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In this review, we describe the potentialities offered by the nuclear magnetic resonance 
(NMR) technique to explore at a microscopic level new quantum states of condensed 
matter induced by high magnetic fields. We focus on experiments realised in resistive 
(up to 34 T) or hybrid (up to 45 T) magnets, which open a large access to these 
quantum phase transitions. After an introduction on NMR observables, we consider 
several topics: quantum spin systems (spin–Peierls transition, spin ladders, spin nematic 
phases, magnetisation plateaus, and Bose–Einstein condensation of triplet excitations), 
the field-induced charge density wave (CDW) in high-Tc superconductors, and exotic 
superconductivity including the Fulde–Ferrel–Larkin–Ovchinnikov superconducting state 
and the field-induced superconductivity due to the Jaccarino–Peter mechanism.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Dans cette revue, nous décrivons les opportunités offertes par la résonance magnétique 
nucléaire (RMN) pour étudier les propriétés microscopiques des nouveaux états quantiques 
de la matière induits par les champs magnétiques intenses. Nous mettons l’accent sur 
les expériences réalisées dans des bobines résistives (jusqu’à 34 T) ou hybrides (jusqu’à 
45 T), qui ouvrent un large accès à ce type de transitions quantiques. Après avoir 
introduit les quantités observables par RMN, nous considérons plusieurs domaines de 
recherche : les systèmes de spins quantiques (la transition de spin–Peierls, les échelles 
de spin, les phases nématiques de spin, les plateaux d’aimantation et la condensation de 
Bose–Einstein des excitations triplets), l’onde de densité de charge induite sous champ 
dans les supraconducteurs à haute Tc, et la supraconductivité exotique, avec la phase 
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supraconductrice Fulde–Ferrel–Larkin–Ovchinnikov et la supraconductivité induite sous 
champ de type Jaccarino–Peter.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since its discovery just after the second World War, the nuclear magnetic resonance (NMR) technique has known a 
tremendous development in chemistry, biology and imaging for medical applications (MRI). This development was founded 
on three pillars: the development of superconducting magnets providing extremely stable and homogeneous (10−10) mag-
netic fields up to 23.4 T (1 GHz for proton resonance), the continuously increasing power of computers, and the development 
of high-frequency and high-power electronics. Most of the experiments performed in the world concern structural informa-
tion and are usually performed around room temperature (in particular for biology and MRI) in diamagnetic systems. The 
situation is quite different for NMR applied to solid-state physics, where temperature, pressure and magnetic field are essen-
tial thermodynamic variables. The homogeneity and stability requirements are much less stringent than mentioned above, 
and usually fall in the range 10−5–10−3, depending on the systems under study, so that in many cases all-purpose high-
field resistive magnets, available only in few dedicated facilities in the world, can be used up to field values up to 35 T, or 
even 45 T in a hybrid magnet. In this case, high magnetic fields are not used to increase the sensitivity or the resolution 
of NMR spectroscopy, but as a physical variable able to induce phase transitions, even at zero temperature (the so-called 
quantum phase transitions) and to access new (quantum) phases of condensed matter [1]. Electrons in the matter couple 
with the magnetic field H through their spin and orbit. In this latter case, it is convenient to define a typical magnetic 
length lB = √

h̄/eB = 25 nm√
B [T] , such as 2π l2B B = φ0 = h/e, where e is the absolute value of the electron charge, and φ0 the 

elementary flux quantum, and to compare it to some typical distance of the system under study. The most well-known 
examples are the critical field Hc2 in a superconductor of type II and the Integer Quantum Hall Effect (IQHE) and the 
Fractional one (FQHE) in 2D electron gas. In the first case, the comparison between the coherence length ξ of the Cooper 
pairs and the (superconducting) quantum flux φ0s = h/(2e) gives the upper critical field Hc2 = φ0s/2π(ξ(T ))2 [2]. In the 
second case, the IQHE plateaus correspond to incompressible phases, in which the number of electrons per flux quanta is 
an integer [3]. A similar picture can be used for the FQHE [4] with composite fermions [5,6]. As far as the coupling with the 
spins are concerned, it is the Zeeman energy that has to be compared with the relevant energy scale in the system under 
consideration. Examples range from quantum spin systems, in which the characteristic energies derive from the exchange 
couplings J ’s, to the Pauli limit in superconductors when the Zeeman energy overcomes the pairing energy of Cooper pairs. 
More generally, application of magnetic field allows one to generate new quantum phases and, until recently, NMR has been 
the only technique allowing a microscopic investigation of their structure and excitations for field values above 17 T. This 
is now changing, with the new possibilities for X-rays to do experiments under pulsed magnetic fields up to 30 T [7] and 
for neutron scattering up to 27 T [8]. Comparing results obtained by these techniques with those obtained by NMR opens a 
new fascinating area of research.

In this paper, we will review some of the NMR contributions to the physics in high magnetic fields performed by the 
authors [9–39] using resistive magnets at the “Laboratoire national des champs magnétiques intenses” (LNCMI, Grenoble, 
France). Some experiments requiring magnetic fields up to 45 T were performed at the National High Magnetic Field Labo-
ratory (NHMFL) at Tallahasse (Florida, USA), and we also discuss recent NMR results obtained in pulsed magnetic field up 
to 55 T at the LNCMI of Toulouse (France).

2. NMR observables

Without entering into details of how NMR is actually performed [40–44], we will limit the presentation to its basic 
principles in order to explain what physical quantities can be observed [16]. In a typical configuration, NMR relies on the 
Zeeman interaction

HZ = −μn · Hn (1)

of the magnetic moment of nuclei (of selected atomic species) μn = h̄γnIn, where γn and In are the gyromagnetic ratio and 
the spin of the nucleus, to obtain an information on the local magnetic field value Hn at this position. The experiment is per-
formed in a magnetic field H0 ∼ 10 T, whose value is precisely known (calibrated by NMR), and which is perfectly constant 
in time and homogeneous over the sample volume. A resonance signal is observed at the Larmor frequency correspond-
ing to transitions between adjacent Zeeman energy levels ωNMR = γn Hn, allowing very precise determination of Hn, and 
therefore of the local, induced, so-called “hyperfine field” Hhf = Hn − H0 (as γn is known from calibration on a convenient 
reference sample). This hyperfine field, produced by the electrons surrounding the chosen nuclear site, is a signature of the 
local electronic environment. On the other hand, nuclei that have a spin I > 1/2 have a non-spherical distribution of charge, 
and possess a quadrupolar moment that couples to the electric field gradient (EFG) tensor produced by the surrounding 

http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Berthier et al. / C. R. Physique 18 (2017) 331–348 333
electronic and ionic charges. In a single crystal, the single NMR line corresponding to the Zeeman interaction is then split 
into 2I lines, and this allows an accurate determination of the EFG tensor, a quantity very sensitive to structural transitions, 
or to a modulation of the electronic density, as observed in CDW systems [45]. While the NMR spectra correspond to static 
values (at the NMR scale) of the hyperfine field and the EFG, the fluctuations of these quantities are at the origin of the 
spin–lattice relaxation rate (1/T1), which measures their spectral density at the Larmor frequency.

2.1. High magnetic field and NMR

The spectral resolution of NMR is directly limited by the temporal and spatial homogeneity of the external magnetic 
field H0. In the experiments where NMR is used for the determination of complex molecular structures [46], the H0 field 
variations over the nominal sample dimension of 1 cm should be ∼10−9 for studies in liquid solutions or 10−6–10−8 in 
solid-state compounds. In both cases, the magnetic field is produced by commercially available, “high-resolution” super-
conducting (SC) magnets, providing fixed field, limited by the present SC technology to a maximum field of 23.4 T. An SC 
magnet operating at 28 T, using a high-Tc superconductor technology, should be commercialised soon. The interest in high 
fields for structural investigations is driven by the improvement of the resolution and the sensitivity.

When NMR is used as a probe of the electronic and magnetic properties in solid-state physics, the required field ho-
mogeneity is typically much lower, 10−3–10−5, but the field should preferably be variable (sweepable). Up to 20 T, such a 
field is available from commercial SC “solid-state NMR magnets”, with homogeneity of 10−5–10−6. Higher fields (up to a 
maximum of 45 T) are available from big resistive or hybrid (SC+resistive) magnets, but their homogeneity is not optimised 
for NMR. Still, a typical value of 40 × 10−6 over a 1–2-mm sample positioned precisely in the field centre is satisfactory for 
a great majority of solid-state NMR studies. However, because of small sample size requirement and of very high running 
cost, one uses these big magnets only for NMR studies of magnetic-field-dependent phenomena, like field-induced phase 
transition.

