
C. R. Physique 19 (2018) 187–204
Contents lists available at ScienceDirect

Comptes Rendus Physique

www.sciencedirect.com

Spatial networks / Réseaux spatiaux

Spatial networks with wireless applications

Réseaux spatiaux appliqués aux télécommunications sans fil

Carl P. Dettmann a,∗, Orestis Georgiou a,b, Pete Pratt a

a School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, UK
b Ultrahaptics, The West Wing, Glass Wharf, Bristol, BS2 0EL, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 9 October 2018

Keywords:
Wireless networks
Telecommunications
Probabilities
Random graphs

Mots-clés :
Réseaux sans fil
Télécommunications
Probabilités
Graphes aléatoires

Many networks have nodes located in physical space, with links more common between 
closely spaced pairs of nodes. For example, the nodes could be wireless devices and 
links communication channels in a wireless mesh network. We describe recent work 
involving such networks, considering effects due to the geometry (convex, non-convex, 
and fractal), node distribution, distance-dependent link probability, mobility, directivity, 
and interference.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

De nombreux réseaux sont constitués de nœuds situés dans l’espace physique, avec des 
liens plus fréquents entre des paires de nœuds peu distants. Par exemple, pour un réseau 
maillé sans fil, les nœuds représentent des appareils sans fil et les liens des canaux 
de communication. Nous décrivons des travaux récents impliquant de tels réseaux, en 
considérant les effets dus à la géométrie (convexe, non convexe et fractale), à la distribution 
spatiale des nœuds, à la probabilité de liaisons dépendant de la distance, à la mobilité, 
à la directivité et aux interférences.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Many real networks have a spatial structure in that the nodes have locations, and pairs of close nodes are more likely 
to be linked. This work will largely be concerned with applications to wireless communications, however much of the 
analysis is of far more general relevance, as well as being of theoretical interest. The wireless applications include mesh 
networks where information is relayed in a multihop fashion from node to node rather than directly to a central router 
or base station. Generally speaking, a mesh network models a collection of low power nodes (where long range links are 
unlikely) communicating to one another, for example the nodes can represent smart devices such as phones and laptops, 
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and links represent a wireless channel. Many of the results assume that a node can receive and transmit data simultaneously 
(“full duplex”). Alternatively, it should be specified which nodes are acting as transmitters and receivers, leading to directed 
graphs. Interference, the effects due to unwanted signals from other transmitters, may need to be taken into account, and 
can be mathematically involved since the existence of a working link depends not only on the locations of the two nodes, 
but of all other transmitters. In Sec. 2, we also discuss a range of different point processes which are used to model the 
fixed network architecture where the nodes model the location of base stations.

Even in the first paper on spatial networks [1], communication networks were the stated motivation. The model con-
sidered there, the random geometric graph, was first given this designation in Ref. [2]. In the meantime, there has been a 
substantial body of work in probability [3] and communications [4] with applications in many other fields [5].

A random geometric graph (RGG) comprises randomly located nodes, with links formed between mutually close pairs. 
Mathematically, the locations of nodes are described by a point process �, that is, a random set of points in a space X , and 
the concept of closeness by a distance function D : X × X → R. Most work on RGG use as the space X either Euclidean 
space Rd , the unit cube [0, 1]d , or the flat torus obtained by identifying opposite faces of the cube. The latter is finite 
and homogeneous, that is, all points are equivalent. We consider each of these mathematical ingredients in turn in the 
subsequent sections.

In the original Gilbert RGG model [1], nodes were distributed according to a uniform Poisson Point Process (see Sec. 2.2
below) on R2 with links made between pairs of nodes within a fixed distance r0 . In Ref. [1] the aim was to address 
percolation (see Sec. 4.2) with a random spatial structure and spatially dependent links; in essence this work gave rise to 
the field of continuum percolation where there is no fixed underlying lattice structure. Many results for the RGG in d ≥ 2 are 
reviewed in Walters [6], including on maximum and minimum degrees, cliques, percolation, (k)-connectivity, Hamiltonicity, 
chromatic number and coverage.

For the application to wireless networks it largely remains a balancing act between mathematical tractability and ac-
curacy of the model. It therefore makes sense to focus on particular network characteristics such as regions with high 
densities (a city shopping centre on a weekend), the fractal distribution of waypoints [7,8] or the bottle necks to connection 
probability which allow for tractable analysis that can capture the essence of the problem.

