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Here we obtain explicit black hole solutions in Extension Gravity models with high-order 
derivative terms, while the Lichnerowicz-type theorem simplifies our analysis by vanishing 
Ricci’s scalar curvature. We find out two explicit static, spherical solutions that satisfy the 
presented action: the first one is the same usual Schwarzschild solution and the other one 
is the new non-Schwarzschild solution. It means that Schwarzschild’s solution following 
the no-hair theorem can describe any black hole object on each gravity theory. Without 
considering the first law of thermodynamics for it, we show that the non-Schwarzschild 
solution is depending on its set of constants, and then we consider its entropy and other 
thermodynamic parameters for specific values of the constants.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans le cadre de modèles de gravité étendue comportant des dérivées d’ordre supérieur, 
nous obtenons des solutions explicites représentant des trous noirs. Nous trouvons 
deux solutions sphériques statiques qui vérifient les équations : la première est la 
solution de Schwarzschild bien connue, alors que l’autre est une solution nouvelle non 
schwarzschildienne. Ainsi, la solution de Schwarzschild, qui résulte du théorème « sans 
cheveux », peut décrire un trou noir dans l’une ou l’autre des théories de la gravité. Sans 
partir de la première loi de la thermodynamique, nous montrons que la solution non 
schwarzschildienne dépend de certaines constantes, et nous évaluons son entropie et les 
autres grandeurs thermodynamiques pour des valeurs spécifiques des constantes.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The study of string and of some other effective gravities show that the usual Einstein–Hilbert action only describes a 
low-energy system, so one can assume Einstein’s gravity to be the effective low-energy theory that needs correction with 
some terms built from the different powers of the curvature tensor and its derivative to illustrate high-energy systems [1]. 
Adding these terms to the usual Einstein–Hilbert action allows us to dissolve the non-renormalizability of gravity theory, 
albeit at the price of introducing ghost models [2].
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Studying Einstein’s gravity with added curvature terms is worthwhile to shed light on some facts about the gravity 
field’s behavior in the high-energy system. Black holes, among the interesting objects in general relativity, are among the 
best candidates for this goal. Hereupon in this paper, we study black hole solutions with high-order curvature terms added 
to the usual Einstein–Hilbert action. We suppose that the general action is given by

I =
∫

d4x
√−g

(
αR − βCμνρσ Cμνρσ + γ R2) (1)

where α, β , and γ are constants and Cμνρσ is the Weyl tensor, which is a trace-free part of the Riemann tensor. We shall 
work in units where α = c = G = 1. The equations of motion following (1) are then

Rμν − 1

2
Rgμν − 4βBμν + 2γ R

(
Rμν − 1

4
Rgμν

)
+ 2γ (gμν�R − ∇μ∇ν R) = 0 (2)

where Bμν = (∇ρ∇σ + 1
2 Rρσ )Cμνρσ represents the Bach tensor. The equation of motion (2) can describe massive spin-2 

with mass-squared m2
2 = 1/(2β), and massive spin-0 or massless spin-2 with mass-squared m2

0 = 1/(6γ ).
We will now attempt to find black hole solutions explicitly for the equations of motion (2) when, without loss of 

generality, a static, spherically symmetric metric is given by

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2 θ dϕ2) (3)

With tedious calculation, field equation for non-vanishing components, with γ set to zero for the reasons discussed in [3], 
becomes

Gμν + 2β

(
5

3
gμν�R − RννCμνμν

)
= 0 (4)

where Gμν is usual Einstein tensor. Obviously, for β = 0, one gets the usual Schwarzschild solution for static, spherically 
symmetric ansatz (3). Therefore, when β �= 0, one has:

I. G00 + 2β

(
−5

3
f (r)�R − RiiC0i0i

)
= 0, i = 1,2,3

II. G11 + 2β

(
5

3

�R

f (r)
− R11C1i1i

)
= 0, i = 2,3

III. G22 + 2β

(
5

3
r2�R − R33C2323

)
= 0

and

IV. G33 = G22 sin2 θ = 0 (5)

For θ �= 0, substituting (IV) into the (III) gives

�R = 3

5

1

r2
R33C2323 (6)

so that the explicit forms of I and II are

G00 − 2β

[
R11C0101 + R22C0202 + R33

(
f (r)

r2
C2323 + C0303

)]
= 0

G11 − 2β

[
R22C1212 + R22C0202 + R33

( −1

r2 f (r)
C2323 + C1212

)]
= 0 (7)

Solving each one of Eqs. (7) gives two different metric function f (r),

f1(r) = 1 + c1

r

f2(r) = c2r + c3r2 1

2β

[−3 ln(r)r2 + 3r3 + 2β
]

(8)

where c1, c2 and c3 are constants. Comparing f1(r) with the usual Schwarzschild sheds light on the fact that, for c1 = −2 M , 
Schwarzschild’s solution again could represent the black hole structure in high-order energy, which describes the equations 
of motion (2). On the other hands, the metric function f2(r) represents the general non-Schwarzschild solution that is 
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Fig. 1. Comparison of the geodesy of a falling physical particle for three different values of c2 and c3 when β = 1, r0 = 10.5 into the horizon area.

shown in [3]; therefore, we can consider it as a metric function describing the space–time structure around black holes. 
One obtains some plausible metric functions. For instance, when c2 = 0, c3 = −3/(2r2

0) and β ≡ r2
0 , the metric function 

f2(r) becomes

f2(r) = 1 − 3

2

(
r

r0

)2[
(r − 1) − (r − 1)2

2
+ (r − 1)3

3
− . . .

