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Asymptotic safety, based on a non-Gaussian fixed point of the gravitational renormalization 
group flow, provides an elegant mechanism for completing the gravitational force at 
sub-Planckian scales. At high energies, the fixed point controls the scaling of couplings 
such that unphysical divergences are absent, while the emergence of classical low-energy 
physics is linked to a crossover between two renormalization group fixed points. These 
features make asymptotic safety an attractive framework for the building of a cosmological 
model. The resulting scenarios may naturally give rise to a quantum-gravity-driven 
inflationary phase in the very early universe and an almost scale-free fluctuation spectrum. 
Moreover, effective descriptions arising from an improvement of the renormalization group 
permit a direct comparison to cosmological observations as, e.g., Planck data.
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r é s u m é

La sécurité asymptotique, basée sur un point fixe non gaussien du flux du groupe 
de renormalisation gravitationnel, fournit un mécanisme élégant pour décrire la force 
gravitationnelle aux échelles sub-planckiennes. Aux hautes énergies, le point fixe contrôle 
le dimensionnement des couplages de manière à ce que les divergences non physiques 
soient absentes, tandis que l’émergence d’une physique classique des basses énergies est 
liée au croisement de deux points fixes de groupes de renormalisation. Ces éléments 
font de la sécurité asymptotique un cadre attractif pour la construction d’un modèle 
cosmologique. Les scenarios résultants peuvent naturellement donner lieu à une phase 
inflationnaire contrôlée par la gravité quantique dans l’univers primordial et à un spectre 
de fluctuations presque sans échelle. De plus, les descriptions effectives issues d’une 
amélioration du groupe de renormalisation permettent une comparaison directe avec des 
observations cosmologiques telles que, par exemple, les données de Planck.
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1. Asymptotic safety: a brief introduction

It is well known that the quantization of general relativity based on the Einstein–Hilbert action results in a quantum field 
theory that is perturbatively non-renormalizable. This conclusion also holds if (non-supersymmetric) matter fields are added. 
The phenomenological success of general relativity then motivates to treat gravity as an effective field theory. This approach 
leads to a renormalizable theory of gravity in the sense that any quantum field theory becomes renormalizable if all possible 
counterterms compatible with its symmetries are included in the action [1]. While providing a consistent quantum theory 
for gravity, this construction falls short in terms of predictive power: while the effective field theory formulation works 
well at energy scales below the Planck scale where higher-derivative terms are suppressed by powers of the Planck mass, 
describing gravity at trans-Planckian scales requires fixing an infinite number of free coupling constants from experimental 
input.

In principle, asymptotic safety lives in the same space of theories as the corresponding effective field theory. It resolves 
the problem of “predictivity” encountered in the effective field theory framework by imposing the extra condition that the 
quantum theory describing our world is located within the UV critical hypersurface of a suitable renormalization group 
(RG) fixed point. This condition implies that the high-energy behavior of the theory is controlled by the fixed point that 
renders all dimensionless coupling constants finite at high energy. Fixing the trajectory uniquely then requires a number of 
experimental input parameters equal to the dimensionality of the hypersurface.

On this basis, the crucial elements for asymptotic safety providing a valid theory for quantum gravity can be summarized 
as follows. Firstly, the existence of a suitable RG fixed point has to be shown. Secondly, the predictive power of the construc-
tion must be determined. Finally, it has to be shown that the UV critical hypersurface develops a regime where classical 
gravity constitutes a good approximation. Starting from the pioneering work [2], these points have been investigated in a 
vast variety of highly sophisticated computations, putting the scenario on firm grounds [3–8]. In particular, the dimension 
of the UV critical hypersurface could be as low as three.

The prospect that asymptotic safety could be capable of describing gravitational force at all length scales makes the 
theory quite attractive for cosmological model building [9–35,35–38]. On the one hand, some or all of the free parameters 
appearing in the construction of asymptotic safety (including the value of the cosmological constant and Newton’s constant 
complemented by a low number of higher-derivative couplings) may be determined from cosmological data. On the other 
hand, asymptotic safety provides a framework for developing effective cosmological models and addressing questions related 
to a possible resolution of cosmological singularities. Typically, such investigations incorporate the effect of scale-dependent 
couplings through RG improvement techniques implemented either at the level of the equations of motion or the effective 
(average) action. While the resulting models are not based on the same level of rigor as the RG computations forming the 
core of the asymptotic safety program, they allow for the construction of interesting cosmological scenarios, e.g., in the 
framework of f (R)-type gravitational actions or dilaton-gravity theories.

