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Reflectance spectroscopy is a powerful non-invasive technique for determining the material 
composition of historical polychromies, since the measurement is fast, simple, and 
contactless. However, reflectance spectra of complex color mixtures can sometimes be 
hard to interpret from a compositional point of view. In these cases, theoretical optical 
simulations can provide useful additional data. The main issue is the choice of the optical 
model that must be adapted to the measurement protocol and the material structure of 
the coloring layer, this latter being generally unknown. Simple models based on analytical 
formulas are preferred, as they can be easily inversed to deduce the optical and structural 
properties of the materials from the measured spectral reflectance of the object. In this 
paper, we address this issue to investigate the material composition of the colors of the 
Codex Borbonicus, a 16th-century Mesoamerican manuscript. Two models dedicated to 
two different types of material structures are presented: the Kubelka–Munk model with 
Saunderson correction, suitable for one homogenous layer, and the Clapper–Yule model 
used for continuous colorant layer, suitable when a weakly scattering paint is on top of 
a diffusing support. The results of the simulation provide new insights into the way the 
coloring materials were combined in the document, either as mechanical mixture before 
application or as superimposition.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

La spectroscopie de réflexion diffuse est une technique non invasive très pratique pour 
l’étude des polychromies historiques, puisque sa mise œuvre est rapide, simple et sans 
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contact. Toutefois, les spectres de réflexion de mélanges colorés complexes peuvent 
parfois être difficiles à interpréter d’un point de vue compositionnel. Dans ces cas, des 
simulations optiques théoriques peuvent fournir des données supplémentaires pertinentes. 
La problématique principale concerne le choix du modèle optique, qui doit être adapté 
au protocole de mesure et à la structure matérielle (généralement inconnue) des couches 
colorées étudiées. Les modèles simples basés sur des formules analytiques sont préférés, 
puisqu’ils peuvent facilement être inversés pour déduire les propriétés optiques et la 
structure des matériaux à partir de leur réflectance spectrale. Dans cet article, cette 
problématique est abordée pour l’étude de la composition des peintures du Codex 
Borbonicus, un manuscrit mésoaméricain du XVIe siècle. Deux modèles sont appliqués 
pour deux types de structure matérielle : le modèle de Kubelka–Munk avec la correction 
de Saunderson, adapté à une couche colorée homogène, et le modèle de Clapper–Yule 
pour des couches continues de colorants, adapté à une peinture faiblement diffusante 
superposée à un support diffusant. Les simulations apportent une nouvelle compréhension 
quant à la façon dont les matériaux colorants ont été associés dans le document, soit par 
mélange mécanique avant application, soit par superposition.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Diffuse reflectance spectroscopy in the visible range is a common analytical technique for the characterization of coloring 
materials in the cultural heritage domain. Its light weight instrumentation is easy to move in museums or archaeological 
sites, it only requires an exposure of the studied object to a low-intensity halogen light, and each spectral acquisition only 
takes a few seconds. Most coloring materials have wide absorption bands in the visible range, and some of them exhibit 
unique absorption specificities that help their identification. For example, insect derived anthraquinonic red lakes present 
local absorption maxima at 495, 525, and 560 nm [1]. Hence, when encountering pure compounds in a work of art, the 
interpretation of the spectra is generally possible and facilitated by comparison with spectral databases [2–7]. However, 
when pigments are present in mixtures, the resulting spectra are non-linear combinations of the spectral contribution of 
the different compounds. In these cases, the “spectral signature” of each compound (i.e. the position and the shape of the 
absorption edge) is altered. As a result, it is almost impossible to characterize the complex material composition unless 
additional data is found.

Diffuse reflectance spectroscopy can be of interest to investigate the paint composition by comparing the measured spec-
tra with simulations with optical models for plausible coloring material associations. During the study of a polychromatic 
object, different coloring preparations can be characterized on different colored areas (e.g., blue or yellow). It is plausible 
that the same “primary” color preparations are combined to create tone variations or other colors (e.g., green) elsewhere 
on the same object. One can get confirmation of this hypothesis by combining, thanks to an appropriate model, the optical 
properties of the “primary” colorants deduced from the spectral reflectances measured on the corresponding areas (blue and 
yellow in the example given above), and see whether the obtained spectral reflectance matches or not the one measured on 
the area painted with the mixture (green area). From a cultural standpoint, the demonstration of these coloring materials 
associations is important for the study of ancient objects. In the example, a green can be obtained through the association 
of the yellow and blue that are used alone in the object, either as a mechanical mixture or as a superimposition. But other 
materials can also be used in both of these association modalities. Showing that this or that way of obtaining green was 
preferred in such or such culture could then be interpreted by art historians either in terms of esthetics, taboos, technical 
choices, access to resources, etc.

