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Predicting when rupture occurs or cracks progress is a major challenge in numerous 
fields of industrial, societal, and geophysical importance. It remains largely unsolved: stress 
enhancement at cracks and defects, indeed, makes the macroscale dynamics extremely 
sensitive to the microscale material disorder. This results in giant statistical fluctuations 
and non-trivial behaviors upon upscaling, difficult to assess via the continuum approaches 
of engineering.
These issues are examined here. We will see:

– how linear elastic fracture mechanics sidetracks the difficulty by reducing the problem 
to that of the propagation of a single crack in an effective material free of defects;

– how slow cracks sometimes display jerky dynamics, with sudden violent events 
incompatible with the previous approach, and how some paradigms of statistical 
physics can explain it;

– how abnormally fast cracks sometimes emerge due to the formation of microcracks at 
very small scales.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Prévoir quand les matériaux cassent constitue un enjeu majeur dans de nombreux 
domaines industriels, géologiques et sociétaux. Cela reste une question largement ouverte : 
la concentration des contraintes par les fissures et défauts rend en effet la dynamique 
de rupture à l’échelle macroscopique très sensible au désordre de microstructure à des 
échelles très fines. Cela se traduit par des fluctuations statistiques importantes et des 
comportements sous homogénéisation non triviaux, difficiles à décrire dans le cadre des 
approches continues de l’ingénierie mécanique.
Nous examinons ici ces questions. Nous verrons :

– comment la mécanique linéaire élastique de la rupture contourne la difficulté en 
ramenant le problème à la déstabilisation d’une fissure unique dans un matériau 
effectif « moyen » sans défauts ;

– comment la fissuration lente présente, dans certains cas, une dynamique saccadée, 
composée d’événements violents et intermittents, incompatible avec l’approche précé-
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dente, mais qui peut s’expliquer par certains paradigmes issus de la physique 
statistique ;

– comment des fissures anormalement rapides émergent parfois du fait de la formation 
de microfissures à très petites échelles.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Under loading, brittle materials1 like glasses, ceramics, or rocks break without warning, without prior plastic deforma-
tion: their fracture is difficult to anticipate. Moreover, stress enhancement at defects makes the behavior observed at the 
macroscopic scale extremely dependent on the presence of material heterogeneities down to very small scales. This results 
in large specimen-to-specimen variations in strength and complex intermittent dynamics for damage difficult to assess in 
practice.

Engineering sidetracks the difficulty by reducing the problem to the destabilization and subsequent growth of a dominant 
pre-existing crack. Strength statistics and its size dependence are captured by the Weibull’s weakest-link theory [1] and 
Linear Elastic Fracture Mechanics (LEFM) relates the crack behavior to few material constants (elastic moduli, fracture energy 
and fracture toughness). This continuum theory provides powerful tools to describe crack propagation as long as the material 
microstructure is homogeneous enough and the crack speed is small enough. Conversely, it fails to capture some of the 
features observed when one or the other of these conditions stop being true. In particular:

– slowly fracturing solids sometimes display a so-called crackling dynamics: upon slowly varying external loading, fracture 
occurs by intermittent random events spanning a broad range of sizes (several orders of magnitude);

– in the fast-fracturing regime, the so-called dynamic fracture regime, the limiting speed is different from that predicted 
by LEFM theory (see [2,3] for reviews).

These issues are discussed here. Section 2 will provide a brief introduction to standard LEFM theory, the different stages 
of its construction, its predictions in term of crack dynamics, the underlying hypothesis and their limitations. Crackling 
dynamics in slow cracks will be examined in section 3. Experimental and field observations reported in this context evidence 
some generic scale-free statistical features incompatible with the continuum engineering approach (section 3.1). Conversely, 
it will be seen how the paradigm of the depinning elastic interface developed in non-linear physics can be adapted to the 
problem (section 3.2). This framework has, e.g., permitted to unravel the conditions required to observe crackling in fracture 
(section 3.3). Section 4 will focus on dynamic fracture and the various mechanisms at play in the selection of the crack 
speed. Will be seen in particular that, above a critical velocity, microcracks form ahead of the propagating crack (section 4.1), 
making the apparent fracture speed at the macroscale much larger than the true speed of the front propagation (section 4.2). 
It will also be seen that, at even larger velocity, the crack front undergoes a series of repetitive short-lived microscopic 
branching (microbranching) events, making LEFM theory not applicable anymore (section 4.3). Finally, the current challenges 
and possible perspectives will be outlined in section 5.

2. Continuum fracture mechanics in a nutshell

2.1. Atomistic point of view

Here is how strength would be inferred in a perfect solid. Take a plate pulled by an external uniform stress σext . This 
plate is made of atoms connected by bonds (Fig. 1A). As depicted in Fig. 1A′ , the bond energy, Ubond, evolves with the 
interatomic distance, �, so that the curve presents a minimum, γb , at a given value, �0. This �0 gives the interatomic 
distance at rest. To estimate the way the plate deforms under σext, recall that stress is a force per surface and, hence, relates 
to the pulling force Fbond via σext = Fbond/�2

0. Recall also that strain, ε , is a relative deformation and, as such, relates to �
via ε = (� − �0)/�0. Recall finally that Ubond is a potential energy (analog to the potential energy of a spring) and, as such, 
relates to Fbond via Fbond = −dUbond/d�. The so-obtained stress–strain curve is represented in Fig. 1A′′ . By definition, its 
maximum is the sought-after strength, σ∗ .

1 In contrast with brittle fracture, ductile fracture is preceded by significant plastic deformation. Ductile fracture is always preferred in structural engi-
neering since it involves warning. Note that the brittle or ductile nature of the fracture is not an intrinsic material property. Among others, it depends on 
temperature: all materials break in a brittle manner when the temperature is smaller than their so-called ductile-to-brittle transition temperature. Many 
catastrophic failures observed throughout history have resulted from an unforeseen crossing of this transition temperature. The sinking of the Titanic, for 
instance, was primarily caused by the fact that the steel of the ship hull had been made brittle in contact with the icy water of the Atlantic. The loading rate 
is also an important parameter: rocks behave as brittle materials under usual conditions, but deform in a ductile manner when the loading rate becomes 
very small. This is, e.g., observed in the convection of the Earth’s mantle at the origin of the plate tectonic.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. The different stages underlying the advent of continuum fracture mechanics. Panel A: crude atomistic view of a flawless solid loaded by a constant 
tensile stress, σext . The atoms are placed on a square lattice with an interatomic distance �. They are connected by bonds whose energy, Ubond, varies with 
� as depicted in panel A′ . �0 denotes the interatomic distance at rest, and γb the associated bond energy. The “atomistic” stress–strain curve presented 
in panel A′′ can be deduced. The slope at the origin gives the Young modulus, E , the area below is γb/�3

0, and the maximum defines the strength, σ∗ . 
Panel B: continuum-level scale view of the solid, which now includes in its center an elliptical hole of semi-minor axis b (along the loading direction) and of 
semi-major axis a (perpendicular to loading). As shown by Inglis, the tensile stress is maximum at the apex (point M) and given by σmax = σext × (1 +2a/b). 
Panel C: Griffith’s view of the crack problem: the semi-minor axis b goes to zero so that the elliptic defect reduces to a slit crack of length a. Its presence 
in the stressed plate leads to the release of the stress in a roughly circular zone centered on the crack with a diameter close to a (dark gray zone). Panel C′: 
the onset of crack growth is given from the comparison between two energies: The potential energy �pot (dash green) decaying as a2 (i.e. as the area of the 
released zone) and the energy to create new fracture surfaces �surf (dot blue), increasing linearly with a. For small a, the total energy, �tot = �pot + �sur f

increases with a and the crack does not move. For large a, �tot decreases with increasing a and the crack extends. The motion onset is at a∗ , so that 
d�tot/da(a∗) = d�pot/da(a∗) + d�sur f /da(a∗) = 0. Panel D: notations used to describe the stress field near the tip of a slit crack.