The rest of the work is then organized as follows. We briefly review the computation of gravitational RG flows and the 
central results in Sect. 2, emphasizing the occurrence of a classical phase where general relativity is a good approximation. 
Cosmological models arising from RG improved equations of motion are discussed in Sect. 3, while Sect. 4 summarizes 
results obtained from (improved) effective actions. We close with a brief summary and outlook in Sect. 5.

2. Asymptotic safety: fixed points and classical regime

Testing asymptotic safety at the conceptual level requires the ability to construct approximations of the gravitational 
RG flow beyond the realm of perturbation theory. A very powerful framework for carrying out such computations is the 
functional renormalization group equation (FRGE) for the gravitational effective average action �k [2]

∂k�k[g, ḡ] = 1

2
Tr

[(
�

(2)

k +Rk

)−1
∂kRk

]
(1)

The construction of the FRGE uses the background field formalism, splitting the metric gμν into a fixed background ḡμν

and fluctuations hμν . The Hessian �(2)

k is the second functional derivative of �k with respect to the fluctuation field at a 
fixed background and Rk provides a scale-dependent mass term for fluctuations with momenta p2 � k2 with the RG scale 
k constructed from the background metric. The interplay of Rk in the numerator and denominator renders the trace both 
infrared and ultraviolet finite and ensures that the flow of �k is actually governed by fluctuations with momentum p2 ≈ k2. 
In this sense, the flow equation realizes Wilson’s idea of renormalization by integrating “short-scale fluctuations” with mo-
menta p2 � k2 such that �k provides an effective description of physics for typical scales k2. A priori, one may then expect 
that the resulting RG flow may actually depend strongly on the choice of the background. As it was explicitly demonstrated 
in [39], this is not the case, however: if the flow is computed via early-time heat-kernel methods, the background merely 
serves as a book-keeping device for disentangling the flow of different coupling constants.

The arguably simplest approximation of the gravitational RG flow is obtained from projecting the FRGE onto the Einstein–
Hilbert action approximating �k by
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�k = 1

16πGk

∫
d4x

√
g [−R + 2�k] + gauge-fixing and ghost terms (2)

This ansatz comprises two scale-dependent coupling constants, Newton’s constant Gk and a cosmological constant �k . The 
scale-dependence of these couplings is conveniently expressed in terms of their dimensionless counterparts

λk ≡ k−2 �k , gk ≡ k2 Gk (3)

and captured by the beta functions

k∂k gk = βg(gk, λk) , k∂kλk = βλ(gk, λk) (4)

Evaluating the beta functions [2] for the Litim regulator [40] gives

βλ = (ηN − 2) λ + g

12π

[
30

1 − 2λ
− 24 − 5

1 − 2λ
ηN

]
βg = (2 + ηN) g

(5)

with the anomalous dimension of Newton’s constant ηN ≡ (Gk)
−1 k∂kGk being given by

ηN = g B1(λ)

1 − g B2(λ)
(6)

where

B1(λ) = 1
3π

[
5

1−2λ
− 9

(1−2λ)2 − 7
]

, B2(λ) = − 1
12π

[
5

1−2λ
− 6

(1−2λ)2

]
(7)

The beta functions (5) encode the scale-dependence of the dimensionless Newton constant and of the cosmological 
constant. In particular, they contain the information on fixed points g∗ of the RG flow, where, by definition of a fixed point, 
the beta functions vanish simultaneously, βa(ga)|ga=ga∗ = 0. In the vicinity of a fixed point, the properties of the RG flow 
are captured by linearizing the beta functions around the fixed point. Defining the stability matrix Bab ≡ ∂gb βga |g=g∗ the 
linearized flow takes the form

ga(k) = ga∗ +
∑

I

C I V a
I

(
k0

k

)θI

(8)

Here the V I s denote the right-eigenvectors of B with eigenvalues −θI such that 
∑

b Bab V b
I = −θI V a

I , k0 is a fixed reference 
scale and the C I are integration constants. If Re θI > 0 the flow along the eigendirection, V I automatically approaches the 
fixed point ga∗ as k → ∞. In this case, the C I has a status of a free parameter. Analogously, eigendirections with Re θI < 0 are 
repelled from the fixed point as k → ∞. The requirement that the fixed point controls the flow at high energy then demands 
that the corresponding integration constants C I must be set to zero. Compared to the effective field theory framework, 
asymptotic safety then potentially fixes an infinite number of free couplings, leading to a vast increase in predictive power.

