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This paper surveys recent work of the author and collaborators on cosmological models 
based on the spectral action functional of gravity. A more detailed presentation of the 
topics surveyed here will be available in a forthcoming book [1].
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r é s u m é

Cet article passe en revue les travaux récents de l’auteure et de ses collaborateurs sur les 
modèles cosmologiques basés sur la fonctionnelle d’action spectrale de la gravitation. Une 
présentation plus détaillée des sujets abordés ici sera proposée dans un livre à venir [1].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Spectral action as a modified gravity model

In recent years, considerable interest has grown around various modified gravity models and their cosmological im-
plications (for a comprehensive survey, see, for instance, [2]). These involve a range of different possibilities, including 
scalar-tensor theories, bigravity, MOND, conformal gravity, f (R) theories, Hořava–Lifschitz gravity, and various braneworld 
scenarios. Such models have gained importance as a possible source of explanations for dark matter and dark energy phe-
nomena. Observational data can severely constrain modified gravity models (see, for example, [3]). In this paper, we focus 
on another possible model of modified gravity, which arises naturally in the context of noncommutative geometry, in which 
gravity is described by the spectral action functional. We review the main aspects of the spectral action model of gravity 
and the recent development of cosmological applications, outlining where the link to observational constraints can be most 
significant.

The spectral action functional was introduced in [4] as a model of gravity (and gravity coupled with matter) on non-
commutative spaces. The generalization to the noncommutative world of a compact Riemannian smooth spin manifold is 
provided by the notion of spectral triple (A, H, D), which axiomatizes the relations between the algebra of smooth func-
tions A = C∞(X) and the metric on a manifold X , where the metric is encoded in the Dirac operator /D acting on the 
Hilbert space H = L2(X, S) of square-integrable spinors. The main relation between the algebra and the Dirac operator is 
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expressed by the condition that the commutators [D, a] are bounded operators acting on H. The operator D is required 
to be self-adjoint and with compact resolvent to encode the analytic properties of the usual Dirac operator on a compact 
manifold. Under the assumption that the operator D satisfies Tr(|D|−s) < ∞ for sufficiently large Re(s), that is, that the 
spectral triple is finitely summable, the spectral action functional is defined as

S�, f (D) = Tr( f (D/�) =
∑

λ∈Spec(D)

Mult(λ) f (λ/�) (1)

where f ∈ S(R) is an even rapidly decaying function (a smooth approximation to a cutoff function) and � ∈ R+ is an 
energy scale parameter that makes D/� dimensionless. Thus, one can think of the spectral action as a suitably regularized 
trace of the Dirac operator. It can be related to the heat kernel of D2 and to the zeta function ζD (s) = Tr(|D|−s) via Mellin 
transform. This provides, in the case where the spectral triple (A, H, D) is an actual compact Riemannian spin manifold, an 
asymptotic expansion for the spectral action (see [4] and Chapter 1 of CoMa-book)

S�, f (D) ∼�→∞
∑

β∈�+
ST

fβ �β −
ˆ

|D|−β + f (0) ζD(0) (2)

where fβ = ´∞
0 f (v) vβ−1 dv are the momenta of f . The summation is over the points of the non-negative dimension 

spectrum (poles of the zeta function on the non-negative real line), and the coefficients are residues of the zeta function,

−
ˆ

|D|−β = 1

2
Ress=β ζD(s) (3)

representing the noncommutative integration in dimension β .
The spectral action was proposed in [4] as a possible action functional for gravity coupled with matter, when computed 

for an almost commutative spectral triple (a product of a manifold and a finite noncommutative space). It was successfully 
applied to the construction of particle physics models, where its asymptotic expansion reconstructs the Lagrangian of the 
Standard Model with right-handed neutrinos and Majorana masses [5]. It was also shown in [5] that, in the gravity sector, 
the asymptotic expansion of the spectral action gives rise to a modified gravity model that includes, in addition to the 
Einstein–Hilbert action and the cosmological term of General Relativity, also a conformal gravity term (Weyl curvature) and 
a Gauss–Bonnet gravity term (which is non-dynamical and topological in dimension four). The particle physics models based 
on the spectral action have recently been shown to accommodate the correct Higgs mass, an additional scalar field (about 
which more later), supersymmetric models, and Pati–Salam grand unified theories, see [6–9].

