements are given by its generator g(t) ∈
L2(R):

gm,n(t) = g(t − nT0)ej2πmF0t (2)

As a consequence, the information carried by c is regularly spread in the time–frequency plane (Fig. 1) with a minimal 
distance F0 in frequency and T0 in time.

In practice, the transmission is limited to M subcarriers and K symbols such that � = {0, . . . , M − 1} × {0, . . . , K − 1} is 
a finite set, inducing that the sum (1) always converges. It can however possess a lot of terms, so it is important to ensure 
its stability. Denoting Hg = Vect(g) the closure of the linear span of the family g ,1 the stability of (1) is guaranteed when 
g is a Bessel sequence, which means that there exists a bound B g > 0 such that

1 The closure of a normed vector space E contains all the elements of E, together with its limit elements. For example, the closure of the set of the 
rational numbers is the set of the real numbers.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. Time–frequency representation of a multicarrier signal. In this example, the generator g(t) and the parameters T0 and F0 are chosen in order to 
show a clear separation in frequency, but not in time.∑

(m,n)∈�

∣∣〈gm,n, x
〉∣∣2 ≤ B g ‖x‖2 ∀x ∈ Hg (3)

with 〈·, ·〉 and ‖·‖ the usual inner product and norm of L2(R), defined by

〈x, y〉 =
+∞∫

−∞
x∗(t)y(t)dt, ‖x‖ = √〈x, x〉 ∀x, y ∈ L2(R) (4)

where ·∗ denotes the complex conjugation. To perfectly reconstruct c from the knowledge of s(t), it is furthermore nec-
essary (and sufficient) for g to be a linearly independent family. g is then a Riesz basis of Hg , in other words a linearly 
independent family for which there exist two bounds 0 < A g ≤ B g such that:

Ag ‖x‖2 ≤
∑

(m,n)∈�

∣∣〈gm,n, x
〉∣∣2 ≤ B g ‖x‖2 ∀x ∈ Hg (5)

The density ρ of g must then be lower than or equal to one: ρ = 1/(F0T0) ≤ 1. In this article, we take the opposite 
case where ρ > 1 in order to rise the spectral efficiency of the system (every other parameters being fixed). For a linear 
receiver, this interference is considered as an additive noise, added to the one induced by the channel, yielding to a higher 
error probability. However, when ρ > 1, there exist linearly dependent Gabor families, which constitute redundant frames 
of L2(R). These are families for which (5) is valid for x ∈ L2(R). As a consequence, the stability of (1) is always guaranteed 
and Hg =L2(R), but g cannot be a basis of L2(R).

We suppose a perfect channel with additive noise and we specify a linear receiver such that c is estimated by

ĉp,q = 〈
ǧp,q, r

〉 ∀(p,q) ∈ � (6)

with ǧ = {ǧm,n}(m,n)∈� a reception family, r(t) = s(t) + z(t) the received signal and z(t) a zero-mean white Gaussian complex 
circular noise, independent of the symbols and characterized by its power spectral density γz( f ) = 2N0 for f ∈ R: E(z(t)) = 0
and E(z∗(t)z(t′)) = 2N0δ(t − t′), with E(·) the expectation operator.

2.2. Interference and noise analysis

It is possible to rewrite (6) in order to highlight interference and noise terms:

ĉp,q = cp,q
〈
ǧp,q, gp,q

〉︸ ︷︷ ︸
c̃p,q :useful signal

+
∑

(m,n)∈�\{(p,q)}
cm,n

〈
ǧp,q, gm,n

〉
︸ ︷︷ ︸

ip,q :interference

+ 〈
ǧp,q, z

〉︸ ︷︷ ︸
zp,q :noise

(7)

In [4] we showed that the SINR is maximized when ǧ = 1/Ag g is a tight frame, which means that (5) is true with Ag = B g . 
In that case, the following relations hold:

‖g‖2 = Ag/ρ (8)

Es = Ag

2ρ
σ 2

c (9)

σ 2
i = E(|ip,q|2) = (ρ − 1)σ 2

c (10)

σ 2
z = E(|zp,q|2) = ρ

Ag
2N0 (11)
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with Es the per-symbol energy, σ 2
i the interference’s variance and σ 2

z the noise’s variance after filtering, so that the SINR 
can be written as follows:

SINR = 1

ρ − 1 + N0
Es

(12)

We observe that the interference term ip,q is a random variable independent of the noise, and that it corresponds to the 
sum of a high number of zero-mean, independent random variables c̃m,n following the same kind of distribution, but having 
different variances σ 2

c̃m,n
:

c̃m,n = cm,n
〈
ǧp,q, gm,n

〉
and σ 2

c̃m,n
= σ 2

c

∣∣〈ǧ, gm−p,n−q
〉∣∣2

(13)

The necessary conditions to apply the central limit theorem are thus not fulfilled. This is confirmed by our simulations in 
Section 4.1, which show that the interference does not exactly follow a normal distribution. However, we notice that it is 
a good approximation when ρ ≤ 8/5. In this scenario, the transmission becomes similar to a case were the symbols would 
have been transmitted over a non-dispersive channel with AWGN, and a signal-to-noise ratio equal to (12). Regarding the 
filtered noise term zp,q , it is worthwhile noting that it is zero-mean Gaussian, but not necessarily white.