The beta functions (5) give rise to two fixed points. Firstly, the Gaussian fixed point (GFP) is situated at (g∗, λ∗) = (0, 0). 
It corresponds to a free theory where the stability coefficients are determined by the mass-dimension of the coupling 
constant. Thus the GFP is a saddle point in the g − λ-plane: linearized solutions with g > 0 are repelled from this fixed 
point for k → ∞. This feature reflects the perturbative non-renormalizability of the Einstein–Hilbert action in the Wilsonian 
language.

In addition, the flow possesses a non-Gaussian fixed point (NGFP) located at

g∗ = 0.707 , λ∗ = 0.193 (9)

From Eq. (5), one sees that the anomalous dimension of Newton’s constant at this fixed point is ηN = −2. Its stability 
coefficients are given by

θ1,2 = 1.48 ± 3.04i (10)

such that RG flows in its vicinity actually spiral into the fixed point as k → ∞. In the fixed-point regime, (9) then entails 
that the dimensionful coupling constants scale according to

lim
k→∞

Gk = g∗ k−2 , lim
k→∞

�k = λ∗ k2 (11)

In particular, the dimensionful Newton constant vanishes as k → ∞, entailing that the asymptotic safety mechanism renders 
gravity anti-screening.

At this stage, it is instructive to construct the flow of Gk and �k by integrating the beta functions (5) numerically. For 
solutions giving rise to a positive cosmological constant, typical examples are shown in Fig. 1. For ln k � 2, all solutions 
exhibit the fixed point scaling (11). In the range −2 < ln k < 2, the solutions undergo a crossover from the NGFP to the GFP. 
For ln k � −2, both Gk and �k are (approximately) constant before terminating at finite kterm when λkterm ≈ 1/2. The value 
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Fig. 1. Scale dependence of the Newton’s constant (right) and cosmological constant (left) as a function of the RG scale k for typical solutions giving rise to 
a positive cosmological constant. The red line indicates a singularity of the beta functions where ηN diverges (adapted from [41]).

of Gk and �k in this classical regime can be set to the experimentally measured values G0 and �0 by choosing suitable 
initial conditions [42]. The small value of �0 then ensures that the classical regime extends from the Planck scale up to 
cosmic scales.

At this stage, the following remarks are in order. The result (9) actually constitutes the projection of the NGFP underlying 
asymptotic safety to the space of interactions spanned by the Einstein–Hilbert action. It is unlikely that the full effective 
average action �∗ is of Einstein–Hilbert form. Starting from the Einstein–Hilbert result, the existence of a suitable NGFP has 
by now been established in a series of highly sophisticated approximations, reviewed, e.g., in [7]. The inclusion of power-
counting marginal four-derivative terms thereby indicate that there is (at least) one additional relevant direction that may be 
associated with the coupling constant associated with an R2-interaction [43,44]. Notably, the existence of a classical regime 
persists upon including higher-derivative terms comprising R2-interactions or the Goroff–Sagnotti counterterm [45,46]. The 
mechanism giving rise to this feature is universal: the classical regime results from a crossover from the NGFP controlling 
the high-energy behavior to the GFP governing the low-energy physics. This crossover also works for realistic values of the 
cosmological constant [42].

3. Quantum gravity effects and the initial singularity

In principle, astrophysical and cosmological applications of the asymptotic safety scenario are ubiquitous. Fig. 1 displays 
a significant scale dependence of Newton’s constant and the cosmological constant for trans-Planckian energy outside the 
classical regime. This raises the immediate question if this scale-dependence has an influence on cosmic singularities and if 
it leaves phenomenological imprints in cosmological signatures. These questions may be addressed using the RG improve-
ment techniques reviewed below.