We will discuss here only the case where the spectral triple (A, H, D) is the commutative spectral triple (C∞(X),

L2(X, S), /D) associated with a compact spin Riemannian manifold X . In this case, the spectral action provides a model of 
(modified) Euclidean gravity on X (see [10]) that includes, in addition to the usual Einstein–Hilbert action with cosmological 
constant, an additional modified gravity term that includes conformal gravity and Gauss–Bonnet gravity. The reason why 
the spectral action requires an Euclidean signature lies in the property of the Dirac operator: on a compact Riemannian 
spin manifold, the Dirac operator is self-adjoint with compact resolvent, hence in particular the spectrum is discrete and 
with finite multiplicities, so that (1) is well defined, while these properties typically do not hold in the Lorentzian setting. 
However, though the spectral action itself is defined only in Euclidean signature, it is often possible to make sense of a 
Wick rotation to Lorentzian signature for the individual terms of its asymptotic expansion.

In the case of a 4-dimensional compact Riemannian spin manifold M , the leading terms of the asymptotic expansion of 
[11] for large � correspond to the points β = 0, 2, 4, respectively with contributions

Tr( f (D/�)) ∼ 2�4 f4a0 + 2�2 f2a2 + f0a4

The coefficients a0, a2 and a4 correspond, respectively, to the cosmological term, the Einstein–Hilbert term, and the Weyl 
curvature and Gauss–Bonnet modified gravity terms. We will discuss here some of the cosmological implications of this 
model of gravity.

The cosmological implications of conformal gravity models (Weyl curvature) are analyzed for instance in [12] and specific 
astrophysical and cosmological effects of the presence of the Weyl curvature terms in the spectral action were analyzed in 
[13,14], for example with respect to the effects on gravitational wave equations.

2. RGE flows and early universe scenarios

In the spectral action functional for models of gravity coupled with matter, based on an almost commutative geome-
try X × F , the choice of the finite noncommutative space F determines the particle physics sector of the model. Indeed, 
the finite space F = (A F , H F , D F ) consists of a spectral triple where the algebra A F and the Hilbert space H F are finite 
dimensional. The Hilbert space specifies the fermion content of the model, with the representation of A F determining the 
hypercharges, and the unitaries U (A F ) determine the gauge symmetries. The Dirac operator D F contains the information on 
the Yukawa parameters (masses and mixing angles) of the particle sector. The gauge boson and the Higgs sector arise from 
the Dirac operator on the product D = /D X ⊗ 1 + γ5 ⊗ D F , by considering, respectively fluctuations in the manifold direction 
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(gauge bosons) and fluctuations in the finite noncommutative direction (Higgs boson), see Chapter 1 of [15] for a detailed 
account of this method. In particular, A F = C ⊕ H ⊕ M3(C), with H the quaternions, is the finite algebra that gives rise to 
an extension of the Minimal Stantard Model with right-handed neutrinos and Majorana mass terms, [5]. As shown in [5]
(see also Chapter 1 of [15]) in the asymptotic expansion of the spectral action for this almost-commutative geometry, one 
obtains coefficients of the gravitational term that depend on the Yukawa parameters of the particle sector. This determines 
certain relations between these parameters at unification energy where the initial conditions for this model are set.

