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In the present paper, we propose a new frequency-shift keying continuous phase 
modulation (FSK–CPM) scheme having, by essence, the interesting feature of single-
sideband (SSB) spectrum providing a very compact frequency occupation. First, the original 
principle, inspired from quantum physics (levitons), is presented. Besides, we address 
the problem of low-complexity coherent detection of this new waveform, based on 
orthonormal wave functions used to perform matched filtering for efficient demodulation. 
Consequently, this shows that the proposed modulation can operate using existing digital 
communication technology, since only well-known operations are performed (e.g., filtering, 
integration). This SSB property can be exploited to allow large bit rates transmissions at 
low carrier frequency without caring about image frequency degradation effects typical of 
ordinary double-sideband signals.
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r é s u m é

Dans cet article, nous présentons un schéma de modulation à phase continue basé sur 
une nouvelle forme d’onde, ayant la propriété de générer directement un signal avec un 
spectre à bande latérale unique (la bande inférieure ou supérieure à la fréquence porteuse). 
Tout d’abord, le principe de base de cette nouvelle forme d’onde, issue de la physique 
quantique, est présenté. Ensuite, une solution au problème de détection cohérente à faible 
complexité a été dérivée, tout en démontrant que la modulation proposée peut fonctionner 
en utilisant une technologie de communication numérique existante, étant donné que 
seules des opérations bien connues sont effectuées (filtrage, intégration. . . ). Cette propriété 
de bande latérale unique peut être exploitée pour permettre des transmissions à grand 
débit à faible fréquence porteuse sans se soucier des effets d’interférence avec le spectre 
image, typiquement connus pour les signaux à double bande latérale.
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1. Introduction

Communicating with a far-away destination has always been a fundamental concern of mankind. However, not long ago, 
postal mail remained the only effective means able to perform this function, before the appearance of the telegraph and 
then the telephone, two major inventions that marked the beginning of the area of telecommunications. From the earliest 
developments of telephony and radio, the signals are adapted to the transmission channel by means of amplitude or/and 
phase modulation of a sinusoidal carrier wave. All of these modulation methods are characterized by two-sided signals, that 
is, a spectrum centered around the carrier frequency having frequency components below and above this carrier frequency. 
Since the lower band contains the same information as the upper band, one of the most trivial mean for optimizing the 
spectral occupancy is to keep only one of these two sides by using a bandpass filtering. The Hilbert transform proposed by 
Hartley in [1] is a simpler mean of suppressing one of the two sidebands, after generating the modulated signal. It consists 
in constructing, by using a wide-band phase shifter, the sum or difference of the in-phase and quadrature portion of the 
modulated signal, respectively, to preserve either the upper sideband or the lower sideband. A variant was proposed in [2]. 
In this paper, we present a new original waveform that directly generates a signal with a single sideband spectrum. By 
directly, we mean without any additional treatment, as described above.

This newly patented modulation is part of the Frequency Shift Keying (FSK) continuous phase modulation (CPM) family, 
known to be a good candidate to limit the transmitted signal distortion [3,4]. For instance, it generates constant envelope 
waveforms, which is particularly useful when employing nonlinear amplifiers. The key idea to generate directly a single-
sideband modulated signal is the use of a generic frequency pulse with a Lorentzian shape. The Lorentzian shape provides 
specific properties to a wave, which were found and exploited in fundamental quantum physics for the on-demand injec-
tion of a single electron in a quantum conductor as a new excitation called a leviton. This proposed modulation is then 
suggested as a first application of a classical levitonics to digital transmissions based on CPM. Notwithstanding all these 
favorable aspects (power efficiency and single sideband transmission), alike current CPM schemes, the proposed modulation 
scheme, hereafter called Single SideBand Frequency Shift Keying (SSB–FSK), may suffer from implementation complexity. In 
this paper, we focus on a low-complexity coherent receiver originating from orthonormal wave-functions used to perform 
matched-filter detection.

This paper is organized as follows. The fundamental modulation principle derived from quantum physics is introduced 
in Section 2. In Section 3, we briefly describe the system model. Then, a low complexity coherent receiver is detailed in 
Section 4. Numerical results are reported in Section 5. Finally, in Section 6, we draw some conclusions and define some 
perspectives.