3.1. Incorporating quantum gravity via renormalization group improvements

A key feature of the effective average action �k[gμν ] is that it provides an effective description of the physical system at 
scale k. Based on this property, �k allows us to derive effective field equations for the effective metric via

δ�k

δgμν(x)
[〈g〉k] = 0 (12)

where, quantities 〈·〉 can be interpreted as averaged over (Euclidean) spacetime volumes with a linear extension of order 
k−1. In the case of Einstein–Hilbert truncation (2), one obtains

Rμν [〈g〉k] − 1

2
R 〈gμν〉k = −�(k) 〈gμν〉k + 8πG(k) 〈Tμν〉k (13)

with Tμν the standard energy momentum tensor describing the matter content of the system. In the RG improvement 
process, the cutoff k is then identified with a typical length scale of the system, k �→ k(xμ). In the context of cosmology, 
there are several types of cutoff identifications

Type I: k2 = ξ2 t−2 (14a)

Type II: k2 = ξ2 H(t)2 (14b)

Type III: k2 = ξ2
√

Rμνρσ Rμνρσ (14c)

Type IV: k2 = ξ2 T 2 (14d)
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Here t denotes cosmic time (representing a proper distance), H(t) the Hubble parameter, 
√

Rμνρσ Rμνρσ is representative 
for a quantity characterizing the curvature of spacetime, and T ∝ ρ1/4 is the temperature of the cosmic plasma. Moreover, 
ξ is an a priori undetermined positive parameter of order one. Supplementing (13) by a suitable equation of motion for 
the matter sector and substituting one of the cutoff identifications leads to a closed system of equations that allows us to 
determine the averaged metrics 〈gμν〉k . If �(k) and G(k) are (approximately) scale independent, the dynamics entailed by 
(13) reduces to the one of general relativity while the running of the couplings induces distinct modifications controlled by 
the beta functions of the theory. Fig. 1 then indicates that these corrections will set in when k2 � G0, which is the natural 
scale for quantum gravity effects.

An alternative to the RG improvement of the equations of motion described above can be borrowed from QED and QCD 
[47–49] and carries out the improvement at the level of the effective action. Instead of calculating the effective action 
in terms of Schwinger’s proper-time approach or perturbative calculations of Feynman diagrams, it turns out to be more 
convenient to obtain the low-energy effective action by means of the stress-energy tensor and the leading-log model. In a 
similar way, the RG approach to gravity allows us to construct improved actions by promoting k to an external spacetime-
dependent field k = k(xμ) or identifying k directly with the field strength. The latter corresponds to a cutoff identification 
of Type III applied to the effective average action. This procedure then leads to additional terms in the equations of motion 
that originate from DμG(k(x)) 
= 0 (also see [42,17] for a more detailed discussion).

3.2. Friedmann–Robertson–Walker cosmology

A natural starting point for investigating potential signatures of asymptotic safety studies the RG improved equations 
of motion for homogeneous and isotropic flat Friedmann–Robertson–Walker cosmologies. In this case, complete cosmic 
histories taking the scale dependence of the couplings into account have been developed in a series of works [9,12,13,17].1

In this case, the line element

ds2 = −dt2 + a(t)2
[

dx2 + dy2 + dz2
]

(15)

is supplemented by a stress-energy tensor of a perfect fluid, Tμ
ν = diag[−ρ, p, p, p], satisfying the equation of state p =

wρ . Applying a cutoff identification k �→ k(t) to (13) leads to the RG improved Friedmann and continuity equation

H2 = 8π

3
G(t)ρ + 1

3
�(t)

ρ̇ + 3H(ρ + p) = − �̇ + 8πρ Ġ

8πG(t)

(16)

The second equation arises from the Bianchi identity satisfied by Einstein’s equations Dμ[λ(t) gμν − 8πG(t) Tμν ] = 0. The 
extra term on its right-hand side has the interpretation of an energy transfer between the gravitational degrees of freedom 
and matter. Introducing the critical density ρcrit ≡ 3H(t)2/(8πG(t)) and defining the relative densities �matter = ρ/ρcrit and 
�� = ρ�/ρcrit, the first equation is equivalent to �matter + �� = 1.