2. Point processes

2.1. Stochastic geometry

Stochastic geometry is the study of random sets in space, most notably point processes, that is, random sets of individual 
points. Initially, stochastic geometry was first used to further understanding in fields such as material science, astronomy 
and biology [9–11]. Generally speaking, in stochastic geometry, point processes need not model just collections of points in 
some space, they can be used for more general sets such as balls, lines, planes and fibres which are then mapped back into 
point processes using a suitable representation [12,13]. Stochastic geometry is certainly not limited to the study of wireless 
networks; examples of other applications include material science (modelling of fibres), astronomy (of which Olbers’ paradox 
is a nice example), biology and ecology to model say forestry distributions and more recently in machine learning [14].

With this in mind, many authors have leveraged tools from stochastic geometry to model the distribution of users for 
a single, or multiple, time slots in wireless networks since the seminal paper of [15]. By considering the distribution of 
base stations (or users) as a point process, and computing the expectation of the corresponding functionals, closed form 
expressions for metrics such as coverage and capacity can be obtained, a feat that could not be achieved through a purely 
information theoretic standpoint and has consequently lead to a proliferation in research on wireless networks. For more 
discussions on how stochastic geometry is used to model wireless networks the reader is pointed towards [16,4,11,13,12], 
which offer a deeper insight.

2.2. Poisson point process

Prior to the use of stochastic geometry it was conventional to posit a hexagonal lattice to model the cells of macro base 
stations [17]. However, due to physical and economic constraints, the actual locations of base stations appear much more 
random. The most commonly used point process is the Poisson Point Process (PPP). A simple PPP (there is at most one 
node at a single point in space) has been shown to represent the distribution of base stations in dense urban environments 
reasonably well [18].

A PPP [19] � with intensity measure � is defined by two properties:

(a) the number of points in a set A ⊂ X , #(� ∩ A) is Poisson distributed with mean �(A), or almost surely infinite if 
�(A) = ∞;

(b) if {Ai} is a finite collection of disjoint regions, #(� ∩ Ai) are independent random variables.

Thus, the probability of a set A containing n points is

P [#(� ∩ A) = n] = �(A)ne−�(A)

(1)

n!
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For a uniform PPP, �(A) is the density λ multiplied by the d-dimensional volume of A. For non-uniform PPP, � can be a 
more general σ -finite non-atomic measure. In either case, the mean number of nodes is N̄ = �(X), which may be infinite.

One of the main tools used in the analysis is the Campbell–Mecke formula,

E�

[ ∑
u∈�

f (u)
∏
v∈�

g(v)

]
= exp

⎛
⎝−

∫
Rn

(1 − g(x))�(dx)

⎞
⎠∫
Rn

f (x)g(x)�(dx) (2)

which reduces to either the probability generating functionals for PPPs (where there is no sum on the left hand side) and the 
widely used Campbell’s theorem [4,20] (where there is no product); an analysis of a more general functional was provided 
in [21]. Depending on the complexity of the model being studied determines whether the corresponding functionals can be 
given in closed form, but generally speaking analytic expressions can be obtained when the distribution is assumed to be 
Poisson with uniform intensity measure.

Another important property is that when points are randomly and independently thinned with probability ℘ the resul-
tant process is Poisson with density ℘λ. This models a simple channel access scheme where a user can transmit at each 
time slot with probability ℘ , and the result extends naturally to location dependent thinning.

As well as its tractability, the PPP is useful for constructing more complicated (interesting) point processes, see Cluster 
processes as an example. Naturally, the deployment of base stations is not spatially random since it is unlikely for two 
base stations to be built arbitrarily close together as interference effects will begin to dominate. As such a typical network 
exhibits some sort of repulsion between points. Examples of random point processes that exhibit this type of behaviour 
include the Ginibre, Cox, Hard-Core and Gibbs processes which we summarise below.

2.3. Binomial point process

A Binomial Point Process (BPP) can be obtained from a usual PPP by conditioning on the number of points in �, which 
results in a loss in complete spatial randomness. However, both the void probability and nearest neighbour distribution [22]
(often needed when assuming a nearest neighbour association scheme) have a simple analytic form (neglecting inhomo-
geneities and boundaries). Results for the BPP are very similar to those for PPP when the number of points is large, and 
can be obtained rigorously by “De-Poissonization” [23]. A BPP thinned as above is close to a PPP with the relevant intensity 
measure.

The BPP is easy to simulate: choose N points with respect to the (often uniform) normalised probability measure �/N̄ . 
Thus to simulate a PPP, first choose the total number of points as N ∼ Poi(N̄) and then a BPP with number of points N . If 
the original measure is infinite, leading to N̄ = ∞ the system must first be truncated to a finite region of interest.