2. The origin of SSB–FSK modulation: levitons from quantum physics

The ability to control individual electrons in an electronic conductor has been for a long time considered by the com-
munity of Quantum Physics as a hot topic. It has been widely investigated in order to pave the way for novel quantum 
technologies. The topic of on-demand injection of single electrons has been considered using several approaches [5–10]. 
Here, we consider the technique of voltage pulses applied on a contact to inject a charge in a conductor. The solution, 
which seems to be trivial, has been implicitly proposed in the theoretical work by Levitov et al [10]. When applying a 
short voltage pulse V (t) on a contact of a quantum conductor carrying a single electronic mode, an elementary current 
pulse I(t) = e2 V (t)/h0 is then generated, where e is the charge of an electron and h0 is the Planck constant. Adjusting the 
amplitude and duration of the pulse so as to generate the charge Q = ∫

I(t) dt = e, a single electron is then injected from 
the contact to the conductor. In general, the voltage pulse perturbs all the electrons of the conductor, resulting in a number 
of unwanted excitations in the form of electrons (holes) with energy respectively above (below) the Fermi energy of the 
conductor. Surprisingly, it has been found that a remarkably particular shape of voltage pulses, a Lorentzian and only that 
shape, excites just a single electron above the Fermi energy. With Lorentzian voltage pulses, a single electron can be injected 
in the form of an exceptional minimal excitation state called a leviton, where the unwanted excitations are absent. Levitons 
have been recently produced and observed in [8] using a nanoscale circuit consisting of two electrodes connected by a small 
conductor. Dubois et al. applied Lorentzian-shaped voltage pulses on one electrode to generate levitons that travel through 
the conductor to the other electrode [8,9], demonstrating the fundamental prediction of [10]. This major breakthrough has 
also been exploited to perform the analog of a Hong–Ou–Mandel experiment known from optics, where electrons can be 
viewed as flying qubits propagating in a ballistic conductor [8]. When a voltage pulse is applied, the phase of electronic 
quantum waves is modulated as ϕ(t) = (e/h0) 

∫ t
−∞ V (t′) dt′ . The key principle behind the remarkable levitonic quantum 

state is that, for a Lorentzian pulse, the electron energy spectrum resulting from the phase modulation (their power spec-
trum density in frequency) becomes single sideband. Hence was born the idea of exploiting this original spectral property 
not only to quantum electronic waves, but also to all types of waves, even classical: electromagnetic, acoustic, etc. [11].
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Fig. 1. Generated signals with SSB–FSK modulation of the bit sequence {0,0,1,1,1,1,0,1}: (a) Phase derivative (Lorentzian pulses), (b) Evolution of the 
phase (cumulative phase summing 2μak arctan

(
t−kTs

w

)
).

3. System model

The signal carrying the binary information is the constant envelope signal given by

s(t) =
√

Es

Ts
ej(2π fct+ϕ(t))

=
√

Es

Ts
e

j
(

2π fct+h
∑+∞

k=−∞ akϕ0(t−kTs))
) (1)

where Es is the average symbol energy, Ts is the duration of information symbol ak (taking values in the alphabet {0, 1}), 
fc is the carrier frequency, h is an integer modulation index ensuring a 2π phase increment, ϕ(t) is the phase function and 
ϕ0(t) is the elementary Levitonic phase-shift function. To start, we consider frequency pulses truncated to a length L for 
further ease in demodulation. They are given by

ϕ0(t) = 2μ(L)arctan

(
t

w

)
(2)

where μ(L) is a fixed correcting factor that will be defined later.
The derivative of the phase-shift function, g(t), which consists in the frequency pulse, is zero everywhere except in the 

interval [−LTs/2, +LTs/2], where it is a Lorentzian given by

g(t) = dϕ0(t)

dt
= μ

2w

t2 + w2
, t ∈ [−LTs/2, LTs/2]

t∫
−t

g(τ )dτ = ϕ0(LTs/2) − ϕ0(−LTs/2) = 2π, t ≥ LTs/2
(3)