We first focus on the very early part of the cosmological evolution where the scaling of G and � is given by (11). 
Selecting the cutoff identification to be of Type II, Eq. (14b), the system (16) has the analytic solution

H(t) = α

t
, a(t) = A tα , α =

[
3
2 (1 + w)(1 − �∗

�)
]−1

(17)

together with ρ(t) = ρ̂ t−4, G(t) = Ĝ t2 and �(t) = �̂ t−2. The constants Ĝ, ̂� and ρ̂ are determined in terms of the position 
of the NGFP and the free parameter ξ ,

ρ̂ = 3
8π

ξ2α4

g∗

(
1 − 1

3 λ∗ξ2
)

, Ĝ = g∗
ξ2α2

, �̂ = λ∗ ξ2 α2 , �∗
� = 1

3 λ∗ ξ2 (18)

while A is a positive constant. The vacuum energy density in the fixed point regime, �∗
� , takes values in the interval 

]0, 1[.2 The solutions (17) possess no particle horizon if α ≥ 1, while for α < 1 there is a horizon of radius rH = t/(1 − α). 
Moreover, they undergo power law inflation if α > 1. Assuming radiation dominance, w = 1/3, this requires �∗

� > 1/2. For 
the NGFP (9), this corresponds to 2.79 ≤ ξ ≤ 3.94. Remarkably, the asymptotic behavior of the solution for t → 0 is actually 
independent of the chosen improvement scheme: given the solution (17) together with the curvature tensor evaluated in 
Table 1, all choices entail k ∝ t−1 + subleading, corroborating the robustness of the improvement procedure.

1 Also see [23,50] for related discussions.
2 A priori, the value of α depends on the parameter ξ � O (1) entering the renormalization group improvement scheme (14). For radiation dominance 

w = 1/3, and the fixed point (9), one typically has 1/2 < α < 1. In principle, the value of ξ may be fixed by imposing, e.g., conservation of the classical 
stress-energy tensor [9], but we will consider ξ as a free parameter in the sequel.
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Realizing an inflationary phase in the fixed-point regime by having �∗
� ≥ 1/2 is a rather attractive scenario: inflation 

driven by the quantum gravity effects ends automatically at the transition time ttr when the RG flow enters the classi-
cal regime. For t > ttr the evolution is then given by a classical Friedmann–Robertson–Walker universe. The period of a 
NGFP-driven inflationary phase does not require any extra ingredients like an inflaton or a specific inflaton potential.

Quite remarkably, the NGFP-driven inflation may leave imprints in the cosmic fluctuation spectrum. The transition time 
ttr is determined by the scale k where the underlying RG trajectory enters the classical regime G0. From Fig. 1, one sees that 
k � mPl, where the Planck mass is determined from the value of Newton’s constant in the classical regime. Since ξ = O (1)

gives H(ttr) ≈ mPl. The relation H(t) = α/t then leads to the estimate

ttr = α tPl (19)

If �∗
� is very close to one, i.e. α � 1, the cosmic time ttr, when the Hubble parameter is of order mPl, can be much larger 

than the Planck time, which is then located within the NGFP regime.
We now consider the evolution of a fluctuation with comoving length �x. The corresponding physical length is L(t) =

a(t)�x. In the NGFP regime, L(t) is related to the proper length at the transition time ttr via L(t) = (t/ttr)
α L(ttr). The ratio 

of L(t) and the Hubble radius �H (t) then evolves as

L(t)

�H (t)
=

(
t

ttr

)α−1 L(ttr)

�H (ttr)
(20)

For α > 1, the proper length of the object grows faster than the Hubble radius. Fluctuations that are of sub-Hubble size at 
early times can then cross the horizon and become “super-Hubble”-size at later times.

For definiteness, let us consider a fluctuation which, at the transition time ttr , is eN times larger than the Hubble radius. 
For this fluctuation, Eq. (20) implies

L(t)

�H(t)
= eN

(
t

ttr

)α−1

(21)

The time tN where this fluctuation crosses the Hubble horizon, L(tN ) = �H (tN ) is

tN = ttr exp

(
− N

α − 1

)
(22)

Thus even for moderate values of α, NGFP-driven inflation easily magnifies fluctuations to a size where they are many orders 
of magnitude larger than the Hubble radius. Interestingly, the structures visible today may have crossed the Hubble horizon 
during the NGFP regime. Starting from the largest structures visible today and using the classical evolution to backtrace 
them in time to the point where H = mPl, their size back then is given by e60�Pl. Setting N = 60, the time t60 when these 
structures crossed the horizon can be estimated from Eq. (22). For α = 25, t60 = ttr/12.2 = 2.05tPl. Thus t60 is one order 
of magnitude smaller than ttr. In this setting, the structures observed today may have their origin in the quantum regime 
controlled by the NGFP.