2.2. Local static observables

The general Hamiltonian for a species of spin I, gyromagnetic ratio γi and quadrupole moment Q in a solid placed in a 
an external magnetic field H0 can be written as

H = HZemann +Hhyperfine +Hquadrupolar +Hspin–spin (2)

in which HZemann = ∑
i −γi h̄H0 Iz , Hspin–spin corresponds to the nuclear–nuclear spin interaction and Hhyperfine +

Hquadrupolar will be defined below. For simplicity, we shall only consider the most common case where HZemann �
Hhyperfine, Hquadrupolar, and Hspin–spin. In that case, one only retains the secular parts of the perturbative Hamiltonians, 
which commute with HZemann.

In the absence of unpaired electrons in the system, Hhyperfine resumes to the so-called chemical shift [41], usually 
neglected in most of the metallic and magnetic systems, except in some of them like the organic conductors, as discussed 
in section 5. In all other cases, the hyperfine Hamiltonian is dominated by the coupling with unpaired electrons, which for 
one electron s at a distance r writes as

Hhyperfine = 2μBγnh̄I · [ l

r3
− s

r3
+ 3

r(s · r)

r5 + 8π

3
s δ(r)] (3)

The orbital coupling l · I/r3 is usually neglected at the first order, since the orbital moment l is quenched by the crystal 
field, except when the spin–orbit coupling cannot be neglected. However, it contributes to the second order, producing a 
paramagnetic orbital shift, which has the same origin as the Van Vleck susceptibility whatever one deals with magnetic 
insulators [47] or metallic systems [48]. The other terms are responsible for the following contributions to the hyperfine 
shift: the anisotropic dipolar one due to electrons with l �= 0, the isotropic contact one (due to “s” electrons), and the 
core-polarisation (isotropic and most of the times negative) due to the polarisation of the inner closed s-shell by the open 
p or d shells [47,48].

In the absence of quadrupole coupling, the frequency of a line in an NMR spectrum gives a direct access to the local 
magnetic field at the position of the chosen nucleus. More precisely, we get an average of the local field on the time scale 
of the measuring process, ∼10–100 μs for solid-state NMR. For systems with localised electronic spins, in particular, it is 
easy to see that the induced field is linearly dependent on the spin polarisation of the nearest electronic spin(s) [44]

ωNMR/γn = |H0 + 〈Hhf〉| =
∣∣∣H0 +

∑
k

− An,k 〈Sk〉 + Cn

∣∣∣ (4)

This linear dependence defines the hyperfine coupling constant (tensor) An,k of nucleus “n” to the electronic spin 〈Sk〉 at 
position k, while Cn accounts for quadratic (second-order orbital or van Vleck) contributions that are not sensitive to the 
spin direction, as well as the (generally much smaller) contribution of other (unpolarised) closed-shell electrons. Hyperfine 
coupling will be very different according to the distance between nuclear and electronic spins:

• on-site (n = k) hyperfine coupling is strong, A ∼ 1–100 T, and is approximately known for a given spin configuration 
(standard reference is [47]).
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• When the coupling is “transferred” or “supertransferred” by an exchange process (i.e. due to overlap of wave functions) 
from the first or second neighbour site, its value is generally impossible to predict.

• For any distant spins (n �= k), there is also a direct magnetic dipole coupling, which is precisely known for given geom-
etry (∝ |rn − rk|−3), and is generally smaller than the (super)transferred hyperfine coupling.

The interaction Hamiltonian corresponding to hyperfine coupling is Hn,k = h̄γnIn · An,k · Sk , and the experimentally mea-
sured “magnetic hyperfine shift” K is defined as the frequency shift with respect to the reference:

K (T ) ≡ ωNMR/ (γn H0) − 1 =
∑

k
An,k (gkμB)−1 χk(T ) + K0 (5)

where gk and χk are the g-tensor and the magnetic susceptibility (per site!) tensor of the k spins, μB the Bohr magneton 
and K0 the shift corresponding to Cn term in (4). K is a tensor whose different components are obtained for different 
orientations of H0. Regarding the left-hand side of (5), we remark that NMR spectra can be equivalently obtained either in 
a fixed external field H0 as a function of frequency, or at a fixed frequency ωNMR as a function of magnetic field. This latter 
configuration is more convenient for very wide spectra, except when the physical properties of the sample strongly vary 
with H0. Equation (5), which is equivalent to Hn,k or (4), indicates how the A tensor can be measured by NMR: when the 
temperature dependence of “bulk” magnetic susceptibility χmacro is dominated by the spatially homogeneous contribution 
of a single spin species, A is calculated from the slope 	K (T )/	χmacro(T ) . If 〈S〉 is taken to be a number, then A is given 
in units of magnetic field; for historical reasons, the number that is usually declared is the “hyperfine field” = A/gμB (in 
Gauss/μB).

One application of the determination of the hyperfine field is to obtain the true temperature and (or) the field depen-
dence of the magnetisation of the spin system, which can not always been obtained from bulk measurements since they 
may be dominated by the contribution of impurities at low temperature [49]. Another very important point is to determine 
whether the magnetisation is uniform, or distributed over a commensurate or incommensurate structure, as we shall see 
later.

In the case of metals, the hyperfine interaction is responsible for the Knight shift, which can be written in the general 
case of a transition metal as [48]:

K = Ks + Kd + Korb + Kdipolar + Kchem (6)

where Ks (Kd) are proportional to the density of state at the Fermi level of s- or s–p-band (d-band) respectively, Korb
depends on the filling of the d-band and is proportional to the Van Vleck susceptibility, and the chemical shift Kchem is 
usually negligible. Kdipolar exists only in presence of p- or d-bands, and depends on the symmetry of the lattice [48]. In 
three-dimensional (3D) systems and in the absence of phase transition, Ks and Korb are usually T -independent, while Kd
is T -dependent. There are many other situations where the Knight shift strongly varies with the temperature: quasi-1D 
organic conductors, itinerant antiferromagnets or ferromagnets, heavy fermions, which we do not discuss here. However, it 
is worth to say a word on the case of superconductors. Below Tc, a gap opens in the density of state, so that the Knight 
shift K will vanish at low temperature (except for the orbital and the chemical contribution). The T -dependence of K (T )

depends of the symmetry of the order parameter. In the case of an s-wave singlet superconductor, K decreases exponentially 
at sufficiently low temperature, the residual constant shift being due to the orbital and the chemical contribution. For clean 
d-wave superconductors, due to the presence of nodes in the gap, a linear behaviour is expected at low temperature, after 
removal of the above-mentioned residual contributions. For triplet superconductors, the situation is more complex, and 
depends on the precise symmetry of the order parameter [50].

Let us now introduce the quadrupolar interaction. Its Hamiltonian is the part of the electrostatic interaction between the 
nuclei and the electrons, which describes the interaction of the electric field gradient (EFG) traceless tensor Vαα with the 
quadrupole moment Q of the nuclei. It can be written in the frame of the principal axes X , Y , Z of the EFG tensor as

Hquadrupolar = eV Z Z Q

4I(2I − 1)
[3I2

Z − I(I + 1) + 1

2
η(I2+ + I2−)] (7)

where the axes are chosen to satisfy |V Z Z | ≥ |V Y Y | ≥ |V X X |, which constrains the asymmetry parameter η = V Y Y −V X X
V Z Z

to 
0 ≤ η ≤ 1. If the quadrupolar coupling can be treated as a perturbation, it is more convenient to express this Hamiltonian 
in the laboratory frame where the quantisation is along the direction z of the applied field. For simplicity, we assume that 
η = 0, and limit ourselves to the first order in perturbation. We can rewrite the Hamiltonian as

H = hνQ

6
[1

2
(3 cos2 θ − 1)(3I2

z − I(I + 1)] (8)

where νQ = 3e Q V Z Z /h2I(2I − 1), θ is the angle between the Z direction and the applied magnetic field H0 and I ≥ 1. In a 
single crystal, the single line whose position is defined by the Zeeman coupling γ h̄H0(1 + K )Iz is split into 2I equidistant 
components, separated by νQ (3 cos2 θ − 1)/2. In powder samples, these 2I lines are thus distributed over a frequency range 
spanning (2I − 1)νQ. For half-integer spins, there is a central line corresponding to the (1/2, −1/2) transition, which is not 
affected to the first order, and 2I − 1 satellite lines. In the case of integer spins there is no central line. Note that nuclei can 
have several isotopes of different natural abundance, with different gyromagnetic ratios and different quadrupole moments. 
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For example, a single Cu site (spin 3/2) with a specific electronic spin polarisation and a specific charge environment will 
give rise to six different lines, 3 for 63Cu and 3 for 65Cu (see section 3.3).