2.4. Gibbs point process

A Gibbs point process is able to model the repulsion or regularity found within a network by having a density function 
that is defined by the pairwise interaction of points, and as such has various other applications such as modelling forestry 
statistics [24]. In a finite network of n points the density function for a GPP is f (x) = C exp

(
−∑n

i=1
∑

j,i< j φ(|xi − x j |)
)

, 
where C is a normalisation constant and φ is the pair potential function. One of the simpler examples from this family of 
point processes is the Strauss point process, where φ = 1r<r0γ where γ ≥ 0. Notice that for γ = 0 the model reduces to a 
PPP, whilst when γ = ∞ it is a hard-core process; intuitively the parameter γ determines the amount of spatial randomness 
in the model. Gibbs Point Processes [25–27], which are closely related to the Gibbs statistical ensemble, have been shown 
to represent the SIR statistics and the Voronoi cell area distribution better than that of the typical Poisson model [26]; 
however they are significantly less tractable [27].

2.5. Determinantal point process

Determinantal point processes (DPPs) have recently been proposed to better model the intrinsic repulsion exhibited in 
the distribution of base stations [16,28–30] whilst still retaining some tractability. DPPs were first introduced in [31,32] to 
study the distribution of fermions in thermal equilibrium [33], as a consequence DPPs were originally referred to as fermion 
point processes, but also arise in the eigenvalues of random matrices, quantum mechanics, representation theory, spanning 
trees, self-avoiding random walks [9,10,34] and more recently have been used in machine learning [14]. Generally speaking 
a DPP is defined by the n-th order product densities and naturally exhibit repulsion between points creating a more regular 
structure; for the exact details of the DPP the reader is referred to [9,34]. As an aside, the permanental process (which the 
Cox process is an example) is the natural counterpart to the DPP where points tend to cluster together and have been used 
in the study of bosons [34].

A Ginibre point process (GPPs) is a DPP on C, first introduced in Ref. [35], which is an extension of the Dyson point 
process (a DPP on R). The GPP is characterised by the nth order product densities, defined on C, given by,

ρ(n)(x1, ..., xn) = det(K (xi, x j))1≤i, j≤n (3)
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where (aij)1≤i, j≤n is the usual matrix notation, det is the determinant of that matrix, and K is the Gaussian kernel

K (x, y) = 1

π
exȳe− |x|2+|y|2

2 x, y ∈C (4)

with respect to the Lebesgue measure on C [36,13]. The first-order correlation function is simply ρ(1)(x) = π−1, which is the 
usual density; the second moment density simplifies due to motion invariance and only depends on the distance between 
pairs of points, ρ(2)(x, y) = ρ(2)(|x − y|), whilst it is also straightforward to show the repulsive nature of the point process 
since the pair correlation function is strictly less than one [36,30].

A thinning of the normal Ginibre point process (see [37]) has also been studied to allow for interpolation between the 
original GPP (β = 1) and the PPP which it converges to weakly as β → 0; the parameter β can be seen to determine the 
level of repulsiveness exhibited by the base stations.

In [30] the authors showed for a β-Ginibre process, by adjusting β to best fit the distribution of Base Stations the derived 
integral representation of the coverage probability is a better fit compared with the typical Poisson model. Similar results 
were obtained for the wider class of DPPs, of which Ginibre is an example [38].

2.6. Matérn point process

A hard-core process creates a more regular distribution of points. One such example is the Matérn Type I [39], where 
points are deleted from a uniform PPP if it has a neighbour within some distance r0; the transmission scheme is a spatially 
dependent thinning. This type of process ensures two transmitters aren’t too close to one another and transmitting.

2.7. Cox point process

Many networks can often exhibit some form of clustering; for example in more urban environments where people tend 
to gravitate around popular places such as shopping centres and sporting events [40]. In 5G networks, which are likely to 
be extremely dense in order to deliver the desired throughput, it is probable that within a city there will be clustering 
of smaller access points (femto or pico cells) around places of work and retail areas, one possible model for this is a 
Cox process. A Cox (or doubly Stochastic) process can be viewed as a PPP with random intensity measure [41,42]. The 
appearance of a point in space is likely the result of a large intensity measure, the local neighbourhood is likely to also have 
a large intensity measure and thus be populated by many other nodes which form a cluster [36]. By conditioning on the 
random driving measure the Cox process reduces to a PPP; whilst a Cox process can be obtained from a PPP by applying a 
random thinning (distinct from the deterministic thinning mentioned earlier) [42,4].

An interesting application of these doubly stochastic processes is to vehicular networks. For example, in Ref. [43] they 
model the random locations of vehicles by a 1D process on a road, with each road being modelled by a line process, 
allowing for a more realistic, but still tractable, model for connectivity in vehicular networks.

2.8. Cluster point processes

Another family of point processes that exhibits clustering, and has some overlap with the cox process, are cluster point 
processes. In general a cluster process can be formed by first generating a parent process �p, and for each point in that 
process generate another point process independent from each other (daughter PP), then the cluster point process is the 
union of all daughter process generated from �p; a Poisson cluster process is a special type of this more general cluster 
process. Mathematically speaking, if �p is the parent point process with n points, with locations {x1, x2, ...} and �i is the 
family of finite daughter processes corresponding to each parent (untranslated), then the cluster process is the resulting 
union, � = ∪i∈[n]�i + xi [4].