Recall now that Young’s modulus, E , is the slope at origin of the curve σ vs. ε , and note that, by construction, the 
integral 

∫ ∞
0 σ(ε)dε is equal to γb/�

3
0. Introduce here the free surface energy, which is the energy to pay (in bond breaking) 

to create a surface of unit area: 2γs = γb/�
2
0 (the factor two, here, comes from the fact that breaking one bond creates 

two surface atoms). As a crude approximation and to allow analytical computation, approximate now σ(ε) by a sine: 
σ(ε) ≈ σ ∗ sin(2πε/λ) over the interval 0 ≤ ε ≤ λ/2: The relation dσ/dε(ε = 0) = E imposes λ = 2πσ∗/E . The value σ∗ to 
make 

∫ ∞
0 σ(ε)dε = 2γs/�0 is:

σ∗ ≈
√

Eγs

�0
(1)

Consider now soda-lime glass as a simple, representative example of brittle materials. The Young’s modulus is about 
70 GPa and the surface energy is about 0.1 J/m2. Taking a typical interatomic distance of 1 Å leads to a theoretical strength 
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σ∗ ≈ 8 GPa. This value is two orders of magnitudes larger than the practical strength of the material, ∼ 50 MPa. This 
discrepancy is observed in almost all brittle solids!

The element missed in the above analysis is the effect of flaws, which can make the local stress much higher than σext . 
G.E. Inglis was the first, in 1913, to address this effect [4]: he introduced an elliptical hole in the middle of the pulled plate 
(Fig. 1B) and found that the stress is maximum at the narrow ends (point M in Fig. 1B): σmax = σext(1 + 2a/b) where b
and a are the semi-minor (along the loading direction) and semi-major axis of the ellipse. If now, the ellipse is turned into 
a flaw as A.A. Griffith did in 1920 [5], the amplification factor a/b becomes tremendous. It is interesting here to introduce 
the radius of curvature which, for an ellipse, is ρ = b2/a at M. σmax now writes σmax ≈ 2σext

√
a/ρ . Hence, the effect of a 

Griffith flaw of length a and a radius of curvature of atomic dimension �0 is to turn Eq. (1) to:

σ∗ ≈ 1

2

√
Eγs

a
(2)

Flaws of micrometric size allow explaining the practical strength measured in glass.

2.2. Energy approach and Griffith theory

The above analysis underlies the importance of flaws in determining the material strength. As such, this is not the best 
quantity to look at to assess material failure. Griffith hence proposed to reduce the problem of how materials fail to that of 
how a preexisting crack extends in a material. He addressed this question by looking at the total system energy, �tot , and 
how it evolves with the crack length, a. Two contributions are involved:

(1) the potential energy �pot, i.e. the elastic energy stored in the pulled plate;
(2) the energy to pay, �surf, to create the two crack surfaces.

Their typical evolution is sketched in Fig. 1C′ . The crack makes the stress release in a roughly circular zone of diameter a
(gray disk in Fig. 1C): �pot decreases as −a2. The energy cost per unit of fracture surface is, by definition, the free surface 
energy γs. Hence, �surf = 2γsaL (L being the plate thickness, introduced to respect the natural units of �surf and γs, 
in J and J/m2, respectively). Hence, �tot increases with increasing a when a is small enough, below a critical value a∗
and a small crack will remain stable. Conversely, �tot decreases with increasing a for a ≥ a∗ and a large enough initial 
flaw will naturally extend under the applied stress σext. The critical value a∗ is the position of the maximum, so that 
d�tot/da|a∗ = d�pot/da|a∗ + d�surf/da|a∗ = 0. Griffith then introduced the energy release rate, G , which is the amount of 
potential energy released as the crack advances over a unit length:

G = −1

L

d�pot

da
(3)

Then, Griffith’s energy criterion for crack initiation writes:

G ≥ 2γs (4)

and the critical size a∗ coincides with G(σext, a∗) = 2γs.
The next step is to determine G and its evolution with a. In general, this is a very difficult problem to tackle analytically. 

However, it can be done in the situation depicted in Fig. 1C when the plate dimensions are very large with respect to a. 
In this case and in the absence of a crack, the stress is roughly identical everywhere, equal to σext . The density of elastic 
energy is then ∼ σ 2

ext/E everywhere. As it was seen above, the introduction of the crack makes the stress release in a 
circular zone of diameter a. Hence, �tot decreases as −πa2 Lσ 2

ext/4E , and Eq. (3) gives G ≈ πaσ 2
ext/2E . Griffith’s criterion 

allows relating a, γs and the strength σ∗ which is the value σext at the point where G = 2γs. It gives:

σ∗ ≈
√

4Eγs

πa
(5)

which is consistent with the atomistic description (Eq. (2)). The difference by a factor 4/
√

π results from the crude assump-
tions made both in the atomistic description and in the computation of G .

2.3. Linear elastic crack-tip field, stress intensity factor and equation of motion

The main limitation of the above theory is the difficulty to determine G in practical situations, when the structure 
exhibits a complicated geometry and/or complex loading conditions. The analysis of the stress field near the crack tip 
provides more powerful methods in this context. This task was first carried out by G.R. Irwin (1957) [6]. He considered a 
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slit crack embedded in a 2D isotropic linear elastic solid loaded in tension (Fig. 1D) and found that the stress field exhibits 
a mathematical singularity2:

σi j(r, θ) ∼
r→0

K√
2πr

Fi j(θ) (6)

where (r, θ) are the polar coordinates in the frame (�ex, �e y) centered at the crack tip. Here, the basis is chosen so that �ex

is parallel to the direction of crack growth and �e y is parallel to the direction of the applied tension. The functions Fij(θ)

are generic; they depend neither on the specimen geometry, nor on the crack length, nor on the elastic moduli; their form 
can, e.g., be found in the chapter 2 of Lawn’s textbook [7]. Conversely, the prefactor K , the so-called stress intensity factor, 
depends on both applied loading and specimen geometry. This is the relevant quantity characterizing the prying force acting 
on the crack. It relates to the energy release rate by3:

G = K 2

E
(7)

Returning to the plate pulled by a constant applied stress σext considered in the previous section, the knowledge of G
implies that of K : K ≈ σext

√
πa. In a more general manner, K takes the form K = σext

√
πa × f (a/Li, L j/Li), where Li are 

the various (macroscopic) lengths involved in the system geometry: specimen dimensions, the positions of the crack and of 
the loading zones, the lengths to be associated with the eventual variation of σext with space...

Note that Eq. (6) implies an infinite value for the stress at the crack tip. A minima, the equation stops being valid when 
r approaches the atomic scale �0 since the continuum description breaks down there. In practice, in many materials, there 
exists a (larger) distance where, due to the singularity, stresses become so high that the material stops being elastic. The 
zone where this occurs is referred to as the fracture process zone (FPZ). It embeds all the dissipative processes (plastic 
deformations, damage, crazing, breaking of chemical bonds, etc.). Calling � the total energy dissipated in this FPZ as the 
crack propagates so that an additional unit of surface area is created, the Griffith criterion can be generalized to:

G ≥ � (8)

where � is called the fracture energy. Note that � includes the free surface energy, but can be much larger. In brittle polymers 
for instance where most of the dissipation comes from the disentangling of the polymer chains, � ∼ 100–1000 J/m2, to be 
compared with the typical values γs ∼ 1–10 J/m2 for the free surface energy. Assuming as does LEFM theory that the FPZ 
zone is small with respect to the characteristic macroscopic scales involved in the problem (small-scale yielding hypothesis), 
� remains a material constant, independent of the specimen geometry and of the loading conditions. Since K is easier to 
compute than G , the engineering community prefers to replace Griffith’s criterion by K ≥ Kc, where Kc = √

E� defines the 
material toughness and, like �, is a material constant to be determined experimentally.