Simulating the spectral combination of coloring materials in the visible range is a widespread issue in color science, cov-
ering many research and industrial applications (pigment or dye formulation, printing [8], painting [9,10], . . . ). In general, 
the physical parameters (particle size, refractive index, layer thickness . . . ) of the pure materials are known, or at least mea-
surable, which facilitates the modeling of their absorption and scattering properties. In contrast, during the non-invasive 
characterization of a historical object, the chemical nature and the physical parameters of the coloring materials are un-
known, and it is not possible to sample them for any additional measurement. The only experimental data that are available 
are the spectral reflectances of the different areas of the object, and hopefully the ones of the underlying substrate in areas 
when it is uncovered. One should also consider that these historical materials are generally heterogeneous at the macro-
and microscales, and organized in a stratified structure. A typical example in easel painting is a slightly absorbing varnish 
layer on top of an absorbing and scattering colored layer (pigment mixed with a binder), itself on top of a scattering prepa-
ration layer (white pigment with a binder). As a result, various case-specific hypotheses must be pronounced regarding the 
painting composition and structure. Since each of them implies a different way for light of being scattered, absorbed, and 
finally reflected according to the wavelength, each one is attributed to a specific optical model.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. Pages 8 (top) and 31 (bottom) of the Codex Borbonicus (details, © Bibliothèque de l’Assemblée nationale), along with corresponding representative 
diffuse spectral reflectances.

In this paper, two modalities of coloring material association (mechanical mixture and superimposition) are considered. 
Two appropriate spectral reflectance models are presented: the Kubelka–Munk model with Saunderson correction for the 
mechanical mixture of coloring materials, and the Clapper–Yule model for continuous layers for stacks of coloring layers 
(see [10–12] for previous works in this field). The hypotheses and simplification that their application requires are presented. 
As an illustration, the study of the coloring materials associations used in a 16th-century Mesoamerican manuscript is 
presented.

1.1. Coloring materials in the Codex Borbonicus

The Codex Borbonicus is a 16th-century Aztec manuscript whose coloring materials have been extensively studied with 
transportable and non-invasive spectroscopies [13–16]. Details of two pages of the manuscript are shown in Fig. 1, in which 
the colors of the different paints can be observed. Corresponding representative reflectance spectra recorded in these colors 
are also given.

Experiments. A FieldSpec4 “Hi-Resolution” fiber optic spectrometer (ASD) was used, which covers the visible and shortwave 
infrared range of the spectrum (350–2500 nm). It is equipped with a halogen light source that is held normal to the sample 
surface, while the reflected signal is collected at 45◦ from the normal of the surface. The spectral sampling is of 3 nm in 
the extended “visible” domain (350–1000 nm). The instrument has been modified in order to prevent any contact between 
the probe and the document. The distance between the sample and the collecting fiber (1 cm) was kept constant along the 
measurements. In these conditions, the analyzed surface is about 5 mm in diameter. Spectral reflectances are normalized 
with a white reference standard measured on a Spectralon® plate that is considered to reflect more than 99% of the light at 
each wavelength of the spectrum.

The spectral reflectances of the orange and dark-blue paints suggest that red and yellow are combined in the first case, 
and blue and grey-blue paints are combined in the second case. These hypotheses are based on the spectral reflectance 
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Fig. 2. Upward and downward flux through a sublayer of thickness dz.

shapes: the characteristic absorbance maxima of the red and grey-blue are also found in the orange and dark blue, respec-
tively. Thus, it is probable that the orange color has been produced by mixing the red material with a yellow one, but this is 
difficult to ascertain as yellow coloring materials do not generally exhibit any spectral characteristic. The first question that 
we want to answer through our simulations is as follows: once the spectral reflectances of areas painted with the red paint 
alone, the yellow paint alone, and the orange paint are measured, and their respective optical properties are deduced, do 
the optical properties of the orange coincide with the one that we can simulate for a mixture of the red and yellow paints?

In the case of the dark-blue color, a visual examination of the color non-homogeneities suggests that, in contrast with the 
orange color, it has not been obtained by mixing the colors before the application of the paint, but rather by superimposing 
a layer of grey-blue material on top of a layer of blue material. The second question that we address is the following: can 
the measured spectral reflectance of the dark-blue paint be matched by a simulated spectral reflectance for the substrate 
coated by a blue layer then by a grey-blue layer?