It is easy to see that a distribution of quadrupolar couplings, due to disorder or to the presence a CDW [45,51] will 
change the shape of the satellite lines by an order of magnitude larger than that of the central line. The shape of the 
satellite will crucially depend on the symmetry of the CDW, the number of the wave-vectors defining the modulation 
(1q, 2q, 3q), and of its commensurate or incommensurate character.

One also notices that a spin-density wave (SDW) induces a modulation of K that is usually easily distinguished from 
a CDW, since it will affect in the same way the central line and the satellites. However, a charge modulation also implies 
a modulation of K (which is important in the study of organic conductors undergoing a charge-ordering transition [52], 
where the nuclei under study are usually the 13C (spin 1/2, Q = 0)). This effect on the spectrum is usually smaller than the 
associated quadrupolar perturbation, but it may happen that they are of the same order of magnitude, like in underdoped 
YBa2Cu3O6+x discussed in section 4. In that case, the two phenomena can still be disentangled, but in a more subtle way.

To conclude this section on static NMR observables, it is important to say that in the most general case, where the 
symmetry is lower that tetragonal or trigonal, the general form of the Hamiltonian is more complicated than mentioned 
here. It depends on θ and φ, which define the orientation of the magnetic field with respect to the main axes of the 
quadrupolar tensor, and for strong quadrupolar couplings it may also be necessary to fit the spectra to the results of a fully 
diagonalised Hamiltonian to determine accurately νq , η, and K (θ, φ).

2.3. Dynamic observables

There are essentially two dynamic quantities used in NMR applied to solid-state physics, which are the spin–lattice 
relaxation rate 1/T1, and the spin–spin relaxation rate 1/T2. In the absence of static magnetic field or EFG gradients inho-
mogeneties, T2 is merely the correlation time of the transverse magnetisation. Most of the time and in all the experiments 
described here, the time decay of the transverse magnetisation is dominated by the inhomogeneities, and spectra, 1/T1 and 
1/T2 are measured using the spin–echo technique [16,40–44]. Since we do not use 1/T2 in the following, we shall not say 
more on this quantity (see [16] for further information). 1/T1 measures the characteristic time for the longitudinal nuclear 
magnetisation Mz (z ‖ H0) to return to its thermal equilibrium value after a perturbation, which is usually a destruction or 
an inversion of Mz . It essentially measures the weight of the spectral density at the Larmor frequency of the time fluctu-
ations of the local hyperfine field or of the quadrupole couplings. In the following, we shall consider only the fluctuations 
of the hyperfine field. In localised spin systems, the part of the hyperfine field of interest for the relaxation can be written 
as: δh(t) = h(t) − <h(t)>, where <h(t)> is the time-averaged value at the NMR time scale. For an applied field along the 
z direction,

1/T1z = 1

2
γ 2

n

∞∫

−∞
dt eiωN M R t〈δh+(t)δh−(0)〉 (9)

which can be explicitly expanded as:

T −1
1z = 1

2
γ 2

n

∞∫

−∞
dt eiωN M R t[(A2

xz + A2
yz) 〈Sz(t)Sz(0)〉 + (A2

xx + A2
yx)〈Sx(t)Sx(0)〉 + (A2

yy + A2
xy)〈S y(t)S y(0)〉] (10)

Note that for a hyperfine coupling tensor A that is non-diagonal (in the laboratory frame), both parallel and transverse (to 
external field H0 ‖ z) spin–spin correlation functions contribute to the relaxation, while only the latter contribution is active 
if A is diagonal. In general, Aα �=β �= 0 as soon as H0 is not parallel to a principal axis of the A tensor, which leads to a 
complicated angular dependence of T1. This introduces the longitudinal correlation 〈Sz(t)Sz(0)〉 function in the calculation 
of 1/T1, which usually involves different relaxation mechanisms than those associated with the transverse one [11,16].

To take into account the coupling to several electronic spins, we replace A · S by 
∑

r A(r) · S(r) = ∑
q A(q) · S(−q) to 

get (assuming inversion and translation symmetry):

T −1
1z = 1

2
γ 2

n

∑
q

∑
α=x,y,z

(A2
xα(q) + A2

yα(q))

∞∫

−∞
dt eiωNMRt〈Sα(q, t)Sα(−q,0)〉 (11)

A more general expression, which can also be used in the case of itinerant electronic systems, is obtained using the 
fluctuation-dissipation theorem:

T −1
1z = kBTγ 2

n

∑
q

∑
α=x,y,z

(A2
xα(q) + A2

yα(q))χ ′′
αα(q,ωNMR)/(ωNMR g2

ααμ2
B) (12)

In the case of simple metals with a single conduction band, the relaxation rate is often expressed as proportional to the 
square of the density of states at the Fermi Level N(EF) [40,48]. Since the Knight shift if also proportional to N(EF), this 
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leads to the famous Korringa relationship:

K 2T1T = h̄

4πkB
(
γe

γn
)2 = S0 (13)

where γe (γn) are respectively the electron (nuclear) gyromagnetic ratios and kB the Boltzman constant. The ratio K 2 T1T
is used as an indicator of the dominant fluctuations in the system, since K is proportional to χ(q = 0), while T1T is 
proportional to ωn/

∑
qχ

′′(q, ωn). In the absence of electron–electron interaction, χ ′′(q, ωn) is flat and S = K 2T1T /S0 = 1. 
In the presence of ferromagnetic fluctuations, χ ′′(q, ωn) it is peaked at q = 0, so that S is smaller than 1, while in the 
presence of antiferromagnetic (AF) fluctuations, it is larger than 1. The situation is more complicated in transition metals, 
since the s–p-band and the d-band have to be treated separately. Moreover, within the d-band, the relaxation due to the 
core-polarisation, dipolar or anisotropic interactions, and the orbital relaxation have to be handled separately [44,48]. 1/T1
is also very important to characterise superconductors. In s-wave superconductors, a gap opens on the whole Fermi surface, 
so that the relaxation rate decreases exponentially at low temperature. Just below Tc , due to a divergence of the density 
of states and the so-called coherence factor of the BCS theory, one should in principle observe the so-called Hebel–Slichter 
peak [53] in the relaxation rate. This peak is a hallmark of a singlet s-type superconductor, but its non-observation does not 
mean that the order parameter is not s-like. This peak is absent in p- or d-type superconductors [50]. For d-type singlet 
pairing, the gap vanishes at nodes, around which the density of states is linear as a function of energy. As a consequence, 
the Knight shift varies linearly as a function of T , while (T1T )−1 is proportional to T 2. In cuprate high-Tc superconductors, 
which are d-wave, this behaviour is usually difficult to observe, due to impurities. In quasi-2D organic conductors, which 
are very pure, this behaviour can be observed when the field is parallel to the superconducting planes. In that case, there 
are no more Abrikosov vortices, so the contribution of their cores to the relaxation disappears. Only Josephson vortices are 
present, which do not contribute to 1/T1 [54] (see also section 5).

3. Quantum spin systems under applied magnetic field

3.1. Introduction

Although a spin is by essence a quantum object, the denomination “quantum spin systems” (QSS) is usually dedicated to 
systems of localised electronic spins having small spin values (1/2, 1, . . . , for which the eigenvalues S(S +1) of 

−→
S 2 strongly 

differ from S2), and which are dominantly coupled by AF exchange interactions. In low-dimensional systems, thermal and 
quantum fluctuations are enhanced, and can destabilise the semi-classical long-range-order ground states of Néel type 
[55–59]. Although the 1D spin chains have been studied very early by theorists, they are still an important playground to 
study experimentally modern concepts in magnetism, like, for example, quantum criticality, fractional excitations (spinons), 
and topological order. Moreover, since 1D spin systems can be mapped onto 1D strongly interacting spinless fermions 
through the Jordan–Wigner transformation [60], they allow, at the difference of other 1D systems like organic conductors, 
nanotubes or quantum wires, an accurate verification of the predictions of the Tomonaga–Luttinger liquid (TLL) model [57], 
starting from the microscopic Hamiltonian [20]. Concerning quasi-2D spin systems, high-Tc superconductors have promoted 
the search for exotic quantum ground states, notably after the suggestion by P.W. Anderson that they could be described 
as “resonant valence bond (RVB) systems” doped by holes or electrons [61]. The purpose of this paper is to show how 
important is the magnetic field in the physics of QSS, and to concentrate on their microscopic properties and low-energy 
excitations. Several techniques like neutron scattering [62], EPR [63], and NMR [16] can give access to the microscopic 
properties of these new states, the most powerful being neutron scattering. This technique is however presently limited to 
magnetic fields lower than 17 T, even though inelastic neutron scattering experiments up to 27 T should become available 
soon [8]. This section is limited to NMR in QSS under high magnetic fields, and to experiments on systems in which 
the magnetic field plays a key role, as a parameter of the phase diagram or the spin dynamics. This will cover NMR 
experiments in quasi-1D spin chains and spin ladder [56,57], magnetisation plateaus [64], and Bose–Einstein condensation 
(BEC) in coupled dimer systems [65,66].