2.3. Approximation of the bit-error probability

We now restrict ourselves to the case where the symbols c are chosen from a quadrature phase-shift keying (QPSK) 
alphabet. In this case, considering both the interference and the noise to be Gaussian, the theoretical error probability for a 
transmission over a perfect channel with AWGN is given by the following formula:

Pe = Q
(√

SINR
)

= Q

(√
1

(ρ − 1) + N0
2Eb

)
(14)

with Q (·) the complementary cumulative distribution function (CCDF) of the standard normal distribution and Eb = Es/2
the per-bit energy [5, chapter 4].

3. Interference mitigation structures

3.1. LDPC forward error correction

By considering the interference as a noise, a straightforward reception strategy relies on the compensation of both the 
noise and the interference by channel coding. In this work, we choose a LDPC code because of its good correcting capabilities 
at a given coding rate (see Section 4.3 for simulation results). Decoders for this family of codes rely on algorithms using soft 
inputs in the form of log-likelihood ratios (LLR), given by

L
(
bl(cp,q)|ĉp,q

) = ln

(
Pr

{
bl(cp,q) = 0|ĉp,q

}
Pr

{
bl(cp,q) = 1|ĉp,q

}
)

(15)

where bl(cp,q) is the lth bit of symbol cp,q . Using the Gaussian approximation of the interference, it is possible to write the 
probability density function (PDF) of the sum of the noise and the interference term νp,q = zp,q + ip,q as:

fν(x) = 1

πσ 2
ν

exp

(−|x|2
σ 2

ν

)
(16)

where, given (10) and (11)

σ 2
ν = σ 2

z + σ 2
i = (ρ − 1)σ 2

c + ρ

Ag
2N0 (17)

Moreover, from (7) and (8), one can write νp,q = ĉp,q − cp,q/ρ , which, given that the symbols are IID, following a uniform 
distribution, leads to

L
(
bl(cp,q)|ĉp,q

) = ln

⎛
⎜⎝

∑
c s.t. bl(c)=0 exp

(−|ĉp,q−c/ρ|2
σ 2

ν

)
∑

c s.t. bl(c)=1 exp
(−|ĉp,q−c/ρ|2

σ 2
ν

)
⎞
⎟⎠ (18)

Simulations of Section 4.3 use LLR computed via (18), meaning that we suppose that the PDF of the interference is well 
approximated by a Gaussian function, which, as shown in Section 4.1, is relevant for ρ ≤ 8/5.
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Fig. 2. Flowchart of a receiver exploiting our proposed per-block iterative DFE. ĉ, ĉ(i) and č(i) are matrices containing the elements ĉp,q , ĉ(i)
p,q , č(i)

p,q respectively 
(where p indexes the lines and q the columns).

3.2. Decision feedback equalization

Another way to mitigate interference relies on equalization schemes. In this part, we derive an equalization structure 
that uses previously estimated symbols to cancel the interference term. Indeed, as shown in (7), if this term is completely 
canceled, then the performance of the FTN system is identical to that of an orthogonal system (i.e. a system with density 
ρ ≤ 1) in terms of bit error rate (BER).

Let us suppose that the generator g(t) used in transmission is known by the receiver, then the only missing parameter to 
compute the interference term ip,q is the transmitted symbols sequence c . The DFE presented here uses a per-block iterative 
approach: symbols obtained after thresholding at the previous iteration are used to compute and remove the interference 
term in the current iteration (Fig. 2). Estimated symbols after interference cancellation are given by

ĉ(i)
p,q = cp,q

〈
ǧp,q, gp,q

〉 + ∑
(m,n)∈�\{(p,q)}

(
cm,n − č(i−1)

m,n

) 〈
ǧp,q, gm,n

〉 + 〈
ǧp,q, z

〉
, i ∈ {0, . . . , NI − 1} (19)

where NI is the total number of iterations, ĉ(i)
p,q and č(i)

p,q are respectively the symbols estimated and the symbols obtained 
after thresholding at iteration i. In the first iteration, we set č(−1)

p,q = 0 so that ĉ(0)
p,q = ĉp,q, (p, q) ∈ �.