The next step is to determine the equation of motion once the crack has started to propagate. This equation is given by 
the balance between the total elastic energy released per unit area into the FPZ and the energy dissipated in the same zone: 
Gdyn = �. Note that Gdyn includes a contribution due to kinetic energy, �kin, in addition to the potential energy considered 
till now. A major hurdle here is to determine Gdyn and the analytical solution of the associated elastodynamics problem is 
extremely difficult. Freund solved it in 1972 for a running crack embedded in a plate of infinite dimensions [8–10]. A first 
step has been to determine the near-tip stress field.4 It exhibits a square-root singularity, similar to that in the quasi-static 
crack problem, which writes:

2 To derive Eq. (6), one has to find the stress field solutions that:

– obey the equations of isotropic linear elasticity, namely the equilibrium equations for stress, the compatibility equation for strain and Hook laws 
relating stress and strain;

– are compatible with the boundary conditions imposed by the crack: σyy(r, ±π) = σxy(r, ±π) = 0;
– are symmetric under reflection about the x-axis as imposed by the tensile loading along y: σxx(−x, y) = σxx(x, y), σyy(−x, y) = σyy(x, y) and 

σxy(−x, y) = −σxy(x, y).

A possible way to do it is to introduce the Airy stress function �(x, y) such that σxx = ∂2
yy�, σyy = ∂2

xx�, σxy = −∂2
xy�. Equilibrium equations are then 

satisfied automatically, and the compatibility equation takes the form of a biharmonic equation: ∇4� = 0. Look for solutions of the form �(r, θ) = rλ f (θ, λ). 
The boundary conditions lead to λ = n/2 + 1 where n is an integer. Supplemented with the symmetry principles, they also provide the corresponding 
functions f (θ, n). As a consequence, stress and strain scale with r as σi j ∼ εi j ∼ ∂2

r � ∼ rn/2−1 and displacement scales as ui ∼ rn/2. The first allowed term 
is that with n = 1 since it is the first term so that ui vanish for r → 0. This results in σi j ∼ 1/

√
r. The functions Fi j(θ) in Eq. (6) are then deduced from the 

knowledge of f (θ, n = 1).
3 Irwin proposed [6] the following argument to provide relation (7). A crack of length a can be seen as a crack of length a + δa that is being pinched 

over −δa ≤ x ≤ 0 by applying the appropriate tractions t(x). The potential energy released as the crack grows of δa is then given by the work done by 
these tractions as they progressively relax to zero. Call �u y(x) the opening of the crack due to t(x). Equation 6 (supplemented with F yy(θ = 0) = 1) leads 
to t(x) = K/

√
2π(δa + x) and Eq. (6) combined with Hook laws leads to �u y(x) = (2K/E)

√−2x/π . Then, the total work done as the tractions are relaxed 
writes Gδa = ∫ 0

−δa t(x)�u y(x)dx and Eq. (7) follows.
4 The derivation of Eq. (9) is lengthly. It is, e.g., provided in Ravi-Chandar’s book [12], in Freund’s book [11] or in Fineberg and Marder’s review [3].
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σi j(r, θ) ∼
r→0

K dyn

√
2πr

F dyn
i j (θ, v) (9)

where the functions F dyn
i j (θ, v) are non-dimensional generic functions indicating the angular variation of the stress field and 

its dependence on the crack speed, v . As in the quasi-static problem, they depend neither on the specimen geometry, nor 
on the crack length, nor on the elastic moduli. Conversely, they involve the dilational and shear wave speed, denoted cd
and cs, respectively. The prefactor K dyn is referred to as the dynamic stress intensity factor. Remarkably, K dyn writes [10]
K dyn = k(v)K , where k(v) is a universal function of v (involving also cd and the Rayleigh wave speed, cR), and K is the 
static stress intensity factor that would have been obtained for a fixed crack of length equal to the instantaneous length in 
the same specimen geometry with the same applied loading.

Knowing the stress field, it is possible to determine the total elastic energy per unit time flowing into the FPZ, J =
d(�pot + �kin)/dt , and subsequently Gdyn = J/v . After some manipulations,5 Gdyn is found to write as the product of a 
universal function of v , A(v), with the static energy release rate G that would have been obtained for a fixed crack of 
length equal to the instantaneous length in the same system and loading geometry. At the end of the day, the equation of 
motion writes:

A(v)G = � with A(v) ≈
(

1 − v

cR

)
(10)

Equation (10), derived for an infinite medium, is often considered as the equation of motion for cracks. This is correct in 
specimens of finite sizes as long as the elastic waves emitted at initiation do not have the possibility to reflect on the 
boundaries and come back to perturb the crack, but this is not generally correct. It is convenient to rewrite Eq. (10) as an 
explicit equation of motion:

v ≈ cR

(
1 − �

G

)
(11)

Recall here that G quantifies the prying force acting on the crack tip. The procedure to determine how fast a crack 
propagates in a given geometry for a given loading is then the following: first, compute the quasi-static stress inten-
sity factor and its variation with the crack length, by finite elements for instance (recall here that, in a general manner, 
K = σext

√
πa × f (a/Li, L j/Li)); second, transform K (a) into G(a) using the Irwin relation (7); third, look for the value of 

the material-constant fracture energy � (or equivalently fracture toughness Kc) for the considered material; fourth, solve 
the ordinary differential Eq. (11), in which v = da/dt and the proper dependency G(a) has been provided.

For slow fracturing regime,6 the excess energy G − � is small with respect to �. The expansion of Eq. (11) to the first 
order in (G − �)/� leads to:

1

μ
v  G − � (12)

where the effective mobility μ is given by μ = cR/�.

2.4. Limits of continuum fracture theory

There are several consequences of the LEFM theory presented above: (i) Eq. (12) predicts a continuous crack growth 
in the slow fracture regime and (ii) Eq. (11) suggests the Rayleigh wave speed to be the limiting speed for cracks in 
the dynamic fracture regime. As we will see in the next sections, these two predictions are in apparent contradiction 
with several observations. Actually, these apparent discrepancies do not originate from flaws in the theory, but from its 
application hypothesis, which are:

– LEFM considers the propagation of a single crack, in an otherwise homogeneous isotropic linear elastic material charac-
terized by a material constant fracture energy;

– LEFM is intrinsically a 2D theory and depicts the crack front as a straight line translating in a plane.

5 Detailed derivation of J are, e.g., provided in Ravi-Chandar’s book [12] and in Fineberg and Marder’s review [3]. The different stages are summarized 
below. Using the summation convention for repeated indices, one gets J = (d/dt) ∫A [ρu̇2

i /2 +σi j∂ j ui/2]dx dy = ∫
A [ρu̇i üi +σi j∂ j u̇i ]dx dy, where A denotes 

the area of the specimen within the (x, y) plane. The equation of motion gives ρüi = ∂ jσi j . Introducing that into the integral and subsequently applying the 
divergence theorem leads to J = ∫

A ∂ j(u̇iσi j) dx dy = ∫
∂ A u̇iσi jn j ds where ∂ A is the contour of the area A and ni are the components of the outward normal 

to the contour in the direction of translation of the contour. Since we are interested in the energy flowing into the FPZ, we can make A and ∂ A go to zero. 
Then, the stress field takes the K -dominant form given by Eq. (9). Combined with Hook laws, the form of the displacement components ui are deduced. 
It turns out that, provided a K -dominant form for σi j and ui , the contour integral giving J is path independent. By choosing this path conveniently, one 
finds the relation between J and K dyn, and subsequently deduces Eq. (10).