The general Hamiltonian of QSS can be written as H = ∑
i, j

−→
S i Ji j

−→
S j +Hpert, where Ji j , the exchange interaction (in most 

of the cases AF) between spins 
−→
S i , is taken to be symmetric and can thus be written as Ji j = ∑

α Jαα
i j . The perturbation 

Hamiltonian Hpert can correspond to the Dzyaloshinskii–Moriya (DM) interaction [68,69] or staggered g-tensors, which 
both correspond to antisymmetric operators mixing the eingenstates of S2, to the spin–phonon interaction, and (or) to the 
spin–spin dipolar interaction. In addition to the semi-classical ground states of Néel type, two categories of ground states 
have to be distinguished. The basic element of both of them is the so-called valence bond (VB) state, that is a pair of spin 
1/2 forming a singlet state. The first family is formed by systems that can be separated in two distinct sublattices (bipartite 
systems). The ground state is usually a Valence Bond Crystals (VBC), in which there is no long-range order (LRO) for the 
spins, but there is one for the valence bonds. Typical cases are spin ladders with strong rung couplings, and more generally 
weakly coupled spin dimer systems. The second one gathers the geometrically frustrated systems, the archetype of which 
being the 2D kagome lattice, which are expected in some case to have a spin liquid ground state [59,70]. In such a state, 
there is no longer any LRO, neither for the spins nor for the valence bonds, but the ground state is a quantum superposition 
of many valence bonds configurations. In this section, we will mostly consider the systems in which the ground state in 
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Fig. 1. (Color online.) (a) Evolution of the Cu NMR lineshape as a function of the applied magnetic field in CuGeO3 above the critical field Hc. (b) Left panels: 
Reconstruction of the real space spin-polarisation profile for H = 13.02 and 24 T using Jacobi elliptic functions [13]. Right panels: The corresponding fit 
(dashed line) superposed on experimental NMR lineshape (full line), taken in the incommensurate high magnetic field phase of the spin–Peierls compound 
CuGeO3. In this way, NMR lineshape has provided the precise magnetic field dependence of the average and staggered spin-polarisation and the magnetic 
correlation length up to 2Hc [13].

zero field is a collective singlet state, separated from the first excited triplet states by an energy gap 	(0) (at H = 0), which 
can be closed at a magnetic field Hc = 	(0)/gμB. We shall distinguish quasi-1D systems, like spin chains and spin ladders, 
which by using the Jordan–Wigner transformation [60] can be mapped on interacting spinless fermions and, in most of 
the cases, described in the framework of the Tomonaga–Luttinger liquid (TLL),1 and quasi-2D or 3D weakly coupled dimers 
in which the triplet excitations are rather described as hardcore bosons (or “triplons”), for which the applied magnetic 
field plays the role of the bare chemical potential [65]. These triplons can undergo a BEC [65,67,71] when their kinetic 
energy dominates their repulsion, while in the inverse situation, the triplons crystallise into magnetisation plateaus for 
commensurate values of the triplets density [64,72].

3.2. Quasi-1D systems

In the absence of perturbation, the spin 1/2 chains can be described by the X X Z Hamiltonian:
H = ∑

i J {ε(Sx
i Sx

i+1 + S y
i S y

i+1) + Sz
i Sz

i+1}. For ε ≥ 1, there is no gap in the low-energy excitations at all values of the 
magnetic field up to the saturation of the magnetisation at Hs , and the spin–spin correlation functions 〈S+(0, 0)S−(R, t)〉
(transverse) and 〈Sz(0, 0)Sz(R, t)〉 (longitudinal) decay as power laws with exponents ηx and ηz . The transverse correlation 
function, which decays more slowly than the longitudinal one ηx < ηz , becomes dominant for low-energy properties. If 
ε < 1, the ground state is of Néel type and separated from the excited states by a gap 	(0), and can be closed at H = Hc . 
For H ≥ Hc , the system enters a TLL phase in which the longitudinal correlations are dominant at low energy [73,74]. 
However, increasing the magnetic field (i.e. the filling of the spinless fermions band), the exponents η governing the decay 
of both correlation functions cross, and above a second critical field H∗

c , the transverse one becomes dominant.
Due to the inter-chain couplings that are always present in real compounds, these systems enter a 3D ordered state at 

finite temperature. For ε ≥ 1, between H = 0 and the saturation field Hs , this is a canted transverse AF state, while for 
ε < 1 this is a longitudinal, incommensurate, spin density wave between Hc and H∗ , followed by a canted AF state between 
H∗ and the saturation field Hs . As an example, the spin system BaCo2V2O8 has been the subject of intense investigation in 
the course of these last years [31,75–78].

In the presence of a perturbation, like an alternation of the exchange coupling, a frustrating nearest-neighbour coupling, 
or a spin–phonon coupling, the spin chains become gapped. As described above, the application of a magnetic field can 
close the gap and allow the system to enter a TLL regime. As an example requiring the use of resistive magnet for NMR 
investigation, we describe below the case of the spin–Peierls compound CuGeO3. We shall also mention the case of spin 
ladders, and that of the frustrated spin 1/2 chain LiCuVO4, which is expected to present a nematic phase at high magnetic 
field around 45–50 T.

1 In a TLL all the correlation functions decay as power laws. A TLL of spinless fermions is characterised by two parameters u and K , where u is the 
velocity of the excitations, and K a number which allows to calculate the exponents associated to the various correlation functions.
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3.2.1. The high-field phase of the spin–Peierls compound CuGeO3

A spin–Peierls chain is a Heisenberg, AF, S = 1/2 chain on an elastic lattice, in which the exchange interaction coupling 
depends on the position of the magnetic atoms, which can vary to minimise the total energy [79]. At low temperature, 
this spin chain can gain energy by spontaneous dimerisation (deformation) of the lattice, which allows the opening of a 
gap in the low-energy magnetic excitations (absent in simple Heisenberg half-integer spin chains). This dimerised phase 
has a non-magnetic collective singlet ground state and an energy gap towards triplet excitations. The application of a 
magnetic field reduces the gap and, above the critical field Hc, drives the system into a magnetic phase with spatially 
inhomogeneous magnetisation (Fig. 1). In this field-induced phase, magnetisation appears as an incommensurate (IC) lattice 
of magnetisation peaks (solitons), where each soliton is bearing a total spin 1/2. The most studied spin–Peierls system is 
the inorganic compound CuGeO3 [80], presenting a spin–Peierls transition at 14–10 K (depending on H), and a critical 
field � 13 T. The NMR in CuGeO3 has been performed on the “on-site” copper nuclei, which are directly and very strongly 
coupled with the electronic spin. In the high-temperature and in the dimerised phase, symmetric NMR lines are observed, 
reflecting spatially uniform magnetisation. Comparing K (T ) vs. χmacro(T ), the complete hyperfine coupling tensor as well 
as the orbital shift tensor K0 = K (T = 0) could be determined, and both were found in good agreement with the values 
expected for a dX2−Y 2 orbital of Cu++ ion [10,47].

Above Hc each line is converted to a very wide asymmetric spectrum (Fig. 1) corresponding to a spatially non-uniform 
distribution of magnetisation. This NMR lineshape is in fact the density distribution of the local magnetisation, i.e. of the 
spin polarisation. Therefore, for a periodic function in 1D, it can be directly converted into the corresponding real-space 
spin-polarisation profile (soliton lattice, shown in Fig. 1) [9,13]. It was thus possible to obtain a full quantitative description 
of the H dependence of the spin-polarisation profile in the range from Hc to 2Hc = 26 T [13], clearly showing how the 
modulation of magnetisation evolves from the limit of nearly independent solitons just above Hc , up to the high magnetic 
field limit, where it becomes nearly sinusoidal. The analysis of these data proved that the staggered component of magneti-
sation is reduced in the NMR image by phason-type motion of the soliton lattice [81,82]. The magnetic correlation length 
is found to be smaller than that associated with the lattice deformation (measured by X-rays [83]), which is a direct conse-
quence of the frustration due to the second-neighbour interaction in the system [81]. The observed field dependence of the 
correlation length remains to be understood.