More precisely, the asymptotic expansion of the spectral action for the almost commutative geometry is of the form [5]

S�, f (D) ∼ 1

2κ2
0 (�)

ˆ
R

√
g d4x + γ0(�)

ˆ √
g d4x

+ α0(�)

ˆ
Cμνρσ Cμνρσ √

g d4x + τ0(�)

ˆ
R∗R∗√g d4x

+ 1

2

ˆ
|D H|2 √

g d4x − μ2
0(�)

ˆ
|H|2 √

g d4x

− ξ0(�)

ˆ
R |H|2 √

g d4x + λ0(�)

ˆ
|H|4 √

g d4x

+ 1

4

ˆ
(Gi

μν Gμνi + F α
μν F μνα + Bμν Bμν)

√
g d4x

where G, F , B are the gauge bosons, H is the Higgs field, Cμνρσ is the Weyl curvature, and R∗R∗ is the (topological) 
Gauss–Bonnet term. The coefficients in this expansion represent an “effective cosmological constant” γ0(�) and an “effective 
gravitational constant” 8πGeff(�) = κ2

0 (�). They are given by the expressions

1
2κ2

0 (�)
= 96 f2�

2 − f0c(�)

24π2
α0 = − 3 f0

10π2

λ0(�) = π2b(�)

2 f0a
2(�)

τ0 = 11 f0

60π2

μ2
0(�) = 2

f2�
2

f0
− e(�)

a(�)
ξ0 = 1

12

γ0(�) = 1

π2
(48 f4�

4 − f2�
2c(�) + f0

4
d(�))

where the terms a, b, c, d, e are functions of the Yukawa parameters Y and the Majorana mass matrix M , which in turn run 
with the energy scale �,

a= Tr(Y †
ν Yν + Y †

e Ye + 3(Y †
u Yu + Y †

dYd))

b= Tr((Y †
ν Yν)2 + (Y †

e Ye)
2 + 3(Y †

u Yu)2 + 3(Y †
dYd)

2)

c= Tr(MM†)

d= Tr((MM†)2)

e = Tr(MM†Y †
νYν)

There are different ways of interpreting this expression in the model. As a boundary condition at unification energy, this 
determines some constraints on the initial conditions of the renormalization group equations (RGE) given by the relation 
between the gravitational and Yukawa terms expressed above. As treated in [5], at lower energies the Yukawa terms run 
according to the RGE flow of the Minimal Standard Model [16], and the running of the gravitational terms (with compatible 
initial conditions) is derived independently (see [17–19]). In [20], this approach is revisited by considering the effect of 
replacing the RGE for the Minimal Standard Model with those of the extension with right-handed neutrinos and Majorana 
mass terms derived in [16,21]. These consist of different effective field theories between the see-saw scales of the Majorana 
masses. A compatible set of initial conditions at unification based is also identified in [20]. In particular, it is also shown 
that the RGE equations exhibit a sensitive dependence on the initial condition, which causes a fine-tuning problem in the 
model.

In [22], a version of this model is analyzed, where one allows the relation described above between gravitational and 
Yukawa terms to persist for some range of energies sufficiently close to unification energy, and not only as an initial con-
dition, compatibly with the fact that the relation above expresses the form of the asymptotic expansion of the spectral 
action for sufficiently large �. Thus, one looks at the effect of the running of the Yukawa couplings on the effective grav-
itational and cosmological constant for large �. One finds that this model reproduces several scenarios that have been 
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previously studied in cosmology, which include primordial black holes with varying gravitational constant (gravitational 
memory) [23–25] and with a modified evaporation law for primordial black hole, with implications on their possible re-
lation to gamma-ray bursts considered in [26]; Linde’s antigravity in the early universe hypothesis [27] and “gravity balls” 
[28]; emergent Hoyle–Narlikar cosmologies [29] near the see-saw scales where the Einstein–Hilbert terms may become 
subdominant with respect to the conformal gravity terms; a variable cosmological constant as in the model of [30]; an 
inflation scenario based on the conformal coupling of the Higgs bosons with gravity as in [31], which is however severely 
constrained by the results of [32,33].