6 In contrast with the dynamic fracture regime, the slow fracturing regime assumes a quasi-static process which can be addressed within the elastostatic 
framework. This approximation is relevant as long as the typical speeds in the problem (often set by the crack speed) is small with respect to the speed of 
the elastic waves. The Rayleigh wave speed provides a good order of magnitude for these wave speeds: It is smaller than both the dilatational and shear 
waves speed, and it is always very close to the latter. Slow fracturing regimes are then observed when v � cR.
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It is only quite recently that a series of fracture experiments performed on model neo-Hookean materials (soft hydrogel) 
have permitted to check successfully, and quantitatively, the equation of motion predicted by LEFM over the full velocity 
range [13].

3. Crackling dynamics in slowly fracturing solids

3.1. Short survey of experimental/field observations

Equation (12) predicts that a crack pushed slowly in a material should propagate in a continuous and regular manner. 
This is not observed in a number of situations. As an illustrative example, Earth responds to the slow shear strains imposed 
by the continental drifts through series of sudden violent fracturing events, earthquakes. The distribution of the radiated 
energy presents the particularity to form a power law, spanning many scales:

P (E) ∝ E−β (13)

The exponent β slightly depends on the considered region or time,7 but always remains close to β  1.6. This kind of 
distribution is characteristic of scale-free systems. It has an important consequence: its second moment, E2 = ∫ ∞

0 E2 P (E)dE , 
is infinite; the notion of a typical “average” intensity for earthquakes is meaningless! Beyond the power-law distribution for 
energy, earthquakes also present a specific organization in time: the inter-event time is power-law distributed [15], and the 
events organize into mainshock–aftershock sequences obeying a range of empirical scaling laws, the most common of which 
are: Omori–Utsu’s law [16,17] (the aftershock’s frequency decays algebraically with time from the mainshock), productivity 
law [18,19] (the number of produced aftershocks increases as a power law with the mainshock energy), and Bath’s law [20]
(the difference in magnitude between the mainshock and its largest aftershock is independent of the mainshock magnitude).

Laboratory-scale experiments have revealed similar statistical features in the the acoustic emission going along with the 
fracture of different heterogeneous solids: solid foams [21], plaster [22], paper [23], wood [24], charcoal [25], mesoporous 
silica ceramics [26], etc. The energy of the acoustic events and the silent time between them are power-law distributed. 
More recently, the analogy between seismology and fracture experiments at the lab-scale has been further deepened with 
the evidence of aftershock sequences obeying the standard laws of seismology [24–26]. Note that the different scaling 
exponents involved in the problem were reported to depend on the considered material and fracture conditions [21,27,28].

Unfortunately, the relation between AE energy and released elastic energy remains largely unknown; reference [29]
attempts to better understand this relationship by using minimal lattice networks. Moreover, most of the acoustic fracture 
experiments reported in the literature start with an intact specimen, and load it up to the overall breakdown. In these 
tests, the recorded acoustic events reflect more the microfracturing processes preceding the initiation of the macroscopic 
crack than the growth of the latter. This has motivated a few groups to look at simpler 2D systems, closer to the LEFM 
assumptions: a group in Oslo has imaged the dynamics of a crack line slowly driven along a weak heterogeneous interface 
between two sealed transparent Plexiglas plates [30,31]. They showed that the crack progresses via depinning events, the 
area of which is a power-law distribution. A group in Lyon has observed directly the slow growth of a crack line in 2D 
sheets of paper [32]. This occurs via successive crack jumps of power-law-distributed length.

More recently, our group carried out a series of crack growth experiments in artificial rocks. These rocks were obtained 
by mimicking the processes underlying the formation of real rocks in nature: a mold was first filled with monodisperse 
polystyrene beads and heated up to 105◦C (∼ 90% of the temperature at glass transition). The softened beads were pressed 
between the jaws of an electromechanical machine at a prescribed pressure. Then, both pressure and temperature were 
kept constant for one hour. This gave the time for sintering to occur. The mold was then brought back to ambient condi-
tions of temperature and pressure slowly enough to avoid residual stresses. This procedure provides artificial rocks whose 
microstructure length scale and porosity are set by the bead diameter and the applied pressure (see [33] for details). The 
rock porosity was kept small enough (to a few percent) so that fracture occurs from the propagation of a single crack in 
between the sintered grains (Fig. 2B).

In the so-obtained materials, a seed crack was initially introduced with a razor blade. This crack was slowly driven 
throughout the rock using the experimental arrangement depicted in Fig. 2A, by pushing at small constant speed a triangu-
lar wedge into the cut-out on one side of the sample (10 ∼ 100 nm/s range for the wedge speed). In this so-called wedge 
splitting geometry, the crack is expected to grow at a speed set by the wedge speed (larger by about two orders of mag-
nitude). In addition to the crack speed, v(t), special attention was paid to monitor in real time the potential elastic energy 
stored in the specimen, �pot(t). This has been made possible by placing two go-between steel blocks equipped with rollers 
between the wedge and the specimen. This limits parasitic dissipation via friction or plastic deformation at the contact, 
so that the failure processes within the FPZ are ensured to be the sole dissipation source in the system (see Fig. 2A and 
reference [34] for details).

7 Note that earthquake sizes are more commonly quantified by their magnitude, which is linearly related to the logarithm of the energy [14]: 
log10 E = 1.5M + 11.8. Equation (13) then takes the classical Gutenberg–Richter frequency-magnitude relation: P (M) ∝ exp(−bM), where b refers to the 
Richter–Gutenberg exponent and relates to β via: β = b/1.5 + 1.
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Fig. 2. Crackling dynamics of a slowly driven crack in an artificial rock. Panel A: sketch of the experimental setup. Panel B: microscope image of the 
fracture surfaces. Note the facet-like structure illustrating the intergranular fracture mode and the absence of visible porosity. The diameter of the beads 
used to synthesis this rock was 583 μm. Panel C: zoomed view of the crack speed v(t) (black) and the potential elastic energy �pot(t) stored in the 
specimen (red) as a function of time in a typical fracture experiment. Panel D: instantaneous released power P(t) = −d�pot/dt as a function of v(t)

for all t . The proportionality constant (slope of straight line) sets the fracture energy � = 100 ± 10 J/m2. Panel E: standard procedure to extract the 
avalanche size and duration from such a crackling signal within the depinning interface framework (see also Fig. 3). A threshold is prescribed and the 
avalanches are identified as the individual bursts above this threshold. The avalanche duration is defined from the two successive times the curve crosses 
this threshold. The avalanche size, S , is defined as the integral of the burst above the threshold. Panel F: distribution of S , expressed either as the energy 
released during the event (bottom x-axis) or as the area swept during the events made dimensionless by the bead diameter d (top x-axis). The various 
symbols correspond to various coarsening times δt and different values for the prescribed threshold C〈v〉, where 〈v〉 is the speed averaged over the whole 
experiment: 〈v〉 = 2.7 μm/s (empty symbol) and 〈v〉 = 40 μm/s (filled symbol); the latter has been shifted vertically for the sake of clarity. (Adapted from 
[34].)

Fig. 2C shows the typical measured signals. They display an irregular burst-like dynamics with random sudden fluctua-
tions spanning many scales. Again, such a highly fluctuating dynamics is incompatible with the Eq. (12) of LEFM theory. Yet 
and despite their individual giant fluctuations, the elastic power released, P(t) = −d�pot/dt , was found to be proportional 
to the speed fluctuation v(t) at each time step (Fig. 2D). This enables defining a material-constant fracture energy �. As 
we will see in the next section, these observations can be explained within the depinning interface paradigm applied to 
heterogeneous fracture. To characterize the fluctuation statistics, we hence adopted the standard procedure in the field. As 
depicted in Fig. 2E, this consists in identifying the underlying depinning avalanches with the bursts where P(t) is above 
a prescribed reference level, Pth. Then, the duration T of each pulse is given by the interval between the two intersec-
tions of P(t) with Pth, and the avalanche size S is defined as the energy released during the event, i.e. the integral of 
P(t) between the two intersection points. As expected in the depinning interface paradigm (see next section), S follows 
a power-law distribution, P (S) ∝ S−τ (Fig. 2F) and T scales as a power law with S , T ∝ Sγ . Let us finally mention that 
the acoustic emission has been also analyzed in our experiments. The acoustic events get organized to form aftershock 
sequences obeying the laws of seismology [35].