We can see that in the perfect case, where the symbols after the threshold detector at iteration i − 1 are identical to the 
symbols sent 

(
č(i−1)

p,q = cp,q, (p,q) ∈ �
)

, the interference term is completely removed at iteration i. However, this is never 
the case in practice since error propagation occurs (BER floor at high SNR).

4. Simulations on AWGN channel

4.1. Empirical analysis of the interference

As introduced in 2.2, it is necessary to empirically study the statistical properties of the interference. To this extent, we 
measured 3.6 × 106 realizations of the interference term ip,q through the transmission of K = 50000 multicarrier symbols 
taking their values in a QPSK alphabet, over M = 128 subcarriers, using transmission and reception generators yielding tight 
frames, for different values of the density ρ and over a perfect noise-free channel. These realizations of the interference 
term were then standardized in order to facilitate the comparison of their cumulative distribution function (CDF) and PDF 
to the standard Gaussian distribution’s one. We observed a similar statistical behavior for both the real and imaginary parts 
of ip,q , as well as various generator functions yielding tight frames.

Considering the transmission of IID bits over a perfect noise-free channel (SINR = 1/(ρ − 1)) and denoting Fi,ρ (x) the 
CDF of the interference for a density ρ , one can express the bit-error probability as

Pe(ρ) = 1 − Fi,ρ

(√
SINR

)
= 1 − Fi,ρ

(√
1

ρ − 1

)
(20)

In order to evaluate the validity of the Gaussian approximation of the interference in the context of error probability 
estimation, we compare Pe(ρ) and Q

(√
1/(ρ − 1)

)
for various values of ρ in Fig. 3. We can see that, although it does not 

strictly follow a Gaussian distribution, such an approximation appropriately fits the bit-error probability given ρ > 16/15. 
Moreover, when ρ ≤ 16/15 the Q-function seems to be an upper bound of the bit-error probability.

In order to verify the relevance of this approximation for computing LLR used by soft-input reception algorithms (such 
as LDPC decoders), we compare the PDF of the interference f i,ρ(x) to the one of a standard Gaussian distribution fN (0,1)(x)
for various values of the density in Fig. 4. We see that the Gaussian approximation is relevant for the interference PDF’s 
estimation given ρ ≤ 8/5. However, for higher values of the density, the approximation error can become sufficiently high 
to introduce significant errors when computing LLR, yielding degraded performance.
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Fig. 3. Comparison of the CCDF of the interference and its Gaussian approximation (Q-function) with respect to the density ρ .

Fig. 4. Comparison of the PDF of the interference and its Gaussian approximation with respect to the density ρ .

4.2. Linear system performance

Simulations in this Section as well as in Sections 4.3 and 4.4 make use of transmissions of K = 5000 multicarrier 
symbols over M = 128 subcarriers with a QPSK constellation. They were run for various generators (yielding tight frames 
or not). Tight frames are obtained using the duality principle of the Wexler–Raz theorem [6, Theorem 9.3.4]. Indeed, this 
theorem states that g and ǧ generate dual Gabor frames with time–frequency parameters T0, F0 if and only if they generate 
biorthogonal Riesz–Gabor sequences with time–frequency parameters 1/F0, 1/T0. What is more, g generates a tight Gabor 
frame with time–frequency parameters T0, F0 if and only if it generates an orthogonal Gabor sequence with parameters 
1/F0, 1/T0. Thus, orthogonal generators used in the case ρ < 1 correspond to tight frame generators when ρ > 1. Thus, 
the two orthogonal generators obtained in [7] form tight frames, as shown in [4]. The first one, which maximizes the 
time–frequency localization is denoted by TFL, and the second one, which minimizes the out-of-band energy is denoted as 
OBE. For the same reasons, the square-root-raised-cosine (SRRC) with the roll-off factor α = ρ − 1 as well as the T0-width 
rectangular (RECTT0 ) generator yield tight frames. When such a generator is used in both transmission and reception, it is 
sufficient to set its norm to 1/

√
ρ in order to obtain tight frames with Ag = 1. By contrast, although the RECTρT0 and RECTT0

generates dual frames, they are not canonical dual and using one of them for transmission and the other for reception does 
not lead to a pair of tight frames. Finally, the rectangular generator of width ρT0 (RECTρT0 ) does not form canonical dual 
frames when used both in transmission and reception.

Fig. 5 shows that the SINR is perfectly predicted by (12) when transmission and reception generators yield tight dual 
canonical frames. Performance gets worse when this condition is not respected, which is in line with the results shown 
in [4]. In this case, we can see that it is better to use the same families for transmission and reception, even if they are not 
dual frames, than using non-tight dual frames.

Fig. 6 confirms the relevance of the closed-form expression of the bit-error probability (14). It means that the Gaussian 
approximation of the interference term is also accurate, even for ρ > 8/5, because in this case, the BER is sufficiently 
high compared to the approximation error so that the relative error is kept low. However, for strong values of Eb/N0
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Fig. 5. SINR versus Es/N0, with ρ = 16/15.