3. Cosmic topology

The question of “cosmic topology” has been variously investigated in theoretical cosmology over the past two decades. 
The 3-dimensional spatial sections of a 4-dimensional spacetime are (compact or non-compact) smooth 3-dimensional man-
ifolds. Under the hypothesis of compactness, and under standard cosmological assumptions of homogeneity and isotropy, 
such a 3-manifold should be either a spherical space form (either the 3-sphere S3 or a quotient of S3 by a group of isome-
tries) or a flat torus or Bieberbach manifold (a quotient of a 3-dimensional torus by a group of isometries), or else a compact 
hyperbolic 3-manifold, depending on whether the curvature is positive, flat, or negative. From the mathematical viewpoint, 
the richest and most interesting among these classes of manifolds is the hyperbolic one, but cosmological data seem to 
indicate that the negative curvature case is ruled out and the curvature is either flat or slightly positively curved. So the 
remaining candidate topologies are the spherical space forms and the tori and Bieberbach manifolds. There is a complete 
classification of all of these cases, and the cosmic topology question investigates whether it is possible to identify from 
cosmological and astrophysical data the most likely topology among these choices. Note that, while geometry (curvature) 
is a local information that is encoded in the Einstein equations of gravity, topology is a global phenomenon that is not 
visible at the level of General Relativity. So far the main approach to investigating cosmic topology has been the search 
for signatures in the background radiation of the existence of a periodic structure that indicates a nontrivial topology (the 
“matching circles in the sky” method), see [34–42]. While it has been proposed that the dodecahedral space (that is, the 
Poincaré homology sphere) may be a plausible candidate for cosmic topology, the results so far have been inconclusive in 
detecting the presence of non-trivial topology.

In [43–45], the problem of cosmic topology is considered from a new viewpoint. Assuming that we model gravity using 
the spectral action, can this model of gravity provide information on the cosmic topology? Unlike the usual Einstein–Hilbert 
action of General Relativity, which is sensitive to the local information of curvature but to on the global information of 
topology, the spectrum of the Dirac operator, on which the spectral action is based, is sensitive to global properties. This 
approach relies on computing the spectral action directly through the Dirac spectrum, which is generally not explicitly 
known. However, in the special case of highly symmetric spaces like spherical space forms and Bieberbach manifolds, 
explicit computations based on the Dirac spectrum can be performed via a Poisson summation technique. This was observed 
for the case of S3 in [11] and can be generalized to the other spaces in the list of candidate cosmic topologies, see [43,44,
46], using explicit information on the Dirac spectra [47–49]. The basic idea (see [11]) is that, if X is a manifold for which the 
eigenvalues of the Dirac operator /D X form an arithmetic progression (or a union of finitely many arithmetic progressions), 
Spec(/D X ) = ∪i Ai , and the multiplicities of the eigenvalues in each arithmetic progression are interpolated by a polynomial 
Mult(λ) = Pi(λ) for all λ ∈ Ai ⊂ Spec(/D X ), then the product h(λ) = Pi(λ) f (λ/�) is a rapidly decaying function and the 
spectral action can be computed via a Poisson summation formula

∑
n∈Z

h(x + αn) = 1

α

∑
m∈Z

exp(
2π imx

α
) ĥ(

m

α
)

where ĥ is the Fourier transform. One then shows that all the m �= 0 terms in the dual series are smaller than �−k for any 
k ∈ N, hence the leading contribution to the spectral action comes only from the m = 0 term. For example, in the case of a 
sphere S3

a of radius a, one finds

S�, f (/D S3
a
) ∼ (�a)3 f̂ (2)(0) − 1

4
�a f̂ (0)

with f̂ (2) the Fourier transform of x2 f (x). In the case of the spherical space forms, although the Dirac spectrum and 
multiplicities depend on the choice of the spin structure, the spectral action itself does not and it turns out to be simply 
a multiple of the spectral action of the 3-sphere in the case of the spherical space forms, or of a 3-torus in the case of 
the Bieberbach manifolds, where the overall factor divides by the order of the group of isometries. So, for instance, for s 
spherical space form Y = S3/� one finds S�, f (/DY ) = S�, f (/D S3 )/#�. A simple derivation of this fact via the heat kernel 
expansion is given in [45].