3.2. Depinning of elastic interfaces as a paradigm of heterogeneous fracture

The experiments reported in the previous section suggest that fracturing (heterogeneous) solids belong to the so-called 
crackling systems. This class encompasses a variety of different systems, those that respond to slowly varying external 
conditions through random impulsive events of power-law-distributed (scale-free) size [36]. This class of problems, for 
instance, includes fluctuations in the stock market [37], paper crumpling [38], or cascading failure in power grids [39].

Crackling dynamics in fracture cannot be captured by the continuum approaches of LEFM theory. We now turn to another 
approach – pioneered by H. G. Gao and J. R. Rice in 1989 [40] and developed firstly to explain the scale-invariant properties 
of crack surface roughness [41–46]. The idea is to consider explicitly the presence of inhomogeneities in the microstructure 
of the material by introducing a stochastic term, η, into the fracture energy: �(x, y, z) = � × (1 + η(x, y, z)). The system 
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Fig. 3. Elastic depinning approach applied to stable crack propagation. Panel A: sketch and notations used to derive Eqs. (15) and (16). The crack propagates 
by a series of jumps (avalanches) between successive pinned configurations. Panel B: for each avalanche, the duration, T , is defined by the duration of the 
jump and the times t1 and t2 coincide with the start and the end of the jump. The avalanche size S is set by the area A swept over this jump. Panel C: 
as a result, the time evolution of the spatially-averaged crack length a(t) exhibits a step-like form where the pinned regions coincide with the horizontal 
portions, and the avalanches coincide with the stiff portions. Panel D: the spatially-averaged crack speed, v(t) (resp. the instantaneous power released, 
P(t)) exhibits a crackling dynamics made of successive bursts, the duration of which are set by T . Moreover, the integral below the curve is given by S/L, 
where L is specimen thickness (resp. S/�, where � is the material fracture energy). (Adapted from [28].)

is depicted in Fig. 3A. Note that the third dimension, z, is now explicitly considered, which was not the case till now. The 
fluctuations in fracture energy induces distortions of the front, which, in turn, generate local variations in the energy release 
rate, G(z, t). In a first-order analysis, the out-of-plane roughness of the crack line can be neglected, and G(z, t) depends on 
the in-plane component of the crack line distortions only [47]. J. R. Rice (1985) has provided the relation in the limit of a 
specimen with an infinite thickness [48]:

G(z, t) = G(1 + J (z, {a})) with J (z, {a}) = 1

π
P V

∞∫
−∞

a(ξ, t) − a(z, t)

(ξ − z)2
dξ (14)

Here, P V denotes the principal part of the integral and a(z, t) is the in-plane position of the crack line (Fig. 3A). G de-
notes the energy release rate that would have been used in the standard LEFM picture, after having coarse-grained the 
microstructure disorder and averaged the behavior along the z direction, as implicitly done all along section 2. In the same 
way and all along this section, the crack length averaged over specimen thickness (say the standard LEFM crack length) will 
be referred to as a. The associated LEFM-level scale crack speed will be referred to as v : v(t) = da/dt .

The application of Griffith’s criterion at each point z along the front provides [42,44]:

1

μ

∂a

∂t
= F (a, t) + � J (z, {a}) + �η(x = a(z, t), z) (15)

where F (a, t) = G(a, t) −�. Now, look at the spatially averaged solution a(t) to this equation (or its derivative v(t)). A rapid 
and naive glance would suggest that taking the average of this equation naturally leads to the LEFM equation of motion 
(Eq. (12)): the averaging of the term a(ξ, t) − a(z, t) in the integral term of Eq. (14) indeed makes the second right-handed 
term vanish, and the mean value of η is, by definition, zero. These arguments are not correct! The reason is that the stochas-
tic term η is a frozen disorder term; it depends explicitly on the position of the crack line. Therefore, the coarse-graining of 
Eq. (15) should properly account for the fact this line stays pinned much longer at the strongest points in η, which, hence, 
counts much more in the averaging process.

The solution of this equation is known [49] to exhibit the coined depinning transition governed by F and its relative 
position with respect to a critical value Fc:
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– when F is smaller than Fc the front is pinned by the disorder and does not propagate;
– when F is much larger than Fc, the front grows at a mean speed v̄ proportional to F . In other words, v is proportional 

to G − � and the standard LEFM theory (Eq. (12)) is recovered;
– when F is exactly equal to Fc, a critical state is observed, and the system becomes scale-invariant in both space and 

time. At this peculiar point, the crack line moves via jumps the statistics of which is power-law distributed over the full 
accessible range, from the scale of the microstructure to the specimen size;

– when F is larger than Fc, but not too much, the scale-invariant features of criticality only extend up to a finite upper 
cutoff. This cutoff is all the more important so as the difference F − Fc is small.

This critical state close to Fc explains the crackling dynamics in fracturing solids. More importantly, it allows us to invoke 
the universality of the crack dynamics there. The different exponents involved in the power-law distribution of size and 
duration and in the scaling between the two are generic: they depend neither on the “microscopic details” of the system 
(say the precise size and shape of inhomogeneities, their nature...), nor on the “macroscopic details” (the way the solid is 
loaded, for instance).8 Even more surprisingly, these exponents are identical to those observed in other systems belonging 
to the same universality class, e.g., the contact line motion in wetting [49,50] and domain wall motion in ferromagnets 
[51,52]. Last but not least, these exponents are predictable (to some extend) using the functional renormalization group 
(FRG) methods initiated by D. S. Fisher [53] and further developed, e.g., in [54–56].

From the above analysis, a crackling dynamics is expected in fracture, provided the system remains close to the critical 
point. But why should it be the case? To understand this, in Ref. [57] we took a closer look at the form of the term 
F (a, t) in Eq. (15). Recall here that G goes approximately as σ 2

exta (sections 2.2 and 2.3); it is an increasing function of 
the crack length. This means that any system loaded by imposing a constant stress σext would yield an unstable fracture, 
with a crack accelerating very rapidly up to its limiting speed (Eq. (11) in section 2.3). Slow fracturing situations, hence, 
can only be encountered in systems loaded by imposing a time-increasing external displacement, uext = vextt . Then, the ratio 
k = σext/uext, referred to as the specimen stiffness, is a decreasing function of the crack length. In slow fracturing situations, 
the decrease of k with a overcomes the linear increase of G with a and, finally, G(a, vextt) decreases with increasing a. In a 
first approximation, the term F in Eq. (15) writes [57]:

F (a(t), t) ≈ Ġt − G ′a (16)

where Ġ = ∂G/∂t and G ′ = −∂G/∂a are positive constants set by the external displacement field and the specimen geom-
etry, only. The crack motion can then be decomposed as follow: as long as F (a(t), t) ≤ Fc, the front remains pinned and 
F (a(t), t) increases with t . As soon as F ≥ Fc, the front starts propagating, making a increase and F (a(t), t) decrease. As we 
will see in the next section, there exists a whole range for the parameters Ġ and G ′ so that these two antagonist mecha-
nisms maintain F close to the critical point during the whole propagation [57]. A self-sustained steady crackling dynamics 
made of depinning avalanches is then observed (Fig. 3B). In this picture, the area A of these avalanches sets both the jump 
size for a: S = A/L and the potential energy released during this jump: δ�tot = �A (Figs. 3C and D). This picture is con-
sistent with the observations reported at the end of the previous section in artificial rocks [34], where, despite their giant 
fluctuations, v(t) and P(t) were remaining proportional at all times (Fig. 2D).