In the sinusoidal signal s(t), we perform a phase coding where the k-th symbol of duration Ts contributes to the total 
phase ϕ(t) of the carrier by the quantity 2μak arctan

(
t−kTs

w

)
, where w is the pulse width, a tuning parameter impacting 

greatly the performance, particularly the spectral efficiency of the transmitted signal s(t). In other words, we associate a 
Lorentzian pulse with a phase increment equal to 2hπ to symbol 1 and no pulse to symbol 0. The derivative of the total 
phase is then a sum of Lorentzians 2μw

(t−kTs)2+w2 , centered on kTs and weighted by the symbols ak and truncated to the 
length L. Note that if the modulation index h is a positive integer, the spectrum is located only in the upper band with 
respect to fc. The modulation index h may also be a negative integer; in this case, we will obtain the mirror spectrum with 
respect to fc and no component in this upper band. From this observation, no antipodal coding is possible at the symbol 
level. Otherwise, the spectrum will return perfectly bilaterally centered around fc. The components below fc are represent-
ing the contribution of the bits bk = 0 encoded in ak = −1, and the components above fc are representing the contribution 
of the bits bk = 1 coded in ak = 1. Fig. 1.(a) shows the phase derivative signal for the bit sequence {0,0,1,1,1,1,0,1}; The 
phase is then integrated to generate the signal of the Fig. 1.(b). This latter shows the continuity of this phase.

Furthermore, given that the Lorentzian pulse decreases very slowly (a 2π phase increment is ensured for L = ∞), μ is 
a correcting factor introduced to keep a 2π phase increment when the frequency pulse g(t) is truncated to a finite L > 1
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Fig. 2. Length-4Ts frequency pulse: the Lorentzian pulse for different width values, w/Ts = 0.28,0.37,0.55.

symbol duration. This factor is defined as the ratio between the total phase increment without any truncation and the one 
obtained after Lorentzian truncation:

μ(L) = 2π∫ LTs/2
−LTs/2

2w
t2+w2 dt

= π

arctan
(

LTs
2w

) (4)

In Fig. 2, we illustrate the Lorentzian pulse for different width values w/Ts = 0.28, 0.37, 0.55. As g(t), the frequency 
pulse is partial response (with long length L > 1), so the SSB–FSK modulation exhibits inter-symbol interference (ISI), which 
is obviously expected and goes up with w . It is therefore imperative to choose a limited width w for Lorentzian pulses to 
reduce ISI effects on bit error rate (BER) performance.

In order to evaluate the Bit Error Probability (BER) performance, we consider a point-to-point communication system 
over an additive white Gaussian noise (AWGN) channel. The power-limited input signal s (a long sequence of symbols) is
summed to the complex noise z ∼ CN (0, σ 2

0 ) resulting in the output y, which is defined, at time t , as

y(t) = s(t) + z(t), (5)

with σ 2
0 the Gaussian noise variance.

4. Low-complexity coherent detector

In this section, a coherent symbol-by-symbol detection method is presented. This method exploits orthogonality between 
signals relative to bits 0 and 1. For Matched Filter (MF) based detector, the decision on one symbol is made based on 
the observation of one received symbol. The memory of CPM signals introduced by the phase continuity can be used to 
improve BER performance of MF-based detector by making decision on one symbol based on a whole observation window 
(a sequence of received symbols); this demodulation method is called Average Matched Filter (AMF)-based detection.

4.1. Orthonormal wave-functions

Using ϕ0(t), a non-truncated Levitonic pulse given in (2) for μ = 1, we define uh̃(t), h̃ = 0, 1, 2, ..., N , from sh(t) = ejhφ0(t) , 
a set of orthonormal wave-functions, as

uh̃(t) = 1√
2π

ejh̃ϕ0(t)

t − jw

= 1√
2π

(t + jw)h̃−1

(t − jw)h̃

(6)

The set of {uh̃(t)} for all integer h verifies the following orthogonal property:

+∞∫
u ∗

h̃
(t)uh̃′(t)dt = δh̃,h̃′ (7)
−∞
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Fig. 3. Block diagram of the MF-based detector.