It seems from this that the spectral action depends only very mildly on the different topologies (only through the overall 
factor #�) in order to get any useful information regarding the signatures of nontrivial topology. However, it is possible to 
generate from the spectral action a slow-roll inflation potential, obtained from a scalar perturbation D2 + φ2 of the Dirac 
operator D [43], and this can be used to derive observable quantities that can be used to distinguish between the candidate 
cosmic topologies [43,44].
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In slow-roll inflation models, the slow-roll potential V (φ) of the scalar field φ determines the slow-roll parameters

ε = m2
Pl

16π

(
V ′(φ)

V (φ)

)2

, η = m2
Pl

8π

V ′′(φ)

V (φ)
, ξ = m4

Pl

64π2

V ′(φ)V ′′′(φ)

V 2(φ)

where mPl is the Planck mass. These, in turn, determine very constrained measurable quantities in cosmology, such as the 
spectral index ns and the tensor-to-scalar ratio r

ns � 1 − 6ε + 2η, nt � −2ε, r = 16ε

αs � 16εη − 24ε2 − 2ξ, αt � 4εη − 8ε2

The power spectra for the scalar and tensor fluctuations of a Friedmann cosmology depend on these quantities as

Ps(k) ∼ Ps(k0)

(
k

k0

)1−ns+ αs
2 log(k/k0)

Pt(k) ∼ Pt(k0)

(
k

k0

)nt+ αt
2 log(k/k0)

where the expressions ns, nt, αs, αt in the exponent are as above, and the amplitude depends on the slow-roll potential as

Ps(k0) ∼ V 3

(V ′)2
, Pt(k0) ∼ V

with a proportionality constant that contains a power of the Planck mass mPl , see [50–52]. The quantities ε , η, ξ (hence 
the ns, nt, αs, αt and the exponents of the power law) detect the difference between spherical and flat case, but do not 
distinguish between different spherical space forms or between different Bieberbach manifolds, while the amplitudes Ps(k0)

and Pt(k0) distinguish between almost all the different cases of spherical space forms and between the different Bieberbach 
manifolds. Thus, in a model of gravity based on the spectral action functional, the different cosmic topologies leave a 
measurable signature on the shape of the inflation potential and on the corresponding power laws for scalar and tensor 
fluctuations. The latter are in turn constrained by observational data on the cosmic microwave background (CMB).

It is further shown in [45] that, in the case where the spectral action is computed on an almost commutative geometry, 
to incorporate the matter sector coupled with gravity, the inflation potential V (φ) and the amplitudes Ps(k0) and Pt(k0)

also acquire a multiplicative factor that depends on the number of fermionic elementary particles in the matter sector of 
the model. This is based on results of [48] for spectra of twisted Dirac operators.

Using a general technique of [53,54] to construct Dirac spectra, it is also possible to engineer different kinds of inflation 
potentials V (φ) using the spectral action. Note that the scalar field φ that plays the role of inflaton field is not a Higgs 
field, although it also coupled conformally with gravity. It is more closely related to the scalar field introduced in [6] and 
derived in [55] from the inner fluctuations of a “fused algebra” that combines all the spectral triple data into a single 
object. Note that, because the spectral action model admits both a Higgs field and an additional inflaton scalar field, it is 
also possible to develop spectral-action-based multifield inflation models. In such models, isocurvature perturbations can 
arise, which are dependent on the inflaton–Higgs coupling and their nonminimal couplings with gravity. Multifield inflation 
models are severely constrained by CMB data (see for instance [56]). Such multifield inflationary models within a spectral 
action scenario are currently being investigated.