Within this framework, S (or equivalently A or δ�pot) is power-law distributed: P (S) ∝ S−τ with τ = 1.280 ± 0.010
[28]. This power law extends over the full scale range when Ġ → 0 and G ′ → 0. More generally, the distribution writes 
P (S) ∝ S−τ f (S/S0), where f (u) is a quickly decreasing function and S0  g(Ġ/G ′)G ′ −1/σ , where g(u) is an increasing 
function and σ = 1.445 ± 0.005 [58]. Moreover, the avalanche duration T scales with S as T ∝ Sγ with γ = 0.555 ± 0.005
[28]. The power-law behaviors for P (S) and T vs S are consistent with what was observed in the fracture of the artificial 
rocks (Fig. 2F and previous section). Conversely, the exponent value measured experimentally is significantly different. This 
discrepancy is thought to result from the finite width L of the experimental fracture specimen, not taken into account in 
the derivation of Eq. (14).

3.3. From crackling to continuum-like dynamics

The preceding section has permitted to show that crackling dynamics may emerge from the interactions between a 
crack and the material inhomogeneities. Still, actual experimental observations of crackling are scarce and most situations 
involving stable crack growth in a variety of disordered brittle solids (structural glasses, brittle polymers, ceramics ...) exhibit 
a continuous dynamics compatible with the LEFM predictions.

8 The independence from the system details deserves some comments. It will remain true provided that: (i) there exists a well-defined spatial correlation 
length for the frozen disorder (or well-defined correlation lengths along the relevant directions in the case of an anistropic microstructure); (ii) this 
correlation length (or these correlation lengths) is small with respect to the macroscopic dimensions involved in the system; and (iii) the scaling properties 
are looked at scales above this correlation length (or above the largest of these correlation lengths). It will not work in laminar materials or in complex 
hierarchical biological structures, like bones for instance. Recall also that Eqs. (15) and (16) were derived in the framework of isotropic linear elasticity 
and the effect of the material inhomogeneities is integrated in the fracture energy only (or equivalently in fracture toughness). Inhomogeneities in elastic 
properties, for instance, are not included. Recall finally that a slow fracturing regime is considered here and that the inertial effects due to the elastic waves 
are not considered. Those can be very important, e.g., in the triggering of earthquakes.
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Fig. 4. Crackling vs. continuum dynamics in heterogeneous fracture. Panel A: time evolution of the spatially-averaged velocity v(t) predicted by Eq. (15)
and (16) for increasing values of G ′: G ′ = 4.75 × 10−5 (A1), G ′ = 2 × 10−4 (A2), G ′ = 5.5 × 10−3 (A3). The other parameters are kept constant: Ġ = 10−5, 
� = 1, μ = 1, L = 1024, and η(x, z) is an uncorrelated random landscape of zero average and unit variance. At low G ′, v(t) wanders around the value G ′/Ġ , 
as predicted within the LEFM framework. When G ′ increases, the dynamics becomes jerky and switches to crackling dynamics made of separate pulses 
the duration of which decreases with increasing G ′ . Panel B: phase diagram of the crack dynamics predicted within the depinning interface framework 
(Eqs. (15) and (16)). This diagram is fully defined by two reduced variables mingling all the parameters involved in Eqs. (15) and (16). Panel C: Fourier 
spectrum of v(t) at increasing G ′ (value indicated in the right-handed color bar), keeping all the other parameters constant (same value as in panel 
A1→A3). Note the qualitative change as the transition line in panel B is crossed (i.e. as G ′ crosses G ′

c ). Note also that only the lowest frequencies of the 
spectra evolve with G ′ below G ′

c . Note finally the power law, characteristic of a scale-free dynamics above G ′
c (adapted from [59]).

To shed light on when crackling dynamics is likely to occur, we have numerically explored the parameter space associated 
with Eqs. (15) and (16). Crackling is favored by [59]:

– larger disorder or heterogeneities, i.e. larger standard deviation or larger spatial correlation length for the random frozen 
landscape η(x, y, z) in Eq. (15);

– smaller thickness for the fracturing specimen, or to be more precise smaller ratio thickness over heterogeneity size. The 
small value of this ratio (∼ 30) is what has permitted to observe crackling in the artificial rocks of Fig. 2. The downsiz-
ing of high-tech mechanical components is, e.g., anticipated to favor crackling and unpredictability against continuum 
dynamics and predictable fracture behavior;

– fracture geometry so that G decreases rapidly with crack length (smaller G ′ in Eq. (16), see also Fig. 4A1 → A3). 
This is, for instance, achieved in indentation problems. This effect may be the one responsible for the unforeseen 
earthquake-like fracturing events observed at the keV ∼ MeV scale in a cryogenic detector during the early stages of 
the CRESST experiment searching for dark matter in high-energy physics [60];

– slower rate for the displacement imposed externally, i.e. smaller Ġ in Eq. (16). This is typically the situation encountered 
in seismology.

A careful analysis of the above simulations combined with dimension analysis has allowed us to unravel the transition line 
between the crackling and LEFM-like regimes. It defines a phase diagram within a space defined by two reduced variables 
only, represented in Fig. 4B.

Finally, it is of interest to look at the Fourier spectrum of v(t) and how it evolves when the transition line is crossed. 
This is depicted in Fig. 4C, presenting a series of spectra at increasing values G ′ (recalled to be the derivative of G with crack 
length), i.e. taken along a vertical line in the phase diagram of Fig. 4B. Here, G ′

c denotes the value at the transition line, 
the dark-to-light brown curves correspond to the spectra observed in the LEFM-like phase, below G ′

c , and the blue-to-green 
curves correspond to the spectra observed in the crackling phase, above G ′

c . In the LEFM-like phase, all curves collapse, ex-
cept at the lowest frequencies. This is what must be true in a continuum description where a macroscopic control parameter 
(here G ′) should affect the system at the larger scales only (small frequencies). Conversely, in the crackling phase, changing 
G ′ affects all the scales (all the frequencies) and the curves do not overlap at any place. Note the power-law form of the 
spectra (straight line in logarithmic scales) characteristic of a scale-free dynamics. Note also the fact that the power-law 
exponent remains unaffected by the increase of G ′ , as expected from the universality invoked in the previous section. Note 
finally the suddenness of the changes observed as the transition line is crossed; special attention was paid, in the plot of 
Fig. 4C, to modulate G ′ in a regular manner, by increasing it by the same multiplicative constant all along the process. This 
suddenness on the aspect change suggests an underlying true transition rather than a simple crossover phenomenon. This 
LEFM-to-crackling transition is distinct from the standard depinning transition; it occurs within the depinned phase, at a 
finite (but small) value of the mean front speed. Future work is required to fully characterize the underlying mechanisms.

4. Damage-induced boosting of fast cracks

We now turn to dynamic fracture and the effect of microstructure disorder onto the continuum-level scale dynamics, 
when v reaches a value of the order of cR (say larger than cR/10). According to the phase diagram uncovered in section 3.3
and Fig. 4B, the giant velocity fluctuations due to the interface depinning mechanism disappear as v is sufficiently large 
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Fig. 5. Signature of microcracking onset on the dynamic fracture of PMMA. Panel A: fracture energy � as a function of the (macroscale) crack speed v , 
for five different experiments with different potential energy values at crack initiation, U0. The horizontal dotted line indicates the quasi-static value, 
�(v = 0) = 420 J/m2. The vertical dotted line points out the kink occurring at the microcracking onset, vmicrocrack = 165 m/s = 0.19 CR. Panel B: sequences 
of microscope images (1 × 1.4 mm2) showing the evolution of the fracture surfaces as v increases. Beyond vmicrocrack, conics marks are visible and their 
number increases with v . They sign the existence of microcracks forming ahead of the propagating main front. Panel C: density of conic marks as a function 
of v . In both panels (A) and (C), the vertical dashed line indicates vmicrocrack and the error bars indicate a 95% confident interval (adapted from [61,62]).

and LEFM predictions are recovered. As we will see below, another mechanism is activated within the FPZ, bringing a new 
source of complexity.