Based on this interesting observation and remarking that dφ0
dt = 1

(t−jw)∗(t−jw)
, we can derive the following equation, which 

will be central to enable matched-filter detection:

1

2π

+∞∫
−∞

s ∗
h̃

(t)sh̃′(t)
dϕ0(t)

dt
dt = δh̃,h̃′ (8)

where dϕ0(t)
dt is a weighting function and sh̃(t) is an SSB–FSK modulated signal, which can be rewritten as

sh̃(t) = ejh̃ϕ0(t) =
(

t + jw

t − jw

)h

(9)

Furthermore, it is important to notice that even when considering the integration function over a finite period Ts, the 
orthogonality property, being no longer exact is still quantitatively satisfactorily verified:

1

2π

+Ts/2∫
−Ts/2

s ∗
h̃

(t)sh̃′(t)
dϕ0(t)

dt
dt 	 δh̃,h̃′ (10)

4.2. Matched-filter-based detector

The block diagram of the proposed MF-based detector is shown in Fig. 3. For binary transmission, matched filtering 
is inspired from the integration function defined in (10), for h̃ = hak , where ak = 0, 1. The matched filtering exploits the 
orthogonality between wave functions of SSB–FSK signals relative to symbols 0 and 1. The detection of the transmitted 
symbol, using the received signal after the carrier demodulation ỹ(t), is based on the computation of the following correla-
tion functions for h̃ = 0, h

�h̃(t) =

∣∣∣∣∣∣∣
t+Ts/2∫

t−Ts/2

ỹ(t)s ∗
h̃

(t)
dϕ0(t)

dt
dt

∣∣∣∣∣∣∣
2

(11)

Rewriting the correlation functions, we obtain

�h̃(t) =
⎛
⎜⎝

t+Ts/2∫
t−Ts/2

Rh̃(t)dt

⎞
⎟⎠

2

+
⎛
⎜⎝

t+Ts/2∫
t−Ts/2

Ih̃(t)dt

⎞
⎟⎠

2

(12)

where

Rh̃(t) =
{[

cosϕ(t) cos
(

h̃ϕ0(t)
)

+ sinϕ(t) sin
(

h̃ϕ0(t)
)] dϕ0(t))

}
(13)
dt
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Fig. 4. Block diagram of the AMF-based detector.

and

Ih̃(t) =
{[

sinϕ(t) cos
(

h̃ϕ0(t)
)

− cosϕ(t) sin
(

h̃ϕ0(t)
)] dϕ0(t))

dt

}
(14)

Finally, the correlation functions are then used in order to establish the likelihood ratio test

l = �0

�h

>0

<1
1 (15)

4.3. Average matched-filter-based detector

Although its simplicity, the main drawback of MF-based detector is the inter-symbol interference (ISI), which is not taken 
into account. The AMF-based detector is then proposed to take advantage of the memory specific to CPM signals. The block 
diagram of the proposed AMF-based detector is shown in Fig. 4. The key idea consists in observing n symbols of an SSB–FSK 
waveform and producing a decision on one symbol. As the detector is coherent, the decision is made on the first symbol by 
observing the waveform during this symbol period and n − 1 additional symbol periods.

The SSB–FSK modulated signal during the observation interval is denoted by s(t, al, Ak), where Ak represents a particular 
symbol sequence, i.e. the n − 1-tuple a2,a3, ...,an . The detection problem is then to observe s(t, al, Ak) distorted by noise 
and produce a decision on a1 (either 0 or 1).

Using the principles described in Sub-section 4.2 for symbol-by-symbol filtering and carrying out the integration over 
the nTs observation intervals, the likelihood ratio becomes

l =
max

{∣∣∣∫ Ts/2
−Ts/2 y(t)s∗(t,0, A1)

dϕ0(t)
dt dt

∣∣∣2
, ...,

∣∣∣∫ Ts/2
−Ts/2 y(t)s∗(t,0, Am)

dϕ0(t)
dt dt

∣∣∣2
}

max

{∣∣∣∫ Ts/2
−Ts/2 y(t)s∗(t,1, A1)

dϕ0(t)
dt dt

∣∣∣2
, ...,

∣∣∣∫ Ts/2
−Ts/2 y(t)s∗(t,1, Am)

dϕ0(t)
dt dt

∣∣∣2
} (16)

In order to compute this likelihood ratio, the receiver correlates the received signal with each of the m = 2n−1 possible 
transmitted signals followed by the symbol ak = 1. A similar operation of correlation with the m possible transmitted 
signals followed by the symbol ak = 0 is performed. Using the AMF-based detector improves the BER performance with a 
reasonable increase in complexity for reduced observation intervals.