One of the simpler cluster models is the Neyman–Scott process where the parent points follow a PPP in A and the 
daughter nodes are distributed according to a uniform PPP in B ⊂ A. Some work has been done on these processes in a 
wireless network context with interference but often result in complex expressions for metrics such as the mean achievable 
rate and success probability [44,45]. In summary, there are many interesting and applicable generalisations of the PPP, but 
as usual there is a trade-off between realism and tractability.

3. Random links

3.1. Geometry

Having described possible point processes that define the locations of the nodes, we now discuss the links, and in 
particular, the statement that in spatial networks, links occur between closely spaced nodes. For this, we need a notion 
of distance, the map D : X × X → R. The distance function D is normally Euclidean distance, or for a flat torus, the 
shortest Euclidean distance taking account of the identification of the opposite sides/faces. More general metric spaces are 
natural, but note that each of the metric space axioms is violated in natural examples arising in wireless communications: 
(a) D(x, y) = 0 for non-equal x and y if the latter correspond to the same position but different orientations for the case of 



C.P. Dettmann et al. / C. R. Physique 19 (2018) 187–204 191
anisotropic networks; see Sec. 6. (b) The triangle inequality is violated if we do not allow transmission through obstacles, i.e. 
such a path has infinite effective distance; see Sec. 5. (c) D(x, y) �= D(y, x) if, due to differing transmission power, we can 
transmit a signal from x to y but not vice versa; this leads naturally to directed graphs, but appears relatively unexplored 
in the context of RGG; see for example Ref. [46–48].

Motivated by real data, social networks, and in an attempt to understand the effects of geometry on spatial network 
properties, recently works have extended RGG ideas from flat to hyperbolic spaces [49]. Other works have suggested that 
the distribution of the network link-lengths may be characterised by dimensions higher than that of the embedding space 
and hence there is a dimensionality reduction when reconstructing a network from a dataset [50]. For wireless network 
applications, non-Euclidean geometries have also been proposed as an alternative virtual embedding that maps the network 
into a hyperbolic space that can support more efficient packet routing schemes [51]. With the exception of a few other 
similar works however, the majority of RGGs literature with applications to wireless networks is concerned with d = 2 or 
d = 3 dimensional Euclidean geometries in Rd .

3.2. Pair connection functions and soft random geometric graphs

A natural generalisation of RGG, both from a mathematical and a practical point of view, is that of soft random geo-
metric graphs (SRGG). Here, links between nodes are made independently, with a probability given by a function H(r), the 
(pair) connection function, of the mutual distance r. Closely related models are given different names by different com-
munities in the literature: The first such model was the Waxman graph [52], followed by continuum percolation [53,54]. 
Recent literature has used the SRGG label [23,55,56] (which we prefer as it is most specific), as well as random connection 
models [57–59] and spatially embedded random networks [60–62].

Some connection functions found in the literature are chosen for mathematical simplicity, such as the unit disk (RGG 
model) H(r) = 1r<r0 , constant (Erdős–Rényi model) H(r) = p ∈ (0, 1) or other piecewise linear functions. Others are chosen 
from the physical characteristics of wireless communication channels. For example, we can write the link probability in a 
noisy environment with interference as,

H(r) = P(SINR > q) (5)

where q is a constant threshold and SINR is the signal to interference plus noise ratio, where the signal (and interfering 
signals) is proportional to the product of the transmitter and receiver gains (GT and GR respectively), the (random) channel 
gain |h|2 and the path loss r−η . Here η = 2 corresponds to the (free space) inverse square law, but values typically in the 
range 2 ≤ η ≤ 6 have been found empirically for cluttered environments. More specifically, for a network where all nodes 
are trying to transmit data on the same channel, the probability a link can be formed at a particular instance between the 
receiver and intended transmitter i, with separation distance ri , is given by,

H(ri) = P

(
G Ti GR|hi|2r−η

i

N + γ
∑

k �=i G Tk GR|hk|2r−η
k

> q

)
(6)

The parameter γ ∈ [0, 1] is introduced to apply a random thinning of the interfering signals representing an ALOHA trans-
mission scheme, which is the simplest example of how the set of interferers changes with time [63]. In the ALOHA model, 
devices are active with probability γ ∈ [0, 1] with γ (1 − γ ) being the probability that a device is on (off) or, when devices 
have a single antenna, transmitting (receiving). Therefore, the worst case scenario, being γ = 1, is where all users in the 
network try to concurrently transmit on the same frequency.