3.2.2. Spin ladders
Spin ladders are 1D systems made of two (or more) coupled spin chains. First discussed as a by-product of high Tc

cuprates [84,85], they present a rich phase diagram in the H–T plane [12,86,87], as shown in Fig. 2. We shall consider here 
only the most simple type of S = 1/2 two-legs ladders, described by the following Hamiltonian: H = ∑l=1,2

i J‖
−→
S l

i ·
−→
S l

i+1 +
J⊥

∑
i
−→
S 1

i ·−→S 2
i where J‖ ( J⊥) is the isotropic AF interaction along the legs (rungs). Whatever the ratio J⊥/ J‖ is, the ground 

state of two-legs spin ladders is the collective singlet separated by a gap from the first triplet excited states. As for the spin 
chains, the spin ladder can be described in terms of spinless fermions. But here the filling of the band starts from zero 
at the magnetic field Hc that closes the gap, up to the complete filling at Hs. This is different from the case of the spin 
chains, where the filling starts always at half-filling at zero field. At temperature high enough to neglect the inter-ladder 
couplings, and low enough as compared to the Fermi energy of the spinless fermions, the low-energy excitations can be 
described in the framework of a TLL. Finding systems that are true spin ladders, with values of the AF couplings comparable 
to the energy scale of the Zeeman coupling for field accessible in the laboratory, is not so easy. An early candidate has 
been Cu2(C5H12N2)2Cl4 (called Cu(Hp)Cl) [12], presenting a phase diagram in the H–T plane quite similar to that expected 
for a spin ladder, but the one-dimensionality of the system was questioned by neutron experiments [89]. Recently, two 
spin-ladder compounds, well characterised by NMR, neutron spectroscopy, and thermodynamic measurements, have been 
the subject of intense experimental and theoretical studies. The first one, (C5H12N)2CuBr4, usually called BPCB, but also 
known as (Hpip)2CuBr4) [90,91], is a strong rung coupling spin ladder ( J⊥ � J‖) with Hc = 6.7 T and Hs = 11.9 T [20]. The 
whole phase diagram in the H–T plane was studied by NMR [20], specific heat [92], and neutron spectroscopy [93], and 
the results were compared to Density Matrix Renormalisation Group (DMRG) and bosonisation calculation using the values 
of J⊥ and J‖ derived from experiments. The variation of the nuclear spin–lattice relaxation rate 1/T1 at fixed T could 
be remarkably fitted in the whole interval Hc to Hs using a single parameter, the hyperfine coupling. Similarly, the field 
dependence of the transition temperature Tc of the 3D phase as well as that of its order parameter could be fitted using as 
a single parameter, the interchain coupling J ′ . Using time-dependent DMRG, even the high-energy excitations observed by 
inelastic neutron scattering could be very well reproduced, starting from the known values J⊥ and J‖ of the Hamiltonian 
[94].

The second spin ladder compound, (C7H10N)2CuBr2 (called DIMPY) [95], is in the strong-leg coupling regime ( J‖ > J⊥) 
[96,97] with Hc = 3 T and Hs = 29 T [35]. This spin ladder belongs to the regime where the quasi particles are attractive 
(K ≥ 1). Although the determination of the TLL parameter K from 1/T1 is difficult [29], the variation of 1/T1 as a function 
of H between Hc = 3 T and Hs = 29 T measured at constant temperature T = 750 mK [35] was perfectly described by 
the Luttinger liquid parameters K (H) and u(H) determined from the starting Hamiltonian where J‖ and J⊥ have been 
determined from neutron spectroscopy.

In conclusion, spin ladders offer a rare example in which the TLL parameters can be computed directly from the micro-
scopic parameters of the Hamiltonian. In that sense, they are perfect simulators of interacting spinless fermions.
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Fig. 2. (Color online.) (a) Schematic representation of a simple spin ladder. (b) Schematic representation of the energy levels as a function of the applied 
magnetic field H in the case of a strong rung coupling. For a single dimer (rung), the first triplet excitation is separated from the singlet ground state 
by a gap 	(H = 0) = J⊥ . Due to the interactions J‖ along the legs, the triplet excitations form a band, which splits into three under the application 
of H . The lowest band first crosses the collective singlet ground state at the field Hc (closure of the gap). This corresponds to the first quantum critical 
point [58], at which the ground state switches from a gapped phase to a gapless one, which is described as a spinless, interacting, 1D fermion system 
(Tomonaga–Luttinger liquid) [57]. The filling of the spinless fermion band increases as a function of H up to the second critical field Hs corresponding to the 
complete filling of the band. The point (H = Hs , T = 0) is the second quantum critical point separating the gapless TLL from a gapped (	 = gμB(H − Hs)) 
fully polarised phase. This scheme also applies to strong-leg coupling spin ladders and S = 1 spin chains (Haldane systems [88]), although their ground 
states and the gap are of different natures. The same energy scheme applies to all quasi-2D or 3D systems of weakly coupled spin dimers, but between Hc

and Hs , these systems are described as itinerant hard-core bosons on a lattice [65], which ultimately condense at low temperature. (c) Phase diagram of 
a spin ladder in the H–T plane. Above each of the two quantum critical points, there is a quantum critical regime in which the only energy scale is the 
temperature [24]. For EF � kB T � J3D, where EF is the Fermi energy of the spinless fermion band and J3D is the sum of the inter-ladder interactions, the 
system can be described as a TLL, while for J3D > kB T , a 3D LRO is established, which can be described as a Bose–Einstein condensation of magnons [67]. 
(d) Structure of a strong rung coupling spin ladder (C5H12N)2CuBr4 (BPCB), from [20].

3.2.3. The nematic phase in frustrated J1– J2 chain. The LiCuVO4 compound
In spin systems, the frustration of the exchange couplings is known to lead to exotic ground states [59]. Here we describe 

the case of the spin nematic phase, for which the compound LiCuVO4 seems to be the most promising system. LiCuVO4
belongs to the class of the frustrated J1– J2 spin chains, in which the first neighbour exchange interaction J1 is ferromag-
netic (FM), while the next nearest neighbour is AF [98]. In such a system, the saturated FM state at Hs was shown to 
be unstable with respect to the formation of pairs of bound magnons [99–101]. In their domain of stability, these bound 
magnons give rise to an SDW phase, in which the transverse fluctuations are gapped, and, just before the saturation, to 
a nematic phase, in which the order parameter does not transform as a vector, but as a quadrupolar tensor of the type 
Si+ Si+1+ + cc. At lower field, single-magnon excitations prevail, giving rise to a vector chiral phase. The planar vector chiral 
phase and the longitudinal SDW attributed to the bound magnons have indeed been observed [98,103,104] and here we 
focus only on the nematic phase. The search for this phase in LiCuVO4 was triggered by the observation of an anomaly in 
the magnetisation curve just below the saturation field (45 T for H‖c, 52 T for H‖b) [102]. At such a high field, the only 
available microscopic technique is the NMR. The first experiment was done for H‖c in a steady magnetic field [105], using 
the hybrid magnet at Tallahassee. It was concluded that the anomalous phase observed by magnetisation was essentially 
due to impurities, most of the system being saturated above 41.4 T, and that the nematic phase, if present, could only exist 
between 40.5 T < H < 41.4 T. However, very recent experiments conducted in pulsed magnetic field for H‖c and H‖b have 
shown that, in both orientations, there is a field range below the saturation field in which there is no transverse order and 
the observed field dependence of the hyperfine shift is identical to the change in the magnetic susceptibility [37,106], in 
agreement with the theoretical predictions for a nematic phase. Further evidence could be given by measuring 1/T1 as a 
function of temperature from the partially polarised phase down into the nematic one (at fixed value of H) [107], but this 
type of measurement at such high magnetic fields are very challenging.

3.3. Magnetisation plateaus in the quasi-2D Shastry–Sutherland compound SrCu2(BO3)2

The Shastry–Sutherland Hamiltonian (SSH) [108] describes a 2D network of orthogonal dimers, which applies to 
SrCu2(BO3)2 [109], the prototype compound for the study of magnetisation plateaus. In the SSH, one considers a square 
lattice that is paved by orthogonal dimers with an AF exchange J along the diagonals (next nearest neighbours), and then 
introduce a frustrating AF coupling J ′ between each nearest neighbour. The product of singlets on the dimers is always an 
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Fig. 3. (Color online.) Cu NMR spectrum in the 1/8 plateau of SrCu2(BO3)2. The spectrum extends over �300 MHz, corresponding to a range of �30 T for 
the histogram of the hyperfine fields. To each site correspond six lines due to the two isotopes 63Cu and 65Cu and the quadrupole coupling, which does 
not depend on the site. Note that the width of stability of the plateau is only �1.5 T, which precludes any field sweep at constant frequency to obtain the 
full spectrum. From Ref. [15].

eigenstate of the SSH, whatever is the ratio J ′/ J , but it remains the ground state only for J ′/ J < 0.67. For larger values 
of J ′/ J , it enters a narrow plaquette phase [110,111] before turning to a Néel ground state. In the SrCu2(BO3)2 compound, 
J ′/ J = 0.63, so the ground state is the product of singlets on each dimer. However, the hopping of a triplet from one dimer 
to its nearest neighbour is strongly restricted, favouring the existence of magnetisation plateaus. The first evidence for their 
existence in SrCu2(BO3)2 was obtained by magnetisation measurements in pulsed magnetic field [112] with the observa-
tion of three plateaus at 1/8, 1/4 and 1/3 of the saturation magnetisation. The first microscopic insight of the spin pattern 
of the 1/8 plateau was obtained soon after by Cu NMR in a resistive magnet at the LNCMI [15,17], opening a long-term 
collaboration between the Grenoble NMR group with that of M. Takigawa at the Institute of Solid State Physics at Tokyo.