The NGFP also offers a natural mechanism for generating a scale-free spectrum of primordial fluctuations [13]. Fol-
lowing the discussion [51], this can be seen as follows: owing to the anomalous dimension of the theory at the NGFP, 
ηN = −2, the effective graviton propagator (at background level) has a characteristic 1/p4 dependence. This implies a log-
arithmic dependence for the two-point graviton correlator in the configuration space, 〈hμν(x)hμν(y)〉 ∼ ln(x − y)2. As a 
consequence, curvature fluctuations δR ∝ ∂2h (where R stands for any component of Riemann or Ricci tensor) must behave 
as: 〈δR(x, t)δR(y, t)〉 ∝ 1/|x − y|4. If the fluctuations on the matter part δρ originate from the fluctuations of the geometry 
itself, the classical Einstein equations provide the relation δρ ∝ δR. The correlation function ξ(x) ≡ 〈δ(x)δ(0)〉 of the density 
contrast of δ(x) ≡ δρ(x)/ρ must behave as [13]

ξ(x) ∝ 1

|x|4 (23)

provided the physical distance a(t)|x| is smaller than the Planck length. Therefore, from the three-dimensional Fourier trans-
form of (23), we immediately get |δk|2 ∝ |k|, which results in a scale-invariant power spectrum, with spectral index n = 1. 
Clearly (small) deviations from n = 1 are expected as, strictly speaking, the prediction of an exactly scale-free spectrum 
holds at the NGFP only. Since the NGFP is supposed to govern the dynamics of the theory before the onset of inflation, this 
implies in particular that the power spectrum may acquire non-trivial corrections during the inflationary phase.

3.3. BKL-type singularities

The RG improvement techniques employed in the case of a homogeneous and isotropic Friedmann–Robertson–Walker 
solution are readily extended to anisotropic models [52]. This includes the class of vacuum Bianchi-I and Bianchi-IX models 
where the line element has the form

ds2 = −dt2 +
(

a2
1 lalb + a2

2 mamb + a2
3 nanb

)
dxadxb (24)
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Fig. 2. Dynamics of the scale factors ai for the classical (left) and RG improved (right) vacuum Bianchi IX model as a function of dτ ≡ a1a2a3 dt . The RG 
improvement leads to a decoupling of spatial points such that the system enters a quiescence phase (adapted from [52]).

Table 1
Initial singularities for the RG improved Friedmann–Robertson–Walker (FRW) solution 
(top) and the vacuum Bianchi IX universe (bottom). The values α and pi determining 
the square of the Riemann tensor are given in eqs. (17) and (28). Both models exhibit a 
point singularity at t = 0.

Singularity Rμνρσ Rμνρσ

FRW cosmology 12α2(1−2α+2α2)

t4

BKL singularity
4
[
r+λ∗+(r+λ∗)2−2(p3

1+p3
2+p3

3)−p2
1 p2

2−p2
1 p2

3−p2
2 p2

3

]
t4

Here ai(t) are scale factors depending on the cosmological time t , and the three vectors la , ma , na depend on the spatial 
coordinates and determine the directions scaling with the corresponding ai . At the classical level, BKL [53–55] discovered 
that the dynamics of the scale factors follows a complex oscillatory pattern between Kasner phases where the spatial 
derivatives of the three vectors are negligible (see the right panel of Fig. 2). In a Kasner phase, the scale factors follow a 
power–law behavior ai(t) = t pi with the Kasner exponents pi satisfying

3∑
i=1

pi = 1 ,

3∑
i=1

(pi)
2 = 1 (25)

The solution to these equations may be parameterized in terms of a single real variable u, showing that classically one 
always has two positive and one negative Kasner exponent (the point p1 = 1 and p2 = p3 = 0 constituting an exception). 
If the system approaches t → 0, the scale-factor associated with the negative Kasner exponent becomes large, triggering 
a bounce into a new Kasner phase. Thus, classically, the system undergoes an infinite number of Kasner bounces as it 
approaches the initial singularity at t = 0.