2. Theoretical approach

In order to simulate coloring materials associations in the visible range, the main idea is to take into account all in-
teractions between the materials composing the colored object and the visible light to which it is exposed. The Radiative 
Transfer Equation (RTE) describes the propagation of light in a heterogeneous and disordered medium, consisting of scatter-
ing and absorbing particles. The RTE stems from an energy balance and describes the spatial evolution of the light radiance 
at a given depth, in an elementary layer of the medium, in a given direction. In the case of scattering layers, illuminated by 
a perfectly diffuse illumination also called Lambertian source, or in the case of very high scattering media, the light inten-
sities inside and outside the media are independent of the direction of propagation, the expression of the RTE is reduced to 
two equations and leads to the Kubelka–Munk model.

2.1. The Kubelka–Munk model

This model was initially proposed by Kubelka and Munk in 1931 in order to predict the reflectance of paints, by consider-
ing them as perfectly isotropic scattering media [17]. In theory, this two-flux model is valid under Lambertian illumination. 
The Kubelka–Munk model describes, thanks to a simple differential equation system that can be analytically solved, the 
propagation of two fluxes flowing perpendicularly to the layer in opposite directions (Fig. 2). The variations of these fluxes 
are due to backscattering and absorption within the layer.

Let’s call K the linear absorption coefficient and S the linear scattering coefficient of the medium. By crossing a slice 
of material with thickness dz, the downward flux i(z) decreases because of absorption and backscattering by an amount 
proportional to the absorption and the scattering coefficients and to the layer thickness dz. However, it also increases due 
to the fraction of upward flux j(z) that is backscattered downwards, also proportional to the scattering coefficient and the 
layer thickness dz. We thus have:

di

dz
= −(K + S)i(z) + S j(z) (1)

The second equation of the differential system is obtained by analyzing the upward flux j(z) in a similar manner as 
for i(z), with different signs because of the opposite flux orientations:

d j

dz
= (K + S) j(z) − Si(z) (2)

By solving the system composed of Eqs. (1) and (2), we obtain the analytic expressions for the upward and downward 
fluxes:⎧⎪⎪⎨

⎪⎪⎩
i(z) = 1

b

[
j(0) − ai(0)

]
sinh(bSz) + i(0) cosh(bSz)

j(z) = 1

b

[
aj(0) − i(0)

]
sinh(bSz) + j(0) cosh(bSz)

(3)

with a = K+S and b = √
a2 − 1.
S
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Fig. 3. Saunderson correction at the air interface.

From Eqs. (3), we can derive the expressions for the reflectance ρh and the transmittance τh of a layer with any thick-
ness h. When the paint layer is illuminated only from the top side, we have therefore: j(h) = 0. Eqs. (3) thus yield:

ρh = j(0)

i(0)
= sinh(bSh)

b cosh(bSh) + a sinh(bSh)
(4)

and

τh = i(h)

i(0)
= b

b cosh(bSh) + asinh(bSh)
(5)

2.2. Remission function model

The paint layer is supposed to be homogeneous and infinitely thick, i.e. h → ∞. The limit for the reflectance ρh is:

ρ∞ = a − b = K + S

S
−

√(
K + S

S

)2

− 1 (6)

We can derive a relation between the ratio K/S , called the remission function, and the reflectance of the infinitely thick 
layer:

K

S
= (1 − ρ∞)2

2ρ∞
(7)

Notice that ρ∞ is the reflectance of the layer considered without interface between the air and the layer. It depends on the 
wavelength of light, and so does the remission function.

In the case of a mixture of paints, the remission function follows Duncan’s additivity law [9]: since the absorption 
coefficient (resp. scattering coefficient) of the mixture is the sum of the absorption coefficients (resp. scattering coefficients) 
of its primary components weighted by their respective proportions cp , the remission function for the mixture is given by(

K

S

)
Mix

=
∑

p cp K p∑
p cp S p

(8)

where K p and S p denote the absorption and scattering coefficients of the different components (labeled p) in the mixture, 
and cp their respective proportions, which satisfy:∑

p

cp = 1 (9)

2.3. Saunderson correction

The previous equations do not take into consideration the reflections of the light at the paint–air interface, which gen-
erally have significant influence on the reflectance of the sample even when the surface is rough [18]. The Saunderson 
correction permits to take these multiple reflections of light into account [19].