As observed in the inset of Fig. 3, a single site of Cu (six lines) is observed as long as the magnetisation grows from zero 
in the gapped state to the plateau, meaning a uniform polarisation of the Cu2+ electronic spins. The main figure shows that 
inside the plateau at least 10 different sites (60 lines) appear, spread over a distribution of internal field 63,65 Aonsite

hyp < Sz >

of the order of 30 T. In particular, two strongly polarised sites are well resolved on the left-hand side of the spectra (the 
on-site hyperfine coupling for the Cu nuclei being strongly negative, Cu lines corresponding to strongly polarised Cu sites 
are strongly shifted to low frequency). Although the NMR spectra clearly demonstrate that the triplets crystallise within a 
commensurate super cell, they only give the histogram of the internal field due to these crystallised triplets, but not the real 
magnetic structure inside the unit super cell, nor its symmetry. Exact diagonalisation of the Heisenberg SSH on a 16-spin 
cluster led to the conclusion that the unit cell (16 Cu2+ spins per layer) was rhombohedral, with oscillations of the spin 
polarisation inside. Further calculations for the 1/4 and 1/3 plateaus showed the existence in all cases of strongly polarised 
“dressed triplet” extending on three dimers, forming stripes.

Further torque measurements [21,113] showed that the plateau sequence was not limited to 1/8, 1/4, and 1/3. While 
Ref. [21] reported the existence of a second plateau adjacent to the 1/8 also observed through 11B NMR, Ref. [113] claimed 
the existence of a full series of plateaus at values of mz

msat
= 1/q (2 ≤ q ≤ 9) and 2/9. This was followed by new theoretical 

attempts to calculate the sequence of plateaus and their stability [114,115], rendered difficult by the proximity of the 
quantum critical point at J ′/ J = 0.67, by the necessity to take into account long-range interactions between the triplets 
as well as the additional terms to the SSH Hamiltonian like the Dzyaloshiskii–Moriya interaction [118]. With improvement 
of the pulse magnetic field setups, the 1/2 plateau was observed starting at 84 T [116] and ending at 118 T [117]. The 
exact sequence of plateaus up to the 1/4 one, that is mz

msat
= 1/8, 2/15, 1/6 and 1/4, was finally established by 11B NMR up 

to 34 T [27], combined with careful torque measurements as shown in Fig. 4b. One observes that within the field range 
corresponding to a magnetisation plateau, the internal fields stay constant (Fig. 4a), as expected in a gapped phase. After 
deconvoluting the full 11B spectra to get rid of the quadrupolar splitting [119] and keep only the central lines shifted by the 
internal field, structures were proposed for the 1/4, 1/6, 2/15, and 1/8 plateaus [27]. However, a new theoretical approach 
(infinite projected entangled-pair states, iPEPS) finally established that the more stable structures of the plateaus consist of 
triplet bound states with Sz = 2 [111,120]. Employing NMR spectra to distinguish between those new structures and the 
previous ones is delicate, because of the effect of the dipolar field of the electronic spins in the adjacent planes on the 
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Fig. 4. (Color online.) Observation of the four plateaus at 1/8, 2/15, 1/6 and 1/4 in SrCu2(BO3)2. (a) Partial 11B NMR spectra between 28 T and 34 T. Within 
the plateaus, the internal field histogram does not change with the magnetic field, and the lines are sharp. (b) Magnetisation measurement (main figure) 
obtained from torque measurements (inset). One clearly observes the plateaus at 1/8, 2/15 and 1/6 of the magnetisation at saturation. From Ref. [27].

11B spectra. A more direct approach would be to repeat the Cu NMR spectra with a better control of the intensity of the 
lines. Another possibility is a direct neutron measurement at 26 T, provided the application of pressure lowers enough the 
threshold field of the 1/8 plateau [121,122].

3.4. Bose–Einstein condensation of triplet excitations in coupled dimer systems

An important class of quantum AF systems can be viewed as a collection of dimers – pairs of spin 1/2 strongly coupled 
by an AF exchange coupling J – on a quasi-1D, quasi-2D, or 3D lattice, coupled by weaker interdimer interactions J ′ . These 
systems have a collective singlet ground state separated by a gap 	 from triplet excited states, this gap being determined 
by a combination of J and the interdimer J ’s. These excitations, often called triplons, can be treated as hard-core bosons on 
a lattice. Their density at T = 0 is zero below the critical field Hc, and above Hc is controlled by the applied magnetic field, 
which plays the role of a chemical potential. The hopping between neighbouring sites is controlled by J ′ . Although such a 
description was used a long time ago to describe the superfluid properties of Helium [123], it is only in 1999–2000 that the 
quest for Bose–Einstein condensation started in quantum antiferromagnets [67,71], opening a wide area of research [65,66]. 
We shall not enter that field in details (references can be found in [65,66]), but concentrate on the NMR point of view. The 
condition to obtain a BEC in a QSS is the invariance of the spin Hamiltonian under a rotation around the applied magnetic 
field. At the onset of the BEC, a transverse (⊥H0) staggered magnetisation appears, which is the order parameter of the 
BEC. The transition can be observed as a function of the temperature, or as a function of the magnetic field at the quantum 
critical point Hc. For H slightly larger than Hc (or slightly smaller than the saturation field Hs), the hard-core bosons are 
very dilute, and one expects the transition temperature TBEC to vary as (H − Hc)

α . The exponent α is equal to 2/d where d 
is the dimensionality of the system (usually d = 3).

From the NMR point of view, this transverse staggered magnetisation will split each NMR line of the paramagnetic phase 
into two lines, the separation of which is proportional to the order parameter. Since NMR measures only the projection 
of the hyperfine field along H0, the observation of this splitting requires that the hyperfine tensor components Azx, Azy
are different from zero. Such a splitting was first observed in TlCuCl3 [124], but the transition at Hc1 was found to be a 
first-order one accompanied by a lattice distortion. Better examples can be found in spin ladders compounds [20,29] and in 
the S = 1 spin chain NiCl2–4SC(NH2)2 (DTN) [36,125,126], in which α = 2/3 close to Hc and Hs.

We shall now consider the case of the compound BaCuSi2O6 [127], which has drawn a lot of interest for its peculiar 
low-temperature properties. In this quasi-2D compounds, the dimers are positioned perpendicular to the a–b plane, forming 
a body-centred tetragonal lattice. It was reported that below 880 mK and close to H = Hc , TBEC was not varying as (H −
Hc)

2/3, but as H − Hc [128]. This linear dependence corresponds to a 2D BEC, and the 2D character was explained by 
invoking the frustration between adjacent planes due the body-centred structure [128]. Soon after, it was shown that the 
system was undergoing a structural phase transition at 90 K [129], giving rise to two alternating types of planes (A and B) 
with different gaps in the magnetic excitations, implying two different critical fields HcA < HcB, and to an incommensurate 
distortion within the planes [18,130]. NMR experiments, performed between 13 and 26 T and at a temperature as low 
as 50 mK, allowed one to determine the ratio of gaps in the two types of planes 	B/	A = 1.16, provided an accurate 
determination of Hc = 23.4 T, and confirmed the linear dependence of TBEC with H − Hc in the low-temperature range. 
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They also showed that the triplon populations of the A and B planes were very different. An accurate determination of the 
variation in the boson population nB in the plane B with H − HcA was crucial to discriminate between different theoretical 
models and to explain the linear dependence of TBEC [131,132]. Further NMR experiments have been done on this purpose 
in a 29Si-enriched sample. Since the average longitudinal magnetisation, and hence the first moment of the NMR lines, is 
proportional to the boson population, it was possible to measure accurately the total boson population nA +nB as a function 
of H − HcA from the first moment of the 29Si line, and the B planes boson population nB from the first moment of the 63Cu 
line, which is a very sensitive probe [28]. It was concluded that none of the models considering a perfect frustration could 
explain the very weak population observed in the B planes, and that the frustration between adjacent planes should be 
slightly released. The story could have stopped here, but LDA + U calculations of the exchange couplings [133] eventually 
showed that the effective coupling between adjacent dimers was ferromagnetic (in agreement with neutron data [130]), thus 
completely suppressing the frustration and radically changing the nature of this system. A new comprehensive theoretical 
description of this mysterious compound, including the (linear) dependence of TBEC with H − Hc, that of nA and nB, and the 
complete phase diagram in the H–T plane, remains to be done.