4.1. Velocity-induced nominally-to-quasi brittle transition in disordered solids

As recalled in section 2.3, LEFM theory predicts the limiting crack speed, v∞ , to be cR. In practice, this is not observed 
and v∞ is often reported to range between 0.5 ∼ 0.6 cR [12]. To understand this discrepancy, we carried out a series of 
dynamic fracture experiments in polymethylmethacrylate (PMMA),9 with the aim of measuring both K (t) and v(t) inde-
pendently and testing Eq. (11) quantitatively [61]. In this context, we used the wedge-splitting experimental arrangement 
depicted in Fig. 2A with three adaptations due to the constraints of dynamic fracture and the requirement of microsecond 
time resolution [61,62]:

– a hole is drilled at the tip of the seed crack to delay fracture and increase the potential energy stored in the specimen 
at crack initiation;

– the time evolution of v is measured by monitoring, via an oscilloscope, the successive rupture of parallel 500-μm-large 
gold lines deposited on the surface;

– the time evolution of K is obtained via finite element analysis. That of G is then deduced from Irwin’s relation (7).

These series of experiments reveal that, contrary to the LEFM assumptions, � rapidly increases with v (Fig. 5A). The 
Rayleigh wave speed cR then stops being the natural limit for v , even if Eq. (11) is fulfilled. These experiments also reveal 
the existence of a well-defined critical speed, vmicrocrack, above which the fracture surfaces are decorated with beautiful 
conical marks (Fig. 5B). These conics are known [63,64] to be the signature of penny-shape microcracks, growing radially 

9 PMMA is often considered as the archetype of nominally brittle materials in experimental mechanics. The size of the FPZ is very small, around 30 μm. 
At ambient temperature, the viscosity is very small and the mechanical behavior is well described by isotropic linear elasticity, even down to very small 
scales. Its elastic modulus, E ∼ 3 GPa, is large enough so that the specimens can be easily manipulated and do not deform significantly under their own 
weight. At the same time, E is small enough so that, during testing, the specimen deformations are large enough compared with those of the different 
pieces that constitute the loading machine (generally in steel). Moreover, PMMA is transparent, which allows the direct imaging of the processes, and 
birefringent which also permits to image the stress field (or more exactly the deviatoric part of the stress tensor). Last but not least, PMMA is cheap. For all 
these reasons, PMMA has been one of the most widely used materials against which theories have been confronted with from the early stages of fracture 
mechanics.
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ahead of the main front and subsequently coalescing with it. Their density increases almost linearly with v − vmicrocrack
(Fig. 5C). This velocity-driven transition, from a nominally-brittle to a quasi-brittle fracture mode,10 translates into a kink in 
the � vs. v curve at v = vmicrocrack (Fig. 5A).

The mechanisms underlying the formation of the microcracks at high speeds remain largely unsolved. We used atomic 
force microscopy (AFM) to search for traces left by these mechanisms on the fracture surfaces. These AFM images revealed 
the presence of a spherical void of diameter ∼ 200 nm right at the initiation point of each microcrack [65]. This suggests 
a two-stage process: A spherical cavity first forms at a given point, e.g., due to the plastic and/or viscous flow within the 
highly stressed region of the FPZ. Then, a penny-shape microcrack pops up from it.

The need to exceed a finite critical speed vmicrocrack to activate these microcracking mechanisms and the fact that the 
conics density increases with v are not so easy to interpret. They cannot be explained by postulating the presence of random 
defects (weak points) that would turn into microcracks when the local stress (or strain) exceeds a given threshold value. 
Indeed, due to the singular nature of the stress field (Eq. (9)), such a criterion would end up being fulfilled for any defect 
encountered by the propagating crack and the conics density would be independent of the crack speed. We hence proposed 
[61] that two conditions should be fulfilled to make a microcrack pop-up:

– the stress at the considered defect is larger than a threshold value;
– the considered defect is sufficiently far from the main crack front to allow sufficient time for the nucleated microcrack 

to reach maturity.

Then, K should be larger than a finite threshold value to activate microcracking (see equation (9)), which imposes a finite 
threshold velocity vmicrocrack. It also makes the conics density increase with K , and hence with v . The rationalization of the 
above conditions was found [61] to reproduce the ρ vs. v curve shown in Fig. 5C fairly well.

As a final remark to this section, let us point out the fact that microcracks forming ahead of a dynamically growing crack 
have been evidenced in a variety of materials: in most brittle polymers [2,66], in rocks [67], in oxide glasses [68], in some 
nanophase ceramics and nanocomposites [69], in metallic glasses [70], etc. This leads us to argue that this switch from a 
nominally-brittle to a quasi-brittle mode at high speed is a generic mechanism in the dynamic fracture of disordered solids.

4.2. From local front velocity to apparent macroscopic speed of cracks

The careful analysis of the PMMA fracture surfaces has also permitted us to uncover the selection of fracture speed in this 
quasi-brittle regime [71]. Indeed, from the conics pattern, it has been possible to determine the nucleation center of each 
microcrack, the time at which they nucleated, and the speed at which they grew (Fig. 6A and [62] for details). This allowed 
us to reconstruct the complete spatiotemporal microcracking dynamics underlying fast fracture, with micrometer/nanosec-
ond resolution (Fig. 6B → B′′). These reconstructions demonstrate that the main front does not progress regularly, but by 
successive jumps of finite length. Those correspond to the coalescence events of the main front with a microcrack grow-
ing ahead. This mechanism makes the effective velocity measured at the macroscopic scale, v , larger than the “true” local 
propagating speed cm of the individual (micro)crack fronts. The ratio between the two increases with microcrack density ρ
(Figs. 6C and D). From the knowledge of v and ρ , it has been possible [71] to infer the value of cm in all our experiments 
and, surprisingly, it has been found to be constant and equal to a fairly low value: cm = 210 m/s = 0.24cR (Fig. 6E). In other 
words, the fairly large velocities observed above vmicrocrack in PMMA (Fig. 5A) are not to be attributed to that of a crack 
line described by LEFM and Eq. (11). They result from a collective effect yielded by the coalescence of microcracks with 
each other within the FPZ. This boost mechanism demonstrated here on PMMA likely arises in all the situations involving 
propagation-triggered microcracks. It may also be at play in the intersonic shear rupture and earthquakes [72]. It is finally 
worth to note that a similar mechanism has been recently reported on simulations of ductile fracture [73].

The analysis of the � vs. v curve in the low speed regime (v ≤ vmicrocrack in Fig. 5A) has permitted to uncover the origin 
of the limiting propagating speed cm in PMMA [62]. Once recasted into a � vs. G curve, it reveals that � is proportional 
to G , which is also proportional to the FPZ size.11 As a consequence, it is not the energy dissipated per unit surface which 
is constant here, but the energy dissipated per unit volume of FPZ. The rationalization of this statement has provided [62] a 
relation �(c) (c here refers to the true local speed of individual (micro)crack fronts). This relation yields a divergence of �
at a finite value which was related [62] to some of the material constants, namely the dilatational and Rayleigh wave speed, 
the Young modulus, the energy dissipated per unit volume within the FPZ, and the yield stress: Numerical application of 
the so-obtained formula gives cm = 204 m/s in PMMA.