We now include a scale-dependent cosmological constant and perform a Type-I RG improvement identifying k2 = ξ2t−2. 
In the NGFP regime, the improved vacuum equations of motion take the form

Rμν − 1
2 gμν R = −λ∗ t−2 gμν (26)

where we absorbed ξ2 into the parameter λ∗ . Neglecting spatial gradients (corresponding to the Bianchi-I case), the system 
again possesses Kasner-type scaling solutions where the Kasner exponents satisfy

3∑
i=1

pi = r ,

3∑
i=1

(pi)
2 = r + λ∗ (27)

with r ≡ (1 +√
1 + 12λ∗)/2. The one-parameter family of solutions to this system is conveniently parameterized by u ∈ [0, 1]

and given by
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p1 = 1
3

(
r − √

r
) −

√
r u

1 + u + u2

p2 = 1
3

(
r − √

r
) +

√
r u(1 + u)

1 + u + u2

p3 = 1
3

(
r − √

r
) +

√
r (1 + u)

1 + u + u2

(28)

For λ∗ > 0, these solutions possess the remarkable feature that there are intervals u where all Kasner exponents are positive.
Returning to the Bianchi-IX case with the spatial gradients turned on, a generic solution undergoes Kasner oscillations. 

When tracing the dynamics back in time, the crucial difference to the classical case occurs if a Kasner bounce reflects the 
system into the part of the solution space where all pi > 0. In this phase, there is then no scale factor which diverges as 
t → 0. Consequently, the Kasner bounces stop and the system approaches a point-like singularity where limt→0 ai(t) = 0, 
i = 1, 2, 3 (see the right panel of Fig. 2 for illustration). The RG improved Bianchi IX model exhibits the same quiescent 
behavior found when the Bianchi IX universe is populated by stiff matter [56]. Moreover, it gives rise to the same type of 
point singularity as the one encountered in the homogeneous and isotropic case.3

4. Inflationary models

A more detailed connection between asymptotic safety and cosmological data may be obtained through the construction 
of effective actions valid at the scale of inflation. For pure gravity, the effective actions studied so far fall into the class 
of f (R)-type theories where the modifications are attributed to quantum gravity effects. Along a different line, it is also 
possible to extend the pure gravity theory by including an additional scalar field and investigate imprints of asymptotic 
safety within the framework of dilaton-gravity theories. These two cases will be discussed in subsections 4.1 and 4.2, 
respectively.

4.1. Effective f (R)-type gravity models

According to the inflationary scenario, quantum gravity phenomena could be observed in anisotropy experiments of the 
microwave background as well as in galaxy clustering data. In particular, according to the latest release of Planck data, the 
inflationary scale is significantly lower than the Planck scale, with k ∼ 1014–1015 GeV for a pivot scale k� = 0.05 Mpc−1. An 
effective action for inflation can then be obtained by linearizing the flow around the NGFP and identifying the cutoff with 
the field strength. Starting from a scale-dependent Lagrangian including the (projection of) the currently known relevant 
coupling constants,

Lk = 1

16πGk
(R − 2�k) − βk R2 (29)

and implementing a Type-III cutoff identification, a detailed calculation shows that an effective action valid around the 
inflationary scale may be given by [58,59]

S = 1

2κ2

∫
d4x

√−g

[
R + αR2− θ3

2 + R2

6m2
− M

]
(30)

Here κ2 = 8πG0, the scalaron mass m and M encode the details of the RG trajectory in the Einstein–Hilbert sector, and θ3
is the critical exponent of the R2-operator. The relevant R2-coupling is encoded in α. For α = 0, Eq. (30) coincides with 
standard Starobinsky inflation, which is favored by the Planck 2015 data.

It is then possible to constrain the value of α in the slow-roll approximation. Mapping (30) to the Einstein frame yields

S =
∫

d4x
√−gE

[
1

2κ2
R E − 1

2
gμν

E ∂μφ∂νφ − V±(φ)

]
(31)

where

3 In the context of shape dynamics, a similar setup has recently been studied in [57], where it was shown that the specific properties underlying shape 
dynamics allow the continuation of solutions through this singularity.
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Fig. 3. Theoretical predictions in the r–ns plane for different values of α for the Planck collaboration 2015 data release for the TT correlation assuming 
�CDM + r. Triangles are for N = 55 and squares for N = 60 e-folds. Solid and dashed lines are the 1σ and 2σ confidence levels, respectively (adapted from 
[59]).