4. Field-induced charge density waves in cuprate high-Tc superconductors

Thirty years after its discovery by Bednorz and Müller [134], the mystery of high-temperature superconductivity in the 
cuprates has still not been cracked [135]. Let us only recall here that the essential ingredient in the structure of these 
compounds is the CuO2 plane, in which superconductivity takes place. These planes alternate with some charge reservoirs 
from which doped holes are transferred. The typical phase diagram of these compounds starts from an AF state at zero 
hole doping. Superconductivity appears above a hole doping level p � 0.05, but (glassy-type) magnetic order persists at 
low temperature over some material-dependent doping range (typically up to p = 0.08 in YBa2Cu3Oy [25] and references 
therein). The superconducting temperature Tc forms a dome with a maximum at p � 0.16. Its low (high) doping side 
is called the underdoped (overdoped) regime. Normal-state electronic properties in the underdoped regime are strongly 
influenced by the presence of the celebrated pseudogap [135,136].

Ten years ago, high-field experiments have discovered quantum oscillations in the underdoped regime of YBa2Cu3Oy , 
and it was found that their frequency was much lower than in the overdoped regime [135,137,138], indicating a much 
smaller Fermi surface volume in the underdoped regime. This, combined with the change of sign of the Hall effect [139], 
hinted at a reconstruction of the Fermi surface in underdoped YBa2Cu3O6+y , with electron pockets occupying only a few % 
of the Brillouin zone [138,140]. In order to determine the origin of this reconstruction, NMR experiments were undertaken 
in conditions of temperatures and magnetic fields and on single crystals of YBa2Cu3Oy (y � 6.5) comparable to those in 
which quantum oscillations had been observed [23].

These NMR experiments unambiguously demonstrated the presence of a CDW, without any concomitant spin order [23]. 
Although NMR is a local probe, the observation of a line splitting, instead of a simple broadening, immediately suggested 
that the CDW order is coherent over fairly large distances, thus establishing the second case of long-range charge order in 
the cuprates, after the stripe phase observed in the La2−xSrxCuO4 family [141,142]. Static CDW had also been identified by 
scanning-tunnelling-microscopy (STM) in Bi-based cuprates but the correlations were quite short-ranged: ξCDW ≤ 2λ where 
the CDW period λ is 3 to 4 lattice spacings [142].

Oxygen-ordered YBa2Cu3Oy being by far the “cleanest” (the least disordered) cuprate superconductor, the observation 
of long-range CDW ordering led us to conclude that CDW has to be a generic tendency of underdoped cuprates, although 
long-range ordering may eventually not be achieved in most cases [23]. This initial experiment also clearly established that 
CDW order competes with superconductivity since the effect is present only when Tc is significantly reduced by high fields 
applied perpendicular to the CuO2 planes, and not for low fields or for high fields applied parallel to the planes, two sit-
uations in which superconductivity remains strong [23]. Therefore, the appearance of long-range CDW order should not be 
viewed as an exotic field-induced phenomenon, but instead as the direct consequence of the suppression of superconduc-
tivity by high fields applied perpendicular to the CuO2 planes. Indeed, it was recently demonstrated that the upper critical 
field Hc2 is severely reduced at doping levels where CDW order is observed [39,143].

The observation of a line splitting in the original 63Cu NMR data strongly suggested that the CDW is uniaxial in high 
fields [23]. Two possible interpretations were mentioned: a modulation along the chain direction (b axis) or a modulation 
perpendicular to the chains (a axis). Because of similarities with the stripe phase around 1/8 doping in La-based cuprates, 
and because a modulation along the a axis was also independently detected in theYBa2Cu3O6.54 sample (Ortho-II) – the 
splitting was observed for nuclei below full chains but not for those below empty chains –, a 4a-period modulation was 
favoured. Later experiments using 17O NMR fully characterised the field dependence of the CDW due to its competition 
with superconductivity, and established the presence of an onset field proportional to the upper critical field [26] (Fig. 5). 
An interpretation of the onset field in terms of critical density of halos of CDW order centred around vortex cores was 
proposed [26].

This founding NMR paper [23] was followed by an avalanche of X-ray studies [142,144–149]. These quickly established 
that CDW modulations are indeed ubiquitous in underdoped cuprates and competing with superconductivity. However, in 
contrast with the high-field NMR results, the modulations were found to have a much higher onset temperature, and to 
have two wave vectors (Q , 0) and (0, Q ), without any magnetic field threshold. Furthermore, the coherence length of the 
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Fig. 5. (Color online.) NMR evidence for field-induced charge density wave in YBa2Cu3O6+y . Left panels: splitting of the 17O NMR line at T � 2 K [26]. 
Middle panel: field dependence of the quadrupole part of the 17O line splitting [26]. The dashed line represents a √H − Hcharge behaviour close to the 
onset field Hcharge. Right panel: revised phase diagram of YBa2Cu3Oy , including the high-field CDW from ref. [23]. The crosses correspond to the sign 
change of the Hall effect and the blue points mark the temperature onset of NMR splitting.

modulation ξCDW was found to be relatively short, ξCDW ≤ 5λ, in YBa2Cu3O6+y [146], with the CDW period λ equal to 3 to 
4 lattice spacings, and very short, ξCDW ≤ 2λ, in Bi2Sr2CaCu2O8+δ [147,148] and HgBa2CuO4+δ [149].

Actually, this “normal state” short-range CDW is also detected by NMR [32]. Qualitatively speaking, the situation is rem-
iniscent of the short-range CDW order in the form of generalised Friedel oscillations, observed by NMR [45,150] and STM 
[151,152] around impurities in NbSe2. In NbSe2, these oscillations are related to the (real part of) the dynamic susceptibility 
χCDW of the pure system, in the same way as the screening of non-magnetic impurities in cuprates is related to the antifer-
romagnetic susceptibility [14] or in the same way as the short-range, static nematic order in Fe-based superconductors is a 
consequence of disorder and of the existence of a large nematic susceptibility [34]. In YBa2Cu3Oy , however, disorder arises 
mostly from out-of-plane oxygen defects, which presumably makes a weak pinning picture with phase defects and CDW 
domains more appropriate than the strong pinning picture with single point-like defects (see a related discussion from the 
x-ray perspective in Ref. [153]).

The relationship between the field-induced CDW, observed by NMR [23,26] and sound velocity measurements [154], 
and the zero-field short-range CDW, observed by X-rays [142] and NMR [32], has puzzled the community for a while. 
However, the presence of two distinct, albeit obviously related, CDW phases was eventually accepted when field-induced 
long-range CDW was confirmed by X-ray experiments in high magnetic fields [7,155,156]. These experiments showed that 
the CDW is indeed of single-Q type but along the b axis and incommensurate. They also showed that the NMR threshold 
field corresponds to a growth of the correlation length ξCDW in the CuO2 planes. Basically, ξCDW becomes large enough to 
produce an NMR pattern – the histogram of the frequency distribution due to the charge modulation – typical of a single-Q
CDW [157,158]. On the other hand, the thermodynamic transition observed by the ultrasound technique [154] occurs at 
slightly higher field (and, presumably, at a slightly lower temperature for the same field), marking the onset of coherence 
along the c axis. The observation of a 2D pattern in NMR does not require phase coherence along the c axis, as long as the 
phase fluctuations in the planes are pinned. The long-range CDW phase stacks in-phase along c, while the short-range CDW 
stacks out-of-phase. Both NMR and X-rays find that short-range correlations remain within the long-range phase [7,32,155,
156]. This is likely related to the presence of disorder [32,33,156].

Addressing all the recent developments related to the CDW order in the cuprates is beyond the scope of this short 
review on high-field NMR (see refs. [33,135,142,161] for recent perspectives). Let us only mention here the discovery of 
an intra-unit-cell d-wave symmetry of the CDW as one of the outstanding recent achievements [159,160], showing that 
this CDW is by no means conventional. Many outstanding questions are still debated, such as whether the Fermi sur-
face is primarily reconstructed by the short-range or the long-range CDW, the role of disorder in shaping the complex 
phenomenology, and, most importantly, the relationship between CDW and other phenomena in the pseudogap phase (par-
ticularly other ordering phenomena) and the relationship with superconductivity. NMR investigation of the field-induced 
CDW in YBa2Cu3Oy is being pursued [38], other systems will be investigated with high-field NMR (see a puzzling recent 
report in Bi2Sr2−xLaxCuO6+δ [162]), and it is both desirable and likely that other techniques like Raman scattering and op-
tical spectroscopy will provide new insights upon going to high fields. Clearly, this research area will benefit from further 
development of experiments in always higher, pulsed and steady magnetic fields.