Let ρi(λ) denote the intrinsic reflectance of the colorant i given by the Kubelka–Munk model without interface with air, 
and Ri(λ) the effective reflectance of the sample, which is the one that we measure. We have [8]:

Ri(λ) = J0

I0
= rs + T inToutρi(λ)

1 − rdρi(λ)
(10)

where rs , T in, Tout, and rd (see Fig. 3) denote the reflectances and transmittances of the interface, which depend on its 
relative refractive index and on the angular distribution of light on its two faces. They can be calculated from the Fresnel 
formulae as follows, by considering the d:45◦ measurement geometry that we used. Hereinafter, the Fresnel reflectance and 
transmittance are denoted by R12(θ), resp. T12(θ) = 1 − R12(θ), when the light comes at angle θ from the medium of index 
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n1 (air), and as R21(θ), resp. T21(θ) = 1 − R21(θ), when it comes at angle θ from the medium of index n2 (paint). We 
usually assume that, for paints, papers and most polymers, n = 1.5. For unpolarized light, the reflectance R12(θ) is given by:

R12(θ) = 1

2

[(cos(θ) −
√

n2 − sin2(θ)

cos(θ) +
√

n2 − sin2(θ)

)2

+
(n cos(θ) −

√
n2 − sin2(θ)

n cos(θ) +
√

n2 − sin2(θ)

)2]
(11)

where n = n2/n1. R21(θ) is given by similar formula by replacing n with 1/n.
Although the paints are observed under diffuse light, a small amount of this light is specularly reflected by paints at the 

observation angle θ . This fraction is described by the parameter rs.
The parameter rd is the reflectance of the interface at the paint side, accounting for the diffuse light coming from the 

whole hemisphere. It is given by [20], [21]:

rd =
π
2∫

0

R21(θ) sin(2θ)dθ (12)

The parameter T in corresponds to the transmittance of the air interface for the incident light. Since this latter is assumed 
to be Lambertian, it accounts for the transmission of light over the hemisphere

T in =
π
2∫

0

T12(θ) sin(2θ)dθ = 1 −
π
2∫

0

R12(θ) sin(2θ)dθ (13)

The parameter Tout corresponds to the transmittance of the interface for the light exiting the material towards the 
detector.

Tout = 1 − R12(θ = 45◦)
n2

(14)

The term 1/n2 comes from the changing of geometrical extent due to the refraction through the interface.
The intrinsic reflectance ρi(λ) of the material can be deduced from the measured one Ri(λ), by inversing Eq. (10):

ρi(λ) = Ri(λ) − rs

rd(Ri(λ) − rs) + T inTout
(15)

Remission functions are then to be deduced from the intrinsic reflectance obtained.

2.4. The Clapper–Yule model

While the Kubelka–Munk model presented above assumes that the colored layer is a mixture of paint and paper substrate 
forming a homogenous scattering medium at the macroscopic scale, we propose here to consider an alternative configura-
tion where the paint, assumed to be weakly scattering, remains on top of the diffusing paper substrate. An optical model 
adapted to this configuration has been introduced by Williams and Clapper in 1953 in the context of gelatin photographs, 
where the paper is coated by a purely absorbing and non-scattering gelatin layer [22,23]. The same year, Clapper and Yule 
presented a similar model for halftone prints, where a discontinuous layer of ink is coated onto a paper substrate [24]. In 
the case where the ink layer is continuous (full coverage of the support), the Williams–Clapper and Clapper–Yule models are 
comparable: both consider the multiple reflections of light between the substrate and the coating–air interface through the 
coating. However, there is a difference between the two models regarding the attenuation by absorption of light within the 
coloring layer: the Williams–Clapper model considers that oblique rays are more attenuated than perpendicular rays as they 
follow a longer path within the transparent layer, whereas the Clapper–Yule model assumes that every ray is attenuated in 
the same way independently of its orientation [25]. The Clapper–Yule model looks more appropriate in the case where the 
coating is slightly scattering, or partly penetrates into the substrate, which is probably the case in the Codex Borbonicus. In 
the following, we therefore focus on the Clapper–Yule model applied to continuous layers. We assume that the paint layer 
is uniform, and that the illumination is perfectly diffuse.

The model consists of the description of the multiple reflections of the light between the paint–air interface and the 
substrate, through the paint layer. The substrate, considered without its interface with air, has an intrinsic reflectance ρs
that can be deduced from the measure reflectance Ri according to Equation (20). The paint layer has an intrinsic transmit-
tance tpaint, and an intrinsic reflectance zero since it is assumed to be very weakly scattering (Fig. 4).

By analyzing the way light is reflected or transmitted by the different components, one can deduce the following expres-
sions for the upward and downward fluxes:



F. Pottier et al. / C. R. Physique 19 (2018) 599–611 605
Fig. 4. Multiple reflections considered in the Clapper–Yule model.