Firstly, since the interference is measured at the receiver the network can become highly directional with links occurring 
in one direction but not the other [64]. In addition, Eq. (6) is not strictly speaking a pair connection function as it depends 
on the locations of all nodes in the point process, and the location of the receiver, and not just the receiver-transmitter 
distance. That said, by taking the spatial average of the set of interfering nodes through equation (2) it can be expressed as 
a function of receiver and transmitter position, which, for point processes that are translational invariant, can be written as 
the standard pair-connection function introduced earlier.

Under the Rayleigh fading assumption (diffuse propagation), the channel gain is exponentially distributed, and assuming 
there is no interference within the network (γ = 0), leads to

H(r) = e−(r/r0)η (7)

We note that η = 1 is the Waxman [52] connection function and η → ∞ is the RGG.
There are many more complicated channel models, including Rician fading (a combination of specular and diffuse 

propagation) and MIMO (multi-antenna devices). Ref. [65] tabulates many of these mathematical and physical connection 
functions. Ref. [66] shows how to extend these short ranged connection functions to a “small world” model with random 
long ranged links which models networks that have both spatial and non-spatial links. For example, the non-spatial links 
may represent a limited infrastructure which can appear non-spatial over such large distances, which have the added ben-
efit of reducing the average hop count [67]. Finally, connection functions can be constructed empirically with any spatial 
network for which the links can be assumed to be random [68].
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3.3. Effects of differing connection functions

Qualitatively, many connection functions look alike, for example Rayleigh is often a good approximation for Rician [69]. 
Furthermore, the connection probability can be well approximated by a formula involving the connection function only 
via two of its moments [65]. These results suggest that SRGG properties are only mildly dependent on the form of the 
connection function. There are however several qualitative effects that depend on the connection function:

The (hard) RGG differs from SRGG in several qualitative ways. At extremely high density, two isolated nodes are likely 
to be close in a SRGG, but they cannot be in an RGG. In order to have two nodes separated from the rest (and either 
both isolated or mutually linked), an RGG requires only a small extra region free of other nodes, whilst an SRGG requires 
the absence of (at high density) many extra links. This means that the corrections to the first order (single isolated node) 
approximation for the connection probability are algebraic for the RGG but exponential (i.e. much smaller) for the SRGG [70]. 
There are also numerical and qualitative results showing that the k-connectivity (a graph is said to be k-connected if there 
exist k mutually independent paths between any two nodes in the network) is much better approximated by the minimum 
degree in SRGG than RGG [71]. Last but not least, the presence of a second source of randomness, the links, in SRGG permits 
the study of metadistributions and entropy conditional on the node locations; see Secs. 10 and 11.

For the Rayleigh connection function, there are a number of qualitative transitions when the path loss exponent η
becomes equal to the spatial dimension d. Directional radiation patterns are modelled by giving nodes orientations as well 
as locations, and making the gains GT and/or GR depend on the orientations relative to the line joining the two nodes. 
They lead to higher connectivity than the isotropic pattern given fixed total power if η < d [72,73]. Interference from distant 
nodes diverges (Olbers’ paradox) if η ≤ d [74]; of course practical systems have a finite number of nodes, however this 
means that the properties related to the interference depend measurably on the overall size and shape of the domain. The 
quantity d/η also appears as a scaling exponent of the connectivity with respect to power or number of antennas [75].

For connection functions with algebraic decay, H(r) ∼ r−α as r → ∞ the critical value is again the spatial dimension. 
If α ≤ d the mean degree in an infinite space 

∫ ∞
0 H(r)Sdrd−1dr diverges, and thus all graph properties in finite domains 

depend sensitively on the size and shape of the domain. For the SRGG in one dimension, the value α = 2 is also critical, 
as for α ≤ 2 it is possible for the system to percolate, that is, contain an infinite cluster, despite the presence of arbitrarily 
large gaps. The literature here is for closely related lattice models [76].

4. Connectivity

4.1. Scaling limits

A RGG (or SRGG) typically has three characteristic length scales, the system size L (if finite), the connection range r0
(SRGG with long range connection function may be an exception), and the typical distance between nodes λ−1/d where λ
is the mean density, equal to �(V)/|V| if the latter is defined. If we scale the system, all of these lengths scale by the 
same factor, so clearly only the ratios are relevant; all relevant features may be represented in terms of the dimensionless 
parameters λrd

0 (proportional to the mean degree) and λLd (proportional to the total number of nodes).
It is difficult to make quantitative rigorous statements about finite RGG, that is, where the average total number of nodes 

N̄ = �(V) is finite. So, most rigorous statements, for example, reviewed in Ref. [6], are for infinite RGG, for example on R
2, 

or on a sequence of RGG in finite domains for which N̄ → ∞. On a cube [0, L]d , we have |V| = Ld , so a diverging number 
of nodes corresponds to λLd → ∞. The remaining dimensionless parameter λrd

0 may either remain constant, decrease, or, 
more commonly, also diverge at an arbitrary rate with respect to λLd . In the literature, either r0 or L is usually held fixed, 
with the remaining two quantities allowed to vary, to obtain the above limits. If r0 varies, the connection function takes the 
form H(r) = h(r/r0). We now discuss some key results on percolation and full connectivity under different scaling regimes.