5. Numerical results and comparisons

5.1. SSB Spectral property

In order to illustrate the single-sideband spectral property, we plot in Fig. 5 the power spectral density (PSD) of the 
SSB–FSK modulated signal averaged over 10 spectra corresponding to 10 streams of 2048 bits each. The analytical derivation 
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Fig. 5. Comparison of the power spectral densities: in blue for an SSB–FSK signal, in red for a GMSK signal, for the same carrier frequency fc = 10/Ts .

Fig. 6. Power spectral density of an SSB–FSK signal with 95% of the phase increment of a pure Lorentzian.

of this PSD has been detailed in [12]. For this illustration, non-truncated Lorentzian pulses of width w = 0.37 Ts are used, i.e. 
numerically, we choose a large enough L value to guarantee a phase increment equal to 2π (what corresponds to μ = 1). The 
frequencies are in units of 1/Ts. The carrier frequency is fc = 10/Ts. In this example, we choose h = 1, a positive integer; 
as a result all the spectral components of the signal are located in the upper band with respect to fc. For comparison, we 
also present the PSD of the GMSK modulated signal.

Comparing the PSDs of the SSB–FSK and the GMSK modulated signal, we can note that the PSD of the SSB–FSK is indeed 
unilateral and is no more symmetrical with respect to the carrier frequency fc as for the GMSK case. Almost all of the 
power is concentrated in a 1/Ts frequency band and the power spectrum decreases steeply in steps of 20 dB, spaced by 
frequential periods of 1/Ts. This exponential decrease is equal to e−4πw f , which is equivalent to 1/100 in linear scale and 
to 20 dB in logarithmic scale for w/Ts = 0.37. This power exponential decay (e−4πw f ) of the SSB–FSK can be tuned by the 
Lorentzian width w . A trade-off on the value of w has to be found in order to balance, on one side, the ISI reduction by 
limiting w and to ensure, on the other side, a fast power decay outside the useful band by increasing w .

Furthermore, spikes at frequencies fc, fc + 1/Ts, fc + 2/Ts, etc., are also present in the PSD illustration of the SSB–FSK. 
Their presence is an immediate consequence of the 2π phase increment, which is well known in conventional phase mod-
ulation techniques [13]. These spectral spikes can be removed by deviating a little from this critical value, at the cost of a 
reappearance of very low-amplitude components in the lower band. The PSD of the SSB–FSK with a phase increment equal 
to 95% of 2π is represented in Fig. 6. The configuration of the signals considered in Fig. 5 has been maintained for this 
illustration. The major difference is the clear reduction of the spectral spikes. However, its spectral occupation has slightly 
increased.



H. Farès et al. / C. R. Physique 19 (2018) 54–63 61
Table 1
Spectral occupation and correcting factor μ for different values of L.

SSB–FSK

L ∞ 12 4 2

μ 1 1.04 1.13 1.29
BW 1 1.08 1.26 1.53

Fig. 7. Eye diagram of SSB–FSK modulated using Lorentzian pulses truncated to L symbol periods: (a) L = 12, (b) L = 4.

Table 1 provides the effect of the Lorentzian truncation on the PSD of the SSB–FSK modulated signal. In this table, we 
present the spectral occupation of the modulated signal for several values of L = ∞, 12, 4, 2.

This spectral occupation, denoted by BW , is expressed in terms of normalized frequency band (1/Ts) occupied by 98% 
of the signal power transmitted for w = 0.37Ts. For comparison, we also give the spectral occupation of a GMSK signal. 
For instance, for BT = 0.3, BW = 0.86. We can clearly note through these results that, for non-truncated Lorentzian pulses, 
the spectral occupation of the SSB–FSK modulation remains close to those reached by the GMSK modulation. However, the 
more truncated the waveform is, the more spectral occupation increases.