]
(9)

where we use Taylor series for the natural logarithm. An approach similar to (9) but with different coefficients has been 
investigated in ref. [3]. As shown in Fig. 1, the behavior of a physical particle falling in non-Schwarzschild black holes can 
be much different. For example, if c2 = c3 = 0, with respect to other constants of the model, the particle goes to singularity 
faster than in the usual Schwarzschild solution, while for two other cases when at least one of the constants is opposite 
zero, the particle follows a strange path. Note that Fig. 1 shows only the particle’s behavior in the event horizon, and so the 
metric function f2(r) does not comply with the no-hair theorem, since this theory discusses classical properties of black 
holes out of the event horizon [9].

Entropy and the first law of thermodynamic are most interesting issues to investigate black hole solutions. Hereupon, 
we consider entropy in the following of our discussion. Since we are working with higher-order derivative theory, generally 
entropy is not one-quarter of the area of the event horizon but, as mentioned in [4], the entropy of black holes, when the 
latter are described with a usual Schwarzschild solution, is the same as in Bekenstein–Hawking’s entropy formula. For a 
non-Schwarzschild solution that is illustrated with the metric function f2(r), we need to use the formula that was derived 
by Wald [5,6]. This has been evaluated for the ansatz (3) in quadratic curvature gravities in [7] and for f (R) gravities in [8]. 
In our case, with γ = 0 and β = r2

0 , entropy is given by (AH is area of event horizon)

S = AH

4

[
1 − 4

3r0
c2 − 16

3
c3 + 8

r2
0

(
1

3
+ ln(r0)

)]
(10)

and the Hawking temperature is

T = 1

4π

[
c2 + 2r0c3 + 3

2

(
1 − 2 ln(r0)

)]
(11)

So, the Noether charge with respect to Eqs. (10), (11) writes

Q = −2AH

[
1 − 4

3r0
c2 − 16

3
c3 + 8

r2
0

(
1

3
+ ln(r0)

)][
c2 + 2r0c3 + 3

2

(
1 − 2 ln(r0)

)]
(12)

and, finally, the mass of the black hole for the metric function f2(r) is

M = 1

3

1

r2
0r2

[−36c2c3r2
0r2 ln(r) − 16c2

3r2
0r3 − 6c2r2

0r2 ln(r) + 48c3r0r2(ln(r)
)2 − 12c3r2

0r3 − 36r3(ln(r)
)2

− 39c2r0r2 ln(r) + 18r0r3 ln(r) + 10c2
2r2

0r − 132c3r0r3 + 198r3 ln(r) − 27r0r3 − 4c2r2
0 − 234r3 − 24r0r

]
(13)

Generally, by choosing different values of the constants, we get a different behavior for each thermodynamic parameter, 
but from the slope of M(T ), it can be seen that the specific heat C = ∂M/∂T is negative for both usual Schwarzschild and 
non-Schwarzschild black holes.

Following the mentioned discussion, investigating the entropy and other thermodynamic parameters needs considering 
each case of constants. Here, we only consider the first law of thermodynamics. Analytically, we found that for c2 �= 0, 



340 S.H.R. Fazlollahi / C. R. Physique 19 (2018) 337–340
entropy, the Hawking temperature, and the mass of black holes will be complex. Hereupon, we choose c2 = 0 and c3 = −3/2
as in Eq. (9). We have the freedom to add a constant multiple of the Gauss–Bonnet invariant to the Lagrangian, which shifts 
the entropy by a parameter independent constant without affecting the equations of motion. Using this approach allows us 
to find the mass and the temperature of these non-Schwarzschild black holes as a function of entropy:

M ≈ −2.6784 + 0.147668 S − 0.0045 S2 + 0.00010 S3

T ≈ 0.14668 − 0.00890 S − 0.0004 S2 + 1.96 10−7 S3
(14)

It can be seen that ∂M/∂ S ≈ 0.147668 − 0.0090S , which is very close to the expression for the temperature; thus, the 
non-Schwarzschild black holes are seen to obey the first law of thermodynamics with high precision; the non-Schwarzschild 
solution satisfies the first law, dM = T dS .

As mentioned above, the slope of M(T ) is negative; to prove it for the above fixed set of constants, we have

C ≈ −453.09 − 2601.8T − 8255.7T 2 (15)

In this paper, we considered mathematically Einstein’s gravity with some quadratic curvature invariants to find plausible 
explicit black hole solutions. These black holes may involve condensations of massive scalar, spin-2 and spin-1 modes and 
massless spin-2 graviton.

We focused our discussion on the static spherically symmetric black hole solutions. Attempting to find the explicit met-
ric function f (r) shows that, for ansatz (3), one has only two explicit black hole solutions, one of which is the usual 
Schwarzschild solution. Thus, the usual Schwarzschild solution allows one to investigate the black hole structure in high-
order energy. In fact, the quantization of usual Schwarzschild solution allows us to explore the behavior of a physical particle 
in a quantum-gravity medium without loss of generality. The other metric function implies a non-Schwarzschild solution 
that has not been considered in literature. We applied Wald’s formalism and derived an explicit entropy formula. Then the 
Hawking temperature, the Noether charge, and the mass of a non-Schwarzschild solution are given. We show that, for each 
set of constants, the non-Schwarzschild solution presents different behaviors. Thus, we use {c2, c3} = {0, −2/3}, in order to 
investigate the first law of thermodynamics to show that the non-Schwarzschild solution obeys the first law. Naturally, the 
non-Schwarzschild solution has wider classes than those considered here. We wish that our work will contribute to the 
future research in this direction.

We are very grateful to A. H. Fazlollahi for fruitful philosophical and physical discussions on this topic.
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