V (φ) = m2e−2
√

2
3 κφ

256κ2

{
192

(
e

√
2
3 κφ − 1

)2

− 3α4 + 128M

− 3α2
(
α2 + 16 e

√
2
3 κφ − 16

)
− 6α3

√
α2 + 16 e

√
2
3 κφ − 16

− √
32α

[(
α2 + 8e

√
2
3 κφ − 8

)
+ α

√
α2 + 16e

√
2
3 κφ − 16

] 3
2
}

(32)

and g E
μν = ϕgμν with ϕ = e

√
2/3κφ. In (32), α and M are in units of the scalaron mass m by means of the rescaling 

α → α/3
√

3m and M → Mm2, so that both α and M are dimensionless numbers. It is thus possible to constrain the value 
of α in the slow-roll approximation so that for α ∈ [1, 3] and N = 50 e-folds, the spectral index ns ∈ (0.965, 0.967) and the 
tensor-to-scalar ratio r ∈ (0.069, 0.0076), see Fig. 3. These values are significantly larger than the Starobinsky value, but are 
still in agreement with observations [60]. It is hoped that future CMB anisotropy experiments like CORE [61], LiteBIRD [62], 
or PIXIE [63] could discriminate between these models.

4.2. Dilaton-gravity models

The asymptotic safety mechanism, in the case of pure gravity realized through the NGFP (9), is also operative in gravity-
matter systems [64–66]. The occurrence of non-Gaussian gravity-matter fixed points then motivates studying the imprints 
of asymptotic safety also in dilaton-gravity (DG) models. A typical ansatz for the (Euclidean) effective average action reads

�DG
k =

∫
d4x

√
g

[
1
2 Fk(χ

2)R − 1
2 Kk(χ

2)∂μχ ∂μχ − Vk(χ)
]
+ . . . (33)

where the three functions F , V and K depend on the scalar field χ and the RG scale k. Restricting to

Fk(χ
2) = 1

16πGk
+ ξk χ2 , Vk(χ

2) = vk + 1
2 m2

k χ2 + 1
4 σk χ4 , Kk = 1 (34)

this class of models also comprises the actions discussed in the context of asymptotically safe Higgs inflation [35,36]. 
Substituting the ansatz (33) into the FRGE (1) yields a system of coupled partial differential equations determining the 
scale-dependence of F , V , and K . These equations may be used to integrate down the fixed point potentials to the scale 
of inflation. Converting to the Einstein frame, the predictions for cosmological observables may then be constructed in the 
standard way.

An alternative approach taken in [67] aims at constructing the so-called scaling solutions where, by definition, the 
dimensionless counterparts of F , V , and K are independent of the RG scale k. Such solutions can be constructed through a 
combination of analytic and numerical methods. Converting back to the Einstein frame, it is found that the scalar potential 
is, firstly, independent of the RG scale k and, secondly, possesses a maximum for small values of the scalar field. While 
these solutions do not (yet) give rise to realistic cosmological models, they serve as a prototype for connecting solutions to 
the FRGE to cosmology without invoking a cutoff identification.
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5. Summary and outlook

Asymptotic safety provides an attractive mechanism for constructing a theory of gravity extending to length scales below 
the Planck scale. The non-Gaussian fixed point controlling the short-distance behavior of the theory leads to a distinct 
scale-dependence of the gravitational couplings at (trans-)Planckian energies. At the level of cosmological model building, 
this scale-dependence may be taken into account via a RG improvement either at the level of the equations of motion or 
the effective average action. The resulting models may naturally give rise to a quantum-gravity-driven inflationary phase in 
the very early universe, generate a significant amount of entropy through an energy transfer from the gravitational to the 
matter sector, and should possess an (almost) scale-free fluctuation spectrum [9,12,13,17]. Moreover, effective actions arising 
from RG improvement permit a direct comparison to cosmological observations as, e.g., Planck data, potentially constraining 
the relevant couplings of the theory. Generically, the RG improvements studied so far do not resolve the initial Big Bang 
singularity. There are indications, however, that in some cases the singularity is replaced by a bounce [50], though. While a 
derivation of fluctuation spectra based on a first principle computation in asymptotic safety is still missing, the construction 
of consistent RG flows in a Friedmann–Robertson–Walker background recently completed in [68] constitutes an important 
first step in this direction.
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