4. Arithmetic structures in gravity

The residues of the zeta function ζD(s) that appear in the coefficients of the asymptotic expansion of the spectral action 
are related to the coefficients in the expansion of the heat kernel

Tr(e−t D2
) =

∑
α

tαcα for t → 0

via the Mellin transform relation

|D|−s = 1

�(s/2)

∞̂

0

e−t D2
t

s
2 −1dt

so that one has

Ress=−2αζD(s) = 2cα
�(−α)



M. Marcolli / C. R. Physique 18 (2017) 226–234 231
In the case of a manifold of dimension m = dim M , the heat kernel expansion of D2 = /D2
X is given by the Seeley–DeWitt 

coefficients

Tr(e−t D2
) ∼t→0+ t−m/2

∞∑
n=0

a2n(D2)tn

These can be computed via a recursively constructed parametrix Rλ satisfying σ((D2 − λ)Rλ) ∼ 1.

a2n(x, D2) = (2π)−m

2π i

ˆ ˆ

γ

e−λ tr (r2n(x, ξ, λ)) dλdmξ

In sufficiently regular and symmetric cases, like the (Euclidean) Robertson–Walker spacetimes, ds2 = dt2 + a(t)2dσ 2, with 
the scaling factor a(t) and the round metric dσ 2 on S3, the coefficients of the asymptotic expansion of the spectral action 
can be computed explicitly, see [57,58]. Surprisingly, all the terms a2n in the asymptotic expansion of the spectral action 
of a Robertson–Walker spacetime are expressible as a rational function with Q-coefficients of the scaling factor and its 
derivative up to 2n. This was conjectured in [57] and proved in [58]. The occurrence of this kind of rationality result is 
indicative of the presence of underlying arithmetic structures in the spectral action model of gravity, at least for sufficiently 
regular spacetimes. The same rationality result was proved in [59] for SU (1)-Bianchi IX spacetimes. The method used in 
[59] relies on a faster computation of the Seeley–DeWitt coefficients in terms Wodzicki residues after taking products of the 
4-dimensional spacetime with auxiliary flat tori, so that the Wodzicki residue extracts the coefficient of a given order from 
the expansion.

In [60], it is further shown that, after a simple change of coordinates, the integrals computing the Seeley–DeWitt coef-
ficients in terms of Wodzicki residues in the case of the Robertson–Walker metrics can be written as periods of algebraic 
varieties. Periods are numbers that can be obtained by integrating an algebraic differential form on a cycle defined by al-
gebraic equations inside an algebraic variety, see [61]. Thus, although periods themselves need not be algebraic numbers, 
they are in this sense numbers obtained by an algebraic procedure. The kind of numbers that can occur as periods of a 
given algebraic variety is closely related to the nature of the motive of the variety. The theory of motives was introduced by 
Grothendieck in the early 1960s as a universal cohomology theory for algebraic varieties. The case of mixed motives, which 
includes varieties that are not necessarily smooth and projective, was formulated by Voevodsky in terms of a triangulated 
category, [62]. In the case of the asymptotic expansion of the spectral action for Robertson–Walker metrics, the motives 
involved are complements in affine spaces of a union of a quadric hypersurface and two hyperplanes. This motive lies in 
the subcategory of mixed Tate motives. These are in a sense the “simplest” kind of motives, which heuristically correspond 
to varieties with filtrations whose graded pieces “look like” projective spaces. A way to check the nature of the motive is to 
compute its “universal Euler characteristic”, namely the class in the Grothendieck ring of varieties. This is the ring generated 
by isomorphism classes of varieties with the inclusion–exclusion relations [Y ] + [X � Y ] = [X] for Y ↪→ X a closed embed-
ding, and product [X] · [Y ] = [X × Y ]. The subring that corresponds to Tate motives is the polynomial ring Z[L] generated by 
the Lefschetz motive L = [A1], the class of the affine line. The motive underlying the a2n term in the asymptotic expansion 
of the spectral action on a Robertson–Walker spacetime has Grothendieck class of the form

L2n+3 − 3L2n+2 + 2L2n+1 −Ln+2 + 3Ln+1 − 2Ln

This result on motives and periods in the spectral action of Robertson–Walker metrics should be compared with the situa-
tion arising in quantum field theory [63], where the Feynman integrals in the perturbative expansion in Feynman graphs of 
a Euclidean scalar massless field theory can be written as periods of an algebraic variety that is also given by a complement 
of a hypersurface obtained from the combinatorics of the graph. In the quantum field theory case, however, the integrals are 
in general divergent and require renormalization, and the motives cease to be mixed Tate for some sufficiently large graphs. 
In contrast, in the models of gravity based on the spectral action, the integrals in the terms of the asymptotic expansion are 
all convergent and the motives are all mixed Tate.