Fig. 6. BER versus ρ , with Eb/N0 = 20 dB.

Fig. 7. BER versus Eb/N0, with ρ = 16/15.

(≥14 dB) and for ρ close to one (ρ = 16/15), the limits of this approximation become noticeable (Fig. 7). In the context of 
a non-coded system, the BER rapidly increases with the density (Fig. 6), and a lower bound of the BER appears when the 
noise power becomes negligible compared to the interference’s one (Fig. 7). These results confirm the need for non-linear 
detectors enabling a better interference mitigation.
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Fig. 8. Output BER as a function of the input BER for the rate 1/2 LDPC code of the DVB-S2 standard over an AWGN channel. In this configuration, the 
convergence threshold is given at BERin = 0.15.

Fig. 9. BER as a function of Eb/N0 for a system using the rate 1/2 LDPC code of the DVB-S2 standard (10 iterations of the decoder), a density ρ = 4/3 and 
a TFL generator. The convergence threshold happens at the value of Eb/N0 corresponding to the expected BERin (determined using Fig. 8).

4.3. Performance with LDPC coding

BER curves of coded systems using iterative structures such as turbo-codes or LDPC are characterized by their so-called 
convergence threshold corresponding to the lowest Eb/N0 value allowing a better BER at the output of the decoder (denoted 
as BERout) than at its input (denoted as BERin) [8]. For transmissions happening over a perfect channel with AWGN, it is also 
possible to characterize such a coded system with a curve representing BERout as a function of BERin. On this kind of curve, 
the convergence threshold is given with a particular value of the input BER. As a consequence, thanks to the closed-form 
expression of the error probability given in (14), one can find the highest density ρ allowing the coded system to converge 
for a given value of Eb/N0.

For instance, Fig. 8 shows that a system using the rate 1/2 LDPC code defined in the DVB-S2 standard [9] has its 
convergence threshold for an input BER of approximately 0.15. Referring to the Fig. 9, we can see that when this code is 
used together with a multicarrier FTN system using tight frames, the convergence threshold happens for Eb/N0 = 2 dB, 
which actually is the signal-to-noise ratio corresponding to an input BER of 0.15.

4.4. Performance with direct feedback equalization

Our proposed per-block iterative DFE, although its very low complexity, can effectively mitigate interference for low SNR 
values, yielding close proximity between FTN multicarrier DFE and orthogonal system BER performance, as shown by Fig. 10. 
We observe that the BER performance of this DFE does not depend on the generators used in transmission and reception as 
long as they yield tight canonical dual frames. For strong values of Eb/N0, we can see the error propagation phenomenon 
as the BER becomes constant while the noise power is decreasing.
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Fig. 10. BER as a function of Eb/N0 for a multicarrier FTN system using a DFE, a density ρ = 8/7 and a TFL generator.

Fig. 11. BER as a function of ρ for a multicarrier FTN system using a DFE, Eb/N0 = 8 dB and a TFL generator.

When used with a linear receiver and nothing else, Fig. 11 shows that this equalizer is not effective with high values 
of the density. However, it would be simple to get better performance by adding an error-correcting code, allowing for an 
improvement of the reliability of the estimated symbols. Another approach would consist in modifying this equalizer to let 
it work with soft inputs and produce soft outputs, as a way to integrate it in a turbo-equalization structure [10,8].

5. Conclusion

This article is based on the use of the optimal FTN linear multicarrier system derived in [4]. This system enables an 
increase in the signaling density in time and/or frequency. Consequently, spectral efficiency is improved as well, but this 
comes at the expense of unavoidable inter-pulse interference.

We show that a Gaussian approximation of the interference is accurate for the sake of a bit-error probability estimation, 
for which we give a closed-form expression. Two interference mitigation techniques are also presented, the first one involves 
an error–correction code with iterative decoding (LDPC code), while the second one is based on a per-block iterative decision 
feedback equalizer. The latter is shown to be very effective for low values of the density (ρ ≤ 8/7), but suffers from the 
error propagation phenomenon for high values of the signal-to-noise ratio. It is shown through simulations that the Gaussian 
approximation of the interference term is also accurate for the sake of log-likelihood ratios computation, needed for example 
by LDPC codes and turbo-codes decoders, ensuring that ρ ≤ 8/5. In this context, we introduce a method allowing for the 
prediction of the performance of this optimal linear system when associated with an error–correction code using iterative 
decoding, without requiring simulations, thus facilitating system design.

Future work may include interference mitigation by means of turbo-equalization [10], a more in-depth study of the 
statistical properties of the interference term, or an evaluation of this optimal linear system over time and/or frequency-
selective channels.
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