4.2. Percolation

In infinite systems, including the first paper, Ref. [1] on RGGs in R2, there are an infinite number of nodes, so the only 
parameter is λrd

0. Here, we will follow the usual convention and set r0 = 1. As λ increases, there is a transition, known 
as percolation [77], from a state in which all the connected components are almost surely finite, to one in which there 
is almost surely an infinite component. Percolation was already known in the context of lattices [78], so the RGG was an 
early example of “continuum percolation.” Many results in RGG percolation are obtained using the more well-studied lattice 
problems.

An initial lower bound on the critical parameter was provided by relating the PPP to a branching process, whilst an 
initial upper bound was achieved by tiling the plane and drawing from results on bond percolation on the square lattice. In 
fact Gilbert also outlines that through tessellation of the plane with a hexagonal lattice the upper bound could be improved 
upon, although this was conditional on the critical probability for the triangular lattice being 1/2 (which was later shown 
by [79]). A more detailed discussion of percolation in RGGs can be found in [6]. A natural extension is to SRGGs.

Surprisingly, percolation on SRGGs has only recently been studied for the perspective of networks. Instead, motivated by 
physical and chemical models of composite materials, micro-emulsions, and liquids, much work has been done on spherical 
particle interactions, namely those with a hard core and a soft shell. These approaches would either attempt to map the 
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system to lattice percolation, where results are well known, or would resort to extensive numerical Monte Carlo simulations 
[80]. The particle hard core was said to be an impenetrable portion while the soft shell was associated with the range across 
which an particle interaction is allowed (e.g., a charge transfer or excitation) [81]. Percolation thresholds therefore apply in 
this setting and can potentially be linked to observable material properties [82].

An interesting extension is to ask the same percolation question but on an SINR graph, thus incorporating interference; 
nodes are deployed according to some point process and links formed according to the SINR connection function, Eq. (6). Ini-
tial investigations have drawn inspiration from continuum percolation with interference to derive for example the network 
capacity [83]. This model of continuum percolation in an SINR graph has the additional complexity of the link probabili-
ties between any two nodes depending on the underlying Point Process of nodes and the assumed connection model. First 
note that we should expect percolation in the RGG with soft connectivity (as for the case with hard connectivity) to be 
monotonic in λ, such that the probability of percolation is zero when λ < λc, and the λ > λc the graph percolates almost 
surely. An SINR graph can be shown to percolate for a small enough γ > 0 provided λ ≥ λc and the path loss function is 
integrable on R2\B0(ε) [84]. Namely, by randomly thinning the number of nodes transmitting concurrently on the same 
channel the graph can percolate, provided the density is larger than the critical density needed for percolation when there 
is no interference. In a similar vein, [85] showed that for small enough q (recall q is the minimum threshold value for the 
signal measured at the receiver in order for there to be a successful link, see Sec. 3.2), assuming a non-singular path-loss 
with no thinning (γ = 1), percolation only occurs for a certain interval of densities; when the number of nodes in the 
network is small percolation is obstructed due to large gaps, whilst when the density is too large interference effects begin 
to dominate. So, once again, it is possible for the network to transition from sub-critical to super-critical back to sub-critical 
again as the node density increases for a fixed set of network parameters. However, we should expect this behaviour to 
break down for the singular path loss model, that is to say once percolation is achieved adding more nodes (therefore 
interferes) has no bearing; the mean degree is monotonic in λ [85,86].

4.3. Isolation and connectivity

The probability that a node in a RGG or SRGG at location r is isolated, that is, has no links, is easily found from Eq. (2)
to be

P iso(r) = e−λM(r) (8)

with

M(r) =
∫
V

h(|r − r′|/r0)dr′ (9)

which is often called the position dependent connectivity mass, and λM the expected degree at r. If M(r) is finite, true 
except for very long ranged connection functions in infinite domains, this probability is non-zero. The expected number of 
isolated nodes is thus

E(N1) = λ

∫
V

P iso(r)dr (10)

denoting the number of components of size m by Nm . For non-uniform Poisson processes, these equations hold with λ dr
replaced by integration over the more general measure d�(r).