J0 = rs I0 + Touttpaint J1

J1 = ρs I1

I1 = T intpaint I0 + rdt2
paint J1

Then, by combining these three equations, we derive the expression of the reflectance of the printed layer:

Ri(λ) = J0(λ)

I0(λ)
= rs + T inToutρs(λ)t2

paint(λ)

1 − rdρs(λ)t2
paint(λ)

(16)

This is the Clapper–Yule equation for a continuous coating layer. The parameters T in, Tout, rd, and rs are defined in the same 
way as previously for the Saunderson correction of the Kubelka–Munk model, and derived from the Fresnel formulae.

The intrinsic transmittance tpaint of the paint layer can be deduced from the measured reflectance of the sample, accord-
ing to the following formula derived from Eq. (16):

tpaint(λ) =
√

1

ρs(λ)
· Ri(λ) − rs

T inTout + rd[Ri(λ) − rs] (17)

2.5. Application to the Codex Borbonicus: assumptions and simplifications

Kubelka–Munk model. In our case, every colored layer is a mixture composed of at least two components: the paper 
substrate of the Codex Borbonicus (coefficients Ks and Ss, and proportion cs), and the paint, which can be itself a mixture 
of different pigments (coefficients Ki and Si and proportions ci , i = 1, 2, . . . ). By assuming that the substrate is totally 
impregnated of paint and that the scattering coefficient of the substrate is much larger than the ones of the pigments, 
Duncan’s law can be written [26] as:(

K

S

)
mix

= cs Ks + c1 K1 + c2 K2 + · · ·
cs Ss

= Ks

Ss
+ c1 K1 + c2 K2 + · · ·

(1 − c1 − c2 − · · · )Ss
(18)

If the respective proportions of the components in the mixture are known, only two measurements are needed to derive 
the remission function of the paint itself, independently of the substrate: a reflectance measurement on the unpainted 
substrate and a reflectance measurement on the painted substrate.

For example, when the paint mixed with the substrate contains one colorant (coefficients K1 and S1), for example, a red 
or a yellow pigment, with a proportion c1 = 1 − cs, the remission function is:(

K

S

)
mix

= Ks

Ss
+ c1

1 − c1
· K1

Ss
(19)

and when the paint is a mixture of two different pigments labeled 1 and 2, with respective proportions c1 and c2 before 
application on the substrate, the remission function of the mixture is:(

K

S

)
mix

= Ks

Ss
+ c′

1

(1 − c′
1 − c′

2)
· K1

Ss
+ c′

2

(1 − c′
1 − c′

2)
× K2

Ss
(20)

where c′
1 and c′

2 denote the proportions of the pigments in the mixture of paint and substrate.

Saunderson correction for the Kubelka–Munk model. Our measurements have been done under the diffuse 45◦ geometry: 
the Codex Borbonicus is illuminated by a diffuse light and is observed at the observation angle θ = 45◦ . Assuming that 
the optical index for paints and paper is n = 1.5, it is possible to numerically express the parameters of the Saunderson 
correction from Eq. (15). By computing Eqs. (11) to (14), we obtain the following values: rs = 0.05, rd = 0.6, T in = 0.9, 
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and Tout = 0.42 for respectively the specularly reflected light, diffuse light, downward and upward transmitted light at the 
interface air/paint.

Clapper–Yule model. As for the Kubelka–Munk model, every colored layer is assumed to be composed of at least two 
components. The difference is that instead of being a mixture, it is a superimposition of the paper substrate of the Codex 
Borbonicus, and a painted layer which can be itself the superimposition of two different paints (intrinsic transmittances ti , 
i = 1, 2, . . . ).

In our case, the thickness of a layer of paint is unknown and can easily vary from one layer to another and cause 
variations on the surface. According to the Beer–Lambert law, the thickness of a colorant can be taken into account by 
rising its transmittance to a power x, proportional to the layer thickness.

For example, when the observed color is composed of one layer of paint on top of the substrate with a transmittance t1 , 
the reflectance of this superimposition can be written as:

Rsup(λ) = rs + T inToutρs(λ)t2x
1 (λ)

1 − rdρs(λ)t2x
1 (λ)

and when it is composed of two superimposed colorants on top of the substrate, the reflectance can be written as:

Rsup(λ) = rs + T inToutρs(λ)t2x
1 (λ)t2y

2 (λ)

1 − rdρs(λ)t2x
1 (λ)t2y

2 (λ)

where x is proportional to the thickness of the colored layer 1 and y to the thickness of the colored layer 2.