5. Exotic superconductivity

5.1. FFLO state in κ-(BEDT-TTF)2Cu(SCN)2

The Fulde–Ferrell–Larkin–Ovchinikov (FFLO) [163,164] state is expected to occur in the vicinity of the upper critical field 
(Hc2) when Pauli pair breaking dominates over orbital effects [166,167]. Pauli pair breaking prevails in fields for which the 
Zeeman energy is strong enough to break the Cooper pair by flipping one spin of the singlet. In a FFLO state, the Copper 
pairs acquire a finite momentum, leading to a modulated superconducting state, which can be schematised as periodically 
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Fig. 6. (Color online.) (a) NMR relaxation rate in the normal and superconducting states of κ-(BEDT-TTF)2Cu(SCN)2. Temperature dependence of 13C NMR 
(T1 T )−1 at fields of 15, 22 and 27 T, applied in the conducting planes (symbols). In agreement with the phase diagram based on magnetic torque mea-
surements [171], at 15 T, the system becomes superconductor around 7 K (the solid line denotes the quadratic temperature dependence characteristic for 
superconductors with a gap having a line of nodes, such as for a d-wave symmetry). At 27 T, the system remains normal down to the lowest temperature 
investigated (1.4 K), while at 22 T, the system exits its normal state to enter the FFLO phase. The huge peak in (T1T )−1 is due to the Andreev bound states 
present in the FFLO phase [30,181,182]. Inset: simulation of the (T1 T )−1 peak due to the Andreev bound states. (b) Field dependence of the spin polarisa-
tion of the conduction electrons of the p-band as measured by 77Se NMR (see the text) for two different orientations of the field in the superconducting 
plane of λ-(BETS)2FeCl4. The two straight lines cross at H0 = 32 ± 2 T, when H0 + Hexch = 0, in agreement with the maximum of Tc observed at 33 T 
[186].

alternating “superconducting” and “normal” regions. In solid-state physics, the search for the FFLO state has been mainly 
focused on the heavy fermion compound CeCoIn5 [22,168] and layered organic superconductors [169–172]. In the case of 
CeCoIn5, the phase initially identified as an FFLO one has been shown to be magnetically ordered [173,174], and the putative 
coexistence with an FFLO state is still a matter of debate [22,175,177].

Quasi-2D organic superconductors are indeed ideal systems to observe the FFLO state, because of their large anisotropy: 
when the magnetic field is strictly aligned within the superconducting planes, there are only Josephson vortices [176] left. 
Thermodynamic measurements have shown in the phase diagram of the compound κ-(BEDT–TTF)2Cu(SCN)2 the existence 
of a narrow additional superconducting phase just below Hc2, for H aligned with the conducting plane [170,171,178,179], 
which could be an FFLO phase. The first high-field NMR experiment [180] was performed at 0.35 K and concluded that 
the phase transition observed at 21.3 T was Zeeman driven. In spite of efforts to observe directly the spatial modulation of 
the order parameter, it has not been seen yet. However, it was noted that, due to the modulation of the order parameter, 
nodes occur forming domain walls in which the superconducting phase changes by π [181]. This phase twist leads to 
a local modification of the density of states and the creation of new topological defects, characterised by the formation 
of Andreev bound states (ABS), which are a hallmark of the FFLO phase. Recently, a high-field NMR experiment [30] has 
shown that these spin-polarised ABS produce a huge enhancement of the NMR relaxation rate 1/T1 (Fig. 6a), providing 
the first microscopic characterisation of an FFLO phase. It turns out that this effect only occurs in a limited range of 
relatively high temperatures, which has been consistently explained by theory [182], showing that this enhancement comes 
from the scattering of electronic spins between the bound and continuum states. A new compound with much smaller Hc2
values, β ′′-(BEDT–TTF)2SF5CH2CF2SO3, has been recently investigated [183] by NMR, confirming that the nuclear spin–lattice 
relaxation results obtained in [30] are ubiquitous in the FFLO phase. A lineshape compatible with a single-q modulated 
superconducting phase has also been observed.

5.2. Field-induced superconductivity in λ-(BETS)2FeCl4

To explain field-induced superconductivity, Jaccarino and Peter [165] have proposed a mechanism in which there is 
a compensation mechanism between the applied magnetic field and the effective negative field seen by the conduction 
electrons through an exchange mechanism with polarised localised spins. The best realisation of this phenomenon hap-
pens in the organic compound λ-(BETS)2FeCl4, which is a charge-transfer salt composed of the organic BETS (C10S4Se4H8, 
bisethylenedithiotetraselenafulvalene) donor molecule and magnetic FeCl4 (Fe3+, S = 5/2) counterion [184]. At H = 0, the 
localised Fe spins order below 8 K and the compound becomes insulator. Above 12 T, the AF order is suppressed, the system 
becomes metallic, and the Fe spins S are fully polarised at sufficiently low temperature. Increasing H further, a supercon-
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ducting phase appears at H = 18–20 T (depending of the orientation of the field) which has to be strictly confined in the 
b∗–c BETS conducting plane, thus suppressing the orbital limit [185]. Because of the presence of the localised spins S, the 
only technique allowing one to measure the polarisation of conduction electrons is NMR. The experiment was performed on 
a 77Se-enriched, tiny single crystal of dimensions 3 × 0.05 × 0.01 mm3, placed in an NMR coil of 70 μm diameter [19]. The 
Hamiltonian describing the interaction between the nuclear spins Ii , the conduction electrons sk of the conduction band, 
and the localised spins S j can be written as

H = HZ +HIs +HIS +Hexch (14)

The first term is the Zeeman interaction

HZ =
∑

i

−γ h̄ I i
z(1 + K i

c)H0 +
∑

j

gFeμB S j
z H0 +

∑
k

gπμBsk
z (15)

in which K i
c is the chemical shift, gπ the g factor for the π electron of the conduction band. The second and the third terms 

in Eq. (14) are respectively the hyperfine interaction of the p-band and the dipolar interaction between the nuclear and the 
localised Fe spins. This latter can be calculated exactly, taking into account the demagnetisation field. Concerning the last 
term, experiments were conducted at sufficiently low temperature and high magnetic field so that the magnetisation of the 
Fe ions was saturated and field independent. Hexch can thus be simply written Hexch ≈ ∑

k gπμBsk
z Hexch. Finally, the shift 

from the Larmor frequency, after removal of the dipolar contribution and the chemical shift can be written as

δ f i = f i − γ H0 = γ [Ai
π (θ)χπ (H0 + Hexch)] (16)

which is a linear function of H0. For two different orientations θ , the lines δ f (H0) cross zero at the same field value 
(Fig. 6b), allowing the determination of the (negative) value of Hexch = −32 ± 2 T [19], in excellent agreement with the 
value of 33 T corresponding to the maximum of Tc [186].

6. Conclusion

In this review paper, we have shown the interest of performing NMR in very high magnetic fields, to explore new 
field-induced quantum ground states in condensed matter. We have limited ourselves to the case of quantum magnetism, 
high-Tc superconductors and exotic superconductivity, but many other fields can be considered, like heavy fermions or Dirac 
electrons, for example. There are, of course, some limitations of NMR with respect to other techniques: only nuclei with a 
sufficient isotopic abundance and suitable gyromagnetic ratio can be studied (although the former constraint can be escaped 
by isotopic enrichment). On the other hand, tiny samples can be studied, which is not always the case for neutron inelastic 
scattering. The paper is focused on NMR experiments performed in very high-field resistive magnets, but the physics as 
a function of the magnetic field must be considered as a whole, and the separation between the use of superconducting 
magnets, resistive magnets, and pulsed magnetic fields is purely technical. In any case, experiments using the two last field 
sources should be carefully prepared at lower field in superconducting magnets, which are less expensive, and for which 
the duration of the experiments is not limited. We note that fields accessible with superconducting magnets devoted to 
solid-state physics have recently reached 24.6 T [187]. Obviously, the development of NMR in high magnetic field relies 
on pushing this limit as high as possible. Up to recently, NMR was the only technique allowing one to get microscopic 
information above 17 T. Nowadays, the development of a dedicated hybrid magnet for neutron scattering provides steady 
magnetic field up to 27 T, and X-ray scattering under pulsed magnetic field will allow a fruitful comparison between all 
these complementary techniques.
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