4.3. Microbranching instabilities at high speed

Another element of complexity arises at even higher speed: in many materials including PMMA, the crack front splits 
into a succession of secondary cracks known as microbranches when the crack speed v gets larger than a second critical 

10 Brittle fracture can be of two types: Nominally brittle and driven by the propagation of a single crack or quasi-brittle and involving the formation of 
multiple microcracks.
11 Calling ξ the process zone size and σY the yield stress of the considered material (the stress above which the rheology stops being elastic and the 

dissipative processes are activated), equation 8 predicts ξ = K 2/2πσ 2
Y . Using Irwin’s relation (7), one gets ξ = EG/2πσ 2

Y .
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Fig. 6. From local front speed within FPZ to apparent speed at the continuum scale. Data are for PMMA. Panel A : reconstruction scheme of the microscale 
damage dynamics from the post-mortem fracture surfaces. The bright white regions provide the nucleation centers (red ×). Red dots sketch the successive 
positions of two growing microcracks, denoted by (1) and (2). The crossing points give rise to the green branch of the conic mark. The fit of this branch 
permits to infer both the ratio c2/c1 of the microcrack speeds and the time interval t2 − t1 between the two nucleation events. From the nucleation 
positions, the speed ratio c j/ci and the inter-nucleation times t j − ti , it is possible to reconstruct the time-space dynamics of microcracking events, within 
nanosecond and micrometer resolution. Panels B → B′′ show such a reconstructed sequence. The blue part is the uncracked material, and the grey one is 
the cracked part. The different gray levels illustrate the fact that the fracture surface does not result from the propagation of the main crack front, but is the 
sum of the surfaces created by each microcrack. A different gray level has been randomly assigned to each of them. The analysis of these reconstructions 
has shown that all microcracks grow with the same velocity cm. Panel C: evolution of the mean crack front as a function of cm × t for different values 
of microcrack density. The slope of these curves provides the ratio between the apparent macroscale crack speed v and the true local speed cm of the 
propagating (micro)crack front. This boosting factor is plotted as a function of microcrack density in panel D. Panel E: deduced variation of cm with ρ . The 
horizontal red line indicated the mean value cm = 217 m/s = 0.24 cR (adapted from [62,71]).

velocity vmicrobranch ∼ 0.4 cR [3,74]. These secondary cracks are short-lived; they rapidly stop and remain confined along 
the main crack. Furthermore, they do not extend over the entire thickness of the specimen but are spatially localized. This 
microbranching instability has two consequences of importance: it leads to rough fracture surfaces, and � stops being a 
function of v only [75].

Careful measurements [75,76] of the normalized value vmicrobranch/cR reveal that:

– it slightly depends on the considered material (e.g., 0.36 in PMMA and 0.42 in oxide glasses [75]);
– in polyacrylamide gels, it increases (roughly linearly) with the crack acceleration v̇ [76];
– in polyacrylamide gels, it decreases with the specimen thickness [76].

These observations underly [76] the presence of an activation mechanism: for a crack speed above a critical value 0.4 cR, 
the random perturbations intrinsic to the system give rise to a microbranch with a finite probability; this activation is all 
the more likely as the time left to the process is large (i.e. v̇ is small), and the number of potential activation sites is large 
(i.e. the thickness of the specimen is large). The experiments reported in the previous section have also shown [71] that in 
PMMA, vmicrobranch coincides with the moment when the microcrack density is large enough so that the microcracks can 
no longer pop up one by one, but are formed by cascades. Very recent experiments in gels [77] also suggest to relate this 
instability to an oscillatory instability observed at a much higher speed [78], itself related to the non-linear elasticity of the 
gel [79]. In a nutshell, despite significant advances on this problem, the origin of this microbranching instability remains 
largely unsolved.

5. Conclusion and open challenges

Stress enhancement at crack tips and so-induced sensibility to microscale defects make the problem of brittle fracture 
difficult to tackle. In this article, we first briefly reviewed the strategy implemented by the standard continuum fracture 
theory – linear elastic fracture mechanics (LEFM) – to bypass the problem. By reducing the question of how a solid breaks 
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to that of how a preexisting crack propagates into the solid, it provides a coherent and powerful framework based on linear 
elasticity to describe when and how fast cracking occurs in a quantitative and predictable manner. Still and despite its 
success, LEFM fails in explaining the highly intermittent dynamics sometimes observed in the slow fracturing regime of 
heterogeneous materials. It also falls short in capturing the anomalously high speeds observed in the dynamic fracture of 
amorphous materials.

The latter has been studied via dedicated experiments in PMMA, the specificity of which have been to give access to 
both the continuum-level scale dynamics (via experimental mechanics tools) and the microscale one (via fractographic re-
construction). Beyond a given velocity, the propagation of the crack is accompanied by a multitude of microcracks forming 
ahead of the main front. And the coalescence of these microcracks with the main front boosts the apparent fracture speed 
when measured at the macroscopic scale! As briefly discussed in section 4.1, the mechanisms underpinning the formation 
of these microcracks are only partially understood. A major difficulty here is that LEFM allows describing the growth of a 
preexisting crack, but not the initiation of a crack or a microcrack. The fast development of Finite Fracture Mechanics (FFM), 
initiated by D. Leguillon at the beginning of the 2000’s [80,81], appears promising in this field. Indeed, this framework 
extends the classical approach of fracture mechanics, and makes it able to tackle the problem of crack initiation by com-
pleting the Griffith’s energy based criterion for fracture with a second criterion comparing the tensile stress with the tensile 
strength. FFM may offer the proper tools to understand and subsequently model the conditions for microcrack formation in 
this dynamic fracture regime.

Back to the crackling dynamics observed in slow fracture, the past ten years have seen the emergence of concepts 
from non-linear physics, which, combined with continuum fracture mechanics and elasticity framework, offer a promising 
framework to address the problem: the depinning interface approach, presented in section 3.2, has succeeded to capture, at 
least qualitatively, the statistics of the dynamics fluctuations. It also provides rationalized tools to predict when crackling will 
occur. Note that the agreement between theory and experimental observations remains qualitative only and the exponent 
values, in particular, are different. This is likely due to the fact that current depinning approaches consider specimens 
of infinite thickness. The availability of kernels (term J in Eq. (15)) taking into account explicitly specimen thickness is 
currently missing.

As briefly discussed in section section 4.3, microbranching instabilities develop at high speeds and make the crack dy-
namics highly fluctuating also in the dynamic fracture regime; then, it cannot be described via LEFM anymore. A promising 
avenue to bypass the problem is to develop stochastic equations of motion based on interface growth models, along the 
lines applied successfully in the slow fracture regime. A major bottleneck here is to capture correctly the dynamic stress 
transfers through acoustic waves, occurring as a dynamically growing crack interacts with the material disorder [82–85]. The 
availability of analytical solutions for weakly distorted cracks within the full 3D elastodynamics framework [86,87] suggests 
promising developments in the not-too-distant future (see [88–90] for past theoretical attempts in this context).

In the form presented in sections 3.2 and 3.3, the depinning approach of fracture suffers from several limitations that, 
finally, deserve to be commented. First, it incorporates the effect of material inhomogeneities only on the fracture properties; 
the role played by a contrast in term of Young’s modulus, for instance, is ignored. This prevents the approach to be applied 
to composite materials, for instance, when hard particles or fibers are embedded in a softer matrix. Second, it was derived 
within the isotropic linear elasticity framework and, as such, cannot describe laminar materials. Third, it presupposes the 
existence of a well-defined upper limit for the size of the material inhomogeneities, much smaller than the macroscopic 
dimensions involved in the problem. As such, the depinning framework cannot address the complex hierarchical structures 
encountered in biological systems or bio-inspired ones, such as bones for instance. The proof of concept and the promises 
offered by these statistical approaches of fracture are now established. A formidable challenge for the future will be to 
overcome the above limitations – and most likely others to discover – and then make these approaches based on statistical 
physics applicable to the high-performance materials and complex structures of engineering and technological interest.
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