Determination of the unknowns. In each of these theoretical models, a few parameters are unknown and must be fitted by 
optimization in order to obtain the best agreement between the simulated and measured spectral reflectances. The simula-
tions are hence carried out by minimizing the difference between the modeled spectrum and the experimental spectrum. 
This is done through the calculation of the root-mean-square deviation (RMSD) between the two datasets on the whole 
spectra. The minimization of this mathematical difference generates solutions for the unknown parameters. One should re-
mark here that there is one set of equations for each sample of the spectra (at each wavelength), which means that the 
calculated optimal values are a compromise that takes into account the entire spectra. The careful study of these result-
ing optimal values and the comparison of the simulated/experimental spectra in turn helps evaluating the realism of the 
simulation.

3. Results and discussion

Orange mixture(s). The hypothesis for the orange color is that it is made of a mixture of red and yellow materials impreg-
nated into the paper substrate of the document. The Kubelka–Munk model is the most appropriate in this case. It is applied 
on the intrinsic spectral reflectance of the colored material, after having removed the optical effects of the material/air in-
terface thanks to the inversed Saunderson correction applied on the measured spectral reflectance of the sample, according 
to Eq. (15).

The calculation involves four diffuse reflection experimental measurements (substrate, red, yellow, and orange). The 
remission function of the substrate is firstly calculated according to Eq. (7). The reflection spectra measured in each primary 
color (red and yellow) can then be integrated into Eq. (19), and the remission function of the two colors impregnated in 
the paper substrate is deduced:

KRed

SSubstrate
= (1 − CRed)

(CRed)
·
((

K

S

)
Red (measured)

−
(

K

S

)
Substrate (measured)

)
(21)

KYellow

SSubstrate
= (1 − CYellow)

(CYellow)
·
((

K

S

)
Yellow (measured)

−
(

K

S

)
Substrate (measured)

)
(22)

Notice that the two concentration factors that represent the color/substrate proportions CRed and CYellow are unknown 
and non-measurable.

The remission function of the red and yellow mixture is then expressed as (see Eq. (20)):(
K

S

)
Mixture

=
(

K

S

)
Substrate

+ C ′
Red

(1 − (C ′
Red + C ′

Yellow)

KRed

SSubstrate
+ C ′

Yellow

(1 − (C ′
Red + C ′

Yellow)

KYellow

SSubstrate
(23)

Again, two other proportion factors in the mixture C ′
Red and C ′

Yellow are necessary and unknown.
As a result, a system in four unknowns is obtained, and its resolution is impossible without any other information. 

The simulations can still be carried out by determining the optimal proportion values in order to minimize the difference 
between the measured and predicted spectral reflectances of the mixture. The results of this simulation are given in Fig. 5.
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Fig. 5. (a) Remission functions deduced from the spectral reflectance measurements for the uncovered substrate, and the red areas and yellow areas (solid 
lines), and simulated remission functions for the red and yellow areas independently from the absorbance of the substrate (dashed lines). (b) Remission 
function for the orange deduced from the reflectance measurement (solid line), and simulated from the remission functions of the red and the yellow 
(dashed grey line). (c) Corresponding measured and simulated spectral reflectances. (d) CIE 1976 L*a*b* colorimetric coordinates projected on the (a*–b*) 
plane with color disks indicating the RGB rendering.

The concentration factors calculated in the first part of the simulation seem coherent, since they are of similar order of 
magnitude for the two primary colors deposited on the paper substrate (CRed = 0.41, CYellow = 0.81). The combination of 
the three remission functions associated with the red, yellow, and substrate generates a simulated remission function for 
the orange color relatively close to the one deduced from the experimental measurement (Fig. 5b). The concentration factors 
are slightly lower (C ′

Red = 0.14; C ′
Yellow = 0.29) than when the colors are used alone. These coefficients are realistic, and it is 

not surprising that smaller amounts are used in the mixture. The local absorbance maxima positioned at 525 and 560 nm 
are present in the simulation at the right intensity, while the absorption edge is also properly positioned. A non-negligible 
difference between simulation and measurement is however observed with an under-estimation of the calculated remission 
function for high absorptions, i.e. between 380 nm and 480 nm.

Considering the spectral reflectance calculated from this simulated remission function of the orange paint, a better 
matching is found in the problematic range (Fig. 5c). This observation is logical since data representation in reflectance 
is less sensitive to strong absorption values. The comparison of the corresponding simulated and experimental colorimetric 
data gives a color difference at the limit of human perception (�E1976 = 5) (Fig. 5d).