Here, we are concerned with the probability that the network is connected P(NN = 1), that is, there exists a multihop 
path between any pair of nodes. In much of the literature this property is called “fully connected” to avoid confusion with 
“connected” used to indicate individual links between nodes, but here we keep to standard terminology in graph/network 
theory and denote the overall property as connectivity.

By looking at isolated nodes, we see under very mild assumptions that isolation of distant nodes is effectively indepen-
dent, and hence that if there are infinitely many nodes and the integral is finite (connection function not too long ranged), 
the probability that the network is connected, that is, there exists a multihop path between any pair of nodes, is zero. Thus, 
connectivity is normally considered only for finite networks. In terms of the length scales above, we see that M ≈ Crd

0, 
where the constant C is an integral of the function h. Thus the number of isolated nodes is roughly λLd exp

(−Cλrd
0

)
, show-

ing that a scaling in which the mean degree is roughly the logarithm of the number of nodes leads to the number of 
isolated nodes of order unity. A more precise argument to fix the constant needs to take boundary effects into account; see 
the next subsection.

Isolated nodes provide not only a bound but in fact the key to understanding connectivity for d ≥ 2: It turns out that 
they are the main obstruction to connectivity. More precisely, in this connectivity scaling limit, the probability of clusters 
other than isolated nodes or the remaining large component is negligible, so we have the connection probability

P(NN = 1) ≈ exp

⎛
⎝−λ

∫
e−λM(r)dr

⎞
⎠ (11)
V
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This formula has been proved exactly in the connectivity scaling limit for RGG and in some cases for SRGG [23]; see also 
Refs. [87,58]. Numerical simulations confirm its validity well beyond what can be proven. It also holds for the binomial point 
process in the same limit (where λ is now N/|V|). An analogous result is found in random graphs with no spatial component 
[88,89]. Some literature approximates the outer exponential for very high connection probability, that is, exp(−z) ≈ 1 − z. 
We discuss d = 1 briefly in Sec 4.5 below.

For comparison, the percolation transition occurs when the mean degree is a constant, whilst the connectivity transition 
occurs at significantly higher densities, when it is logarithmic in the total number of nodes. For a discussion on connectivity 
in different limits see Refs. [90,65].

4.4. Connectivity and boundaries

The dominant contribution to the integral in Eq. (11) comes from regions of small connectivity mass, that is, near the 
boundaries, especially corners. Intuitively, nodes near the corners have fewer neighbours on average and are more likely 
to be isolated. This is however balanced by the fact that there are fewer nodes near the corners. In the connectivity scal-
ing limit, the dominant contribution comes from the bulk in two dimensions (though edges for the related problem of 
k-connectivity) and from two-dimensional faces in three dimensions; see Refs. [3,6]. Thus, in two dimensions (particularly) 
there has been some justification for neglecting boundary effects, ignoring nodes near the boundary [91]. In another ex-
ample [22], the authors analysed different cellular network metrics assuming a uniform PPP deployment of base stations 
on the plane. Their findings concentrate on the coverage experienced by the typical user, a concept that follows from the 
translational invariance of a uniform PPP.

However, realistic networks have a finite number of nodes, and except for spherical and (physically questionable) toroidal 
domains, some of these lie close to a boundary. The connectivity scaling gives an exponential system size L as a function of 
density λ at fixed r0. Thus in realistic networks, effects of different types of boundary need to be considered. Using a spatial 
decomposition argument, the connection probability was considered using a sum of contributions from different boundary 
elements: a bulk component, and edge and corner contributions that depend on the node density and the connection func-
tion H(r) [70]. Keeping only the leading order contributions for each boundary component [92] we can obtain expressions 
for a variety of d ≥ 2 dimensional domains, e.g., a 3D prism in the shape of a monopoly house [93]

P(NN = 1) = exp

⎡
⎣−

∑
i

∑
b∈Bi

λ1−i G(b)

d,i Vb e−λ�b Hd−1

⎤
⎦ (12)

where 0 ≤ i ≤ d is the co-dimension of a boundary component b (e.g., an edge or a surface); Bi is the set of boundaries 
with co-dimension i; G(b)

d,i is a geometrical factor obtained by expanding equation (11) in the vicinity of the boundary 
component b; Vb is the (d − i)-dimensional volume of the component b; �b is the magnitude of the available angular 
region of a boundary component b (i.e. the solid angle it subtends); and Hd−1 is the (d − 1)th moment of H(r). Ref. [65]
tightened a number of the arguments and showed that the geometrical factor could also be written as another moment 
Hd−2 of the connection function H(r), that is, the connection probability depends on the connection function only through 
two of its moments. Curvature effects, i.e. when the boundary components are not straight or flat, offer corrective, second 
order, contributions to each boundary component [65]; an interesting exception are cusps (zero-angle corners) which behave 
like one-dimensional systems (see below). The derivation of the coefficients of each boundary component is slightly more 
lengthy, however one can follow a structured approach [65], for both k-connectivity [94] and three dimensional domains 
[95].