Another occurrence of interesting arithmetic structures in spectral action models of gravity can be seen in the compu-
tation of the asymptotic expansion of the spectral action for Bianchi IX gravitational instantons, obtained in [59,64]. The 
SU (2)-Bianchi IX metrics are homogeneous but non-isotropic spacetimes of the form

g = F (dμ2 + σ 2
1

w2
1

+ σ 2
2

w2
2

+ σ 2
3

w3
3

)

with a conformal factor F ∼ w1 w2 w3, and with the scaling factors wi = wi(t), and where σi are the SU (2)-invariant 
1-forms on S3 satisfying dσi = σ j ∧ σk for all cyclic permutations (i, j, k) of (1, 2, 3). The Bianchi IX gravitational instantons 
are metrics of this form that satisfy the Einstein equations (with or without cosmological constant) and are self-dual. It is 
known from results of [65,66] that because of the high degree of symmetry of these solutions, the Einstein and self-dual 
equations reduce to a system of singular ODEs that are a special case of Painlevé VI equations. The solutions can then be 
parameterized explicitly in terms of a two-parameter (p, q) family of theta functions. See also [67,68] for a discussion of 
Bianchi IX cosmologies in the context of algebro-geometric models for cosmology and for a discussion of the asymptotic 
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behavior of the Bianchi IX theta function parameterizations. The parameterization in terms of theta functions is used in [64]
to compute the coefficients of the asymptotic expansion of the spectral action. It is shown that the terms a2n(p, q) of the 
asymptotic expansion for the two-parameter family of solutions are vector-valued modular forms.

The Bianchi IX gravitational instantons play a crucial role in the theory of quantum gravity and quantum cosmology, as 
minisuperspace models, see [69]. They are also closely related to the mixmaster spacetimes, built out of Kasner metrics, 
which provide very interesting models of anisotropic cosmologies with chaotic dynamical behavior near the cosmological 
singularity, see [70–75].

5. Multifractal cosmologies

While investigating the spectral action model of gravity on homogeneous but unisotropic cosmologies like the Bianchi 
IX spacetimes gives rise to the interesting arithmetic structures described above, one can also investigate spectral action 
models of isotropic but non-homogeneous spacetimes like the Packed Swiss Cheese Cosmologies obtained by iterating the 
construction of [76] of an isotropic non-homogeneous spacetime over an Apollonian packing of 3-spheres in a 4-dimensional 
spacetime. The resulting type of multifractal cosmologies has been proposed as a model for fractal structures in the large 
scale distribution of galaxies, see [77,78].

A spectral action model of the Packed Swiss Cheese Cosmologies was studied in [79]. The first step in order to obtain a 
model of gravity based on the spectral action functional for this type of multifractal cosmologies consists in constructing a 
spectral triple associated with an Apollonian packing of 3-dimensional spheres. Following the construction of [80], developed 
for other kinds of fractal geometries, a spectral triple is constructed using a direct sum of the data (H, D) of each sphere 
and a dense subalgebra of the algebra of continuous functions on the sphere packing. For a round 3-sphere S3

a of radius a
the zeta function of the Dirac operator is of the form

ζ/D
S3

a

(s) = as(2ζ(s − 2,
3

2
) − 1

2
ζ(s,

3

2
))

where ζ(s, c) is the Hurwitz zeta function. Thus, for an Apollonian sphere packing of 3-spheres, with radii an,k , where n ∈N

is the level of the packing and k = 1, . . . , 6 · 5n−1 (see [81]), we have

ζD(s) = ζL(s) · ζ/D S3
(s)

where ζL(s) = ∑
n

∑6·5n−1

k=1 as
n,k is the zeta function of the fractal string L = {an,k}, in the sense of [82]. In addition to 

the poles of ζ/D S3
(s) at s = 1 and s = 3, now the zeta function ζL(s) also has a pole at the real number σ given by the 

packing constant of the Apollonian packing (which is an upper bound for the Hausdorff dimension of the residual set of the 
packing), as well as poles off the real line. If the Apollonian packing is regular enough for the fractal string L to be well 
approximated by fractal strings with exact self-similarity, then the zeta function ζL(s) and consequently the leading terms 
in the expansion of the spectral action S�, f (D) of the sphere packing can be computed in terms of the case with exact 
self-similarity.