Different orange tonalities actually also exist in the document (not shown). These chromatic variations probably originate 
from different proportions of substrate and red and yellow materials. The reliability of the simulation to explain these 
variations must be evaluated. For that purpose, the previously calculated remission functions (K/SRed and K/SYellow) for 
the primary colors are used (Fig. 5a, dotted lines). The concentration factors of the two primary colors obtained in the first 
mixture simulation (CRed and CYellow) are now fixed (0.41 and 0.81, respectively) and not modified afterward for the other 
orange shades. The calculation still involves an optimization of the concentration factors (C ′

Red and C ′
Yellow) in the orange 

mixtures that minimizes the difference with the experimental data.
Two spectral reflectances measured in areas of the Codex Borbonicus presenting different shades of orange hence gen-

erated two couples of concentration factors. Although the calculation exclusively involved the remission functions, only the 
experimental and simulated reflection spectra are presented (Fig. 6a and b). In each case, the simulation generates a spec-
tral profile close to the experimental data. The associated colorimetric differences are below the limit of human perception 
(�E1976 < 5).
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Fig. 6. Spectral reflectances of two orange areas (continuous orange lines) and simulated spectral reflectance corresponding to different mixtures of red and 
yellow materials (dashed grey lines).

Fig. 7. Hypothetical structure of the dark-blue paint of the Codex Borbonicus.

However, a closer look at the simulation of the lightest orange shade (OrangeA, presenting the highest reflectance levels) 
is important. The local absorbance maxima at 525 and 560 nm are not present in the calculated mixture (Fig. 6a), although 
the colorimetric correspondence is very good. This is explained by the very low calculated concentration factors of the 
red component that result in a weak representation of its spectral features. In contrast, the features are well simulated 
for the darker variation (OrangeB), although the colorimetric difference is slightly higher, probably due to an offset in the 
calculated and actual reflection levels at the longer wavelengths of the domain. Notice that, in this case, the red and yellow 
concentration factors are of the same order of magnitude.

These data show that the simulation can take into account the variations of the concentrations of the primary materials 
as long as they are present in amounts of the same order of magnitude when they are used alone and mixed (OrangeB). 
When much lower amounts are involved in the simulation (OrangeA), poorer spectral correspondences are calculated (al-
though the color shift is almost null). Caution must be taken when evaluating a spectral correspondence. A small color 
difference (�E1976 < 5) does not necessarily imply a satisfying simulation from a spectral standpoint. It is therefore impor-
tant to focus on the presence, position, and intensity of material specific spectral features.

In any case, and more importantly, these results demonstrate that it is indeed possible to successfully simulate the 
mixture of the red and yellow primary colors to obtain the experimental spectrum measured in the different orange hues of 
the Codex Borbonicus. They hence reinforce the hypothesis that the orange paint was obtained by a mixture of the yellow 
and red paints (and not with the use of other coloring materials).

Dark blue. The visual examination of the dark-blue paint of the Codex Borbonicus suggests that it has been obtained by 
superimposition of a layer of grey-blue material on top of layer of blue material.

Assuming that the grey-blue paint does not scatter light, that the blue paint is opaque and homogeneous, and that there 
are no reflections at the grey-blue/blue and grey-blue/substrate interface, a first simplistic attempt at simulating this color 
association is done by evaluating the transmission profile of the grey-blue paint with the measurement of its reflection 
properties – Fig. 7 and Eq. (24). The result of the superimposition of the grey blue on the blue is then found by applying 
this calculated transmission to the reflection spectrum measured in the blue – Fig. 7 and Eq. (25). The layer thickness of the 
grey blue on the substrate and on the blue being probably different, the x factor is used to fit this variation and is unknown.

TGrey blue =
√

RGrey blue

RSubstrate
(24)

RGrey blue on blue (calculated) = RBlueT x
Grey blue = (RDark blue (measured)?) (25)
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Fig. 8. Diffuse reflection spectrum of the dark-blue paint (blue continuous line) and simplistic simulation of the superimposition of grey-blue on top of blue 
with different thicknesses (x) of the grey-blue layer (grey dotted lines).

When fitting the thickness of the grey-blue layer to x = 2, a spectral shape close to the experimental spectrum is 
obtained, but the global reflection level is too low (Fig. 8). In contrast, a low thickness index (x = 0.5) generates a closer 
general level of reflection, but the spectral feature of the experimental spectrum (absorption maximum at 590 nm) is absent 
from the simulation. This preliminary simulation does not provide satisfying results: we thus explored a different approach, 
by taking into account the air/paint interface.