5.2. Bit Error Rate performance

This sub-section investigates the performance of the SSB–FSK in terms of BER over an AWGN channel. As this particular 
performance metric is very sensitive to the ISI level, we first evaluate the impact of the Lorentzian pulse length on the ISI. 
To do so, we provide in Fig. 7 the eye diagram of the SSB–FSK signal for L = 12 and 4. We clearly observe much more 
interference between symbols for a truncation at L = 12 compared to L = 4. As a result, the demodulation of the signal 
passing through a noisy channel in the presence of the ISI level for L = 12 will be considerably less efficient compared to 
L = 4. From Table 1 and Fig. 7, a truncation of the Lorentzian at L = 4 periods seems to be a good compromise between the 
preservation of the spectral occupation (by conserving the SSB property) and the reduction of the ISI level.

In Fig. 8, we plot the BER curves of SSB–FSK modulation using MF-based detector for several Lorentzian pulse length 
values L = 100, 4, 2 as a function of Eb/N0, the bit-energy-to-noise ratio. This quantifies the effect of truncation on the 
performance of the proposed demodulation scheme and thus its immunity against ISI. It is a non-surprising result that 
SSB–FSK modulation with the most severe truncation of the Lorentzian pulse is the most efficient, since it is subject to the 
lowest ISI level. A bound on the bit error probability is given in order to illustrate the potential of this new modulation. 
This performance bound is described using error events and minimum distance simulation [14,15]. In order to simulate the 
minimum distance relative to this modulation, we assume the following error event: we transmit the symbol sequence aTx

and we receive the symbol sequence aRx, defined both as

aTx = (...,ae−1,ae,ae+1)

aRx = (...,ae−1, āe,ae+1)
(17)

The phases of SSB–PSK modulated signals relative to both aTx and aRx information sequences diverge at position e and 
converge again due to the 2π phase increment. Consequently, the minimum Euclidean distance dmin is then relative to a
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Fig. 8. BER performance of MF-based detector for several truncation scenarios L = 100,4,2.

Fig. 9. BER performance of AMF-based detector for several observation interval values n = 2,3,4.

single-symbol error event. The probability of bit error is then bounded as

Pb ≤ 1

2
Q

(√
d2

min
Eb

N0

)
(18)

where Q (x) = 1√
2π

∫ ∞
x e−u2/2 du.

Furthermore, the BER curves of SSB–FSK modulation using an AMF-based detector for several observation interval values 
are given in Fig. 9 for L = 4 and are compared to the BER curve using an MF-based detector. For n = 2, a gain of almost 
2 dB at BER = 10−3 is offered with respect to the BER performance of the MF-based detector. Smaller gains are observed 
for larger values of n (n = 3, 4). The best performance of the AMF-based detector is given for n = L. However, even if the 
AMF-based detector is performing much better than the MF-based detector, this demodulation scheme is not the optimal 
one and it is still around 1 dB above the optimal performance.

Finally, even if SSB–FSK offers a lower BER performance compared to GMSK due to a higher amount of ISI caused by 
a significant overlap between Lorentzian pulses, the proposed waveform may be preferred in some specific transmission 
contexts. For instance, the total absence of lower sideband allows one to operate with a symbol rate 1/Ts much larger 
than the carrier frequency fc, typically 4 fc, without deterioration of the BER, as there is no interference with the mirror 
spectrum.
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6. Conclusions

In this paper, we present a new single-sideband waveform. We explain the eve of this idea derived from quantum physics. 
Moreover, we compare its power spectral density with that obtained from a conventional continuous phase modulation 
(GMSK) widely used in transmission contexts that can be targeted by this new proposal. Being a partial response, like the 
GMSK, this waveform exhibits inter-symbol interference. A tradeoff between spectral occupation and demodulation efficiency 
in the presence of noise is then fixed. Two different demodulation schemes have been developed, and simulation results in 
terms of BER have been given in order to evaluate their potential. Since none of them achieves optimal performance, future 
work will focus on the Viterbi-based demodulation scheme using pulse amplitude modulation (PAM) decomposition. This is 
not straightforward since the proposed SSB–FSK scheme has an integer modulation index ensuring a 2π phase increment.
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