In the case of a fractal geometry with a single exact self-similarity, namely with a Dirac operator D such that the 
eigenvalues of |D| grow exponentially like bn for some b > 1 while the spectral multiplicities also grow exponentially like 
an for some a > 1, the leading terms in the spectral action expansion take the form

S�, f (D) ∼ �σ
∑
m∈Z

�
2π i
log b f sm

where σ = log b
log a is the Hausdorff dimension and sm = σ + 2π im

log b are the poles of the zeta function, which in this case (a single 
exact self-similarity) are lined up periodically on the vertical line with real part σ . The log-oscillatory terms come from the 
contributions of these poles off the real line, with the heat kernel expansion given by (see [83])

Tr(e−t D2
) ∼ t− log a

2 log b

2 log b

∑
m∈Z

�(
log a

2 log b
+ π im

log b
)exp(− π im

log b
log t)

A simple example of a multifractal cosmology that has a single exact self-similarity (and non-trivial cosmic topology [39]) 
can be obtained by a fractal arrangement of dodecahedral spaces, see [79]. The case of the Packed Swiss Cheese Cosmologies 
based on Apollonian sphere packings are more complicated, because in Apollonian sphere packings do not have a single 
exact self-similarity and can at best be approximated by fractal strings with finitely many exact-self similarities. One can 
still, in such cases, use the result above as a template and obtain a form of the leading terms in the asymptotic expansion 
of the spectral action

Tr( f (DP/�)) ∼ �3 ζL(3) f3 − �
1

ζL(1) f1 + �σ (ζ(σ − 2,
3
) − 1

ζ(σ ,
3
))Rσ fσ + Sosc

P (�)

4 2 4 2
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with σ the packing constant, Rσ = Ress=σ ζL(s) the residue of the zeta function of the fractal string L, and fβ =´∞
0 vβ−1 f (v)dv the momenta of the test function. The oscillatory term Sosc

P (�) is approximated by a sequence

Sosc
P (�)≤R ∼

Nn∑
j=0

�σn, j fσn, j (θn(�))

where n → ∞ as R → ∞ and with σn, j = �(sn, j,m), for

{sn, j,m = σn, j + i(αn, j + 2πm

log bn
)} j=0,...,Nn,m∈Z

the set of non-real poles of the zeta functions ζLn (s) with exact self-similarity approximating ζL(s). It is possible to obtain 
from the spectral action a slow-roll inflation potential V (φ), as discussed above in relation to the cosmic topology question. 
The shape of the slow-roll potential, which in the case of a single sphere S3 as spatial sections is built out of two functions 
of the form

V(x) =
∞̂

0

u(h(u + x) − h(u))du, W(x) =
xˆ

0

h(u)du

where h is the test function of the spectral action on the 4-dimensional spacetime, acquired an additional term in the case 
of the spectral action of the Packed Swiss Cheese Cosmology, which is built out of a function of the form

Uσ (x) =
∞̂

0

u(σ−1)/2(h(u + x) − h(u))du

with σ the packing constant, see [79]. This additional term changes the shape of the slow-roll potential and consequently 
changes the slow-roll parameters and the power law of the scalar and tensor fluctuation, as discussed above. Thus, one can 
conclude that, in a spectral action model of gravity, one will find in the slow-roll parameters detectable signatures of the 
presence of multifractality in the spacetime structure.

For further details on the cosmological models described in this paper, we refer the reader to [1].
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