The Clapper–Yule model is used since it can take into account a partial impregnation of the grey-blue in the underlying 
layers (substrate or blue). This model involves the transmittances of both the blue paint and the grey-blue paint. According 
to the Eq. (17), these are given by the following expressions:

tBlue(λ) =
√

1

ρs(λ)
· RBlue(λ) − rs

T inTout + rd[RBlue(λ) − rs]

tGrey blue(λ) =
√

1

ρs(λ)
· RGrey blue(λ) − rs

T inTout + rd[RGrey blue(λ) − rs]
where RBlue(λ) and RGrey blue(λ) denote the spectral reflectances of areas painted in blue alone, respectively in grey-blue 
alone, and ρs(λ) denotes the intrinsic reflectance of the substrate.

The observation geometry being known (θ = 45◦), and the paints optical indices being assumed to be n = 1.5 (see above 
the section on the Saunderson correction), we still have: rs = 0.05, rd = 0.6, T in = 0.9 and Tout = 0.42.

Consequently, we derive the theoretical reflectance of the dark blue. Let us consider the parameters X and Y that are 
proportional to the thickness of the blue and grey blue painted layers.

RDark blue(λ) = rs + T in Tout ρs(λ) t X
Grey blue(λ) tY

Blue(λ)

1 − rd ρs(λ) t X
Grey blue(λ) tY

Dark blue(λ)

Because of the two unknown parameters X and Y , our system is not solvable. As for the Kubelka–Munk model, the 
simulation is made finding optimal thickness values.

The results of our optimization are not physical thicknesses: X and Y are only proportional to the actual thicknesses of 
the layers. As the light is going onto and out of the paints, we can then assume that they are proportional to at least two 
times the real thickness of each painted layer. Nevertheless, these two parameters are both in the same range (X = 0.87
and Y = 1.19) and so can be considered as reliable results (Fig. 9).

Although the spectral correspondence is not perfect, all the absorption features present in the experimental spectrum 
are found in the calculated superimposition at the right reflectance level. The colorimetric difference between the simulated 
and hypothetical experimental superimposition is also satisfying. The success of this simulation strengthens the hypothesis 
that the dark blue was obtained through a superimposition of grey blue on top of blue.

4. Conclusion

The present paper illustrates the use of optical models to make a first assessment on the composition and structure of 
colored components in historical polychromies from non-invasive spectral reflectance measurements. The layered structure 
of the polychromies is generally unknown, but it has an impact on the way the light is reflected, therefore on the way the 
light signal must be analyzed in order to determine the material combination. We introduced two models, based on two 
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Fig. 9. (a) Spectral reflectance of the dark-blue paint, as measured (blue solid line) and simulated by the Clapper–Yule model for a superimposition of 
grey-blue and blue layers with a partial impregnation of the grey blue in the underlying substrate (grey dotted lines). (b) Corresponding CIE 1976 L*a*b* 
colorimetric coordinates projected onto the (a*–b*) plane and disk showing the RGB rendering.

different layered structures, whose advantage is to be compatible with diffuse spectroscopy: the intrinsic optical parameters 
of the materials are derived from the experimental reflectance spectra. The Kubelka–Munk model, with Saunderson correc-
tion to take into account the optical effect of the air/paint interface, applies to opaque paints where it can be assumed 
that the light is mainly reflected by a uniform, macroscopically homogenous, and diffusing colored layer (e.g., substrate 
impregnated of paint). The Clapper–Yule model, used for continuous colored layers, applies to a non-scattering layer, or 
weakly scattering layer, on top of a colored diffusing background. It also takes into account the optical effect of the air/paint 
interface. When the materials (e.g., pigments, substrate, . . . ) mixed in the paint are known, simulations can be performed 
by varying the proportions of the different materials, and by searching the proportions giving the best agreement with the 
spectral reflectance measured on the object. This helps to evaluate the plausibility of hypotheses made on the structure of 
complex colored mixtures.

An important issue concerns the way the parameters are computed, i.e. the optimization process used to find the best 
agreement between the simulated and measured spectral reflectances. When applying the models to experimental data, 
several parameters are unknown. As a result, the simulations are carried out as comparison with the experimental mea-
surement on the paint layer for which the hypothesis is made. The minimization of the distance between the modeled and 
experimental spectra is used to optimize the unknowns of the system. The spectral distance selected as cost function in 
the optimization can have a significant influence on the results. In this study, we used the RMSD distance. The colorimetric 
difference (�E) can also be of interest to compare the spectra, although one must be aware that a good color match does 
not necessarily imply a satisfying spectral correspondence (see the results of the orange mixture simulation). Other types 
of spectral distances exist (such as the spectral angle, for example [27]) and should be considered for future research [28]. 
An experimental study of color combinations of known composition will help to evaluate the appropriate spectral distances 
and the application ranges of the presented optical models.
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