In interference limited networks, boundaries cause a reduction in the interference field thereby improving coverage near 
border users [64,92]. In contrast, if users are mobile e.g. follow a random waypoint model (see Sec. 8.3) border users are 
more likely to be in outage [86].

4.5. Connectivity in one dimension

In one dimension the isolated nodes are less relevant in the high density limit and the network may instead break 
full connectivity by splitting into two or more large pieces. For the RGG unit disk model it is relatively straightforward to 
calculate the probability of a gap of given size [96,97], but for soft connection functions it remains an interesting open 
problem. One-dimensional effects may appear in higher-dimensional systems, notably annuli or rectangles with very large 
ratio of length to width, and also cusps, that is, curved boundaries meeting at a corner with vanishing angle.

4.6. Applications of connectivity

The connection probability is often associated with wireless network reliability, e.g., to prevent disruption due to short 
radio range, wireless node sparsity, energy resources, cyber attacks, random failures, background noise, etc. The analytical 
results described above are needed if one is interested for example in analysing the reliability assurance of wireless networks 
[98] or when developing wireless security and trust protocols that are tailored to specific network deployments [99,100], 
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or when considering routing protocols in wireless sensor networks [101]. Also, global and local connectivity metrics can 
be used to enhance wireless localization when positioning devices like GPS are unavailable [102]. Typically for instance, 
after an initialization phase, wireless nodes know with whom they can directly communicate, but have no idea about their 
relative geographic locations within the deployment region. There is however enough geometry information encoded in 
the connectivity structure of the network to identify topological features like boundaries [103]. With some modifications in 
H(r), the above methods can also be used to estimate epidemic spreading rates in SIR networks [104]. Many other reliability 
metrics like P (path) defined as the percentage of nodes that are connected via a multi-hop fashion are equivalent to the 
connection probability at high node densities but will not be discussed in detail here.

5. Obstacles and reflections

The mathematical treatment of network connectivity has undergone quite a transformation when going from infinite 
domains to finite ones. Namely, while going from equation (11) to (12), interesting topological features of the network were 
uncovered and directly related to boundary element components in a mathematically tractable manner. Effectively, these 
can be described as geometrical constraints to the wireless network deployment region that in turn affect the wireless 
connectivity and performance of the network. Another closely related boundary effect is that caused by blockage, such as 
buildings obstructing the direct line of sight (LoS) propagation of radio and higher frequency signals. Therefore, in this 
subsection we will discuss the extension of the above efforts towards non-convex deployment regions.

There are three popular approaches to incorporate blockage effects to the modelling of wireless networks. One method 
is using ray tracing to perform site-specific simulations [105]. This however requires a lot of accurate site information, such 
as the size and location of blockages in order to generate the received wireless signal strengths at each wireless device. 
Ray tracing techniques therefore trades the complexity of numerical computation for an accurate site-specific solution. In 
many instances this is necessary and achievable. For example, with the advancement of current imaging technologies and 
the availability of accurate datasets of digitized 3D maps ray tracing methods will eventually become commonplace.

The second approach is to establish some stochastic model, e.g., a random variable modelling the statistical characteristics 
of blockage effects on wireless propagation. An advantage of such an approach is that it can be easily incorporated into 
existing stochastic geometry models [11] and can therefore be used to analyse general networks. For example urban areas 
can be modelled as random lattices [106] that are blocked with some probability, and may be assembled into random shapes 
whose blockage effects are then encapsulated as a random variable contribution towards the received signal to interference 
ratio between each network pair [107].

The third approach builds on the intuition afforded by the previous subsection and equation (12), namely, to evoke a 
spatial decomposition argument and partition the network deployment domain V into separate connectivity contributions. 
For example if the domain is naturally split into two or more well separated domains joint only via small keyhole like 
openings, then one can be concerned with the connectivity metrics, e.g., P f c in each sub-domain, linked together by some 
inter-domain connectivity function [108]. The latter, similar to the case of convex domains, depends on the size and shape 
of the opening, the node density, and the connection function H(r).

Crucial to the refinement needed to expand the above framework towards non-convex domains is that the LoS constraint 
can be realized through the introduction of a characteristic function χ(r, r′) that equals one if a non-obstructed line of 
sight exists between points r and r′ , and zero otherwise. For example, the connectivity mass of a node located at r can be 
modified as follows

M(r) =
∫
V

χ(r, r′)H(|r − r′|)dr′ (13)

and inserted into (11) [109]. Note that non-convex domains have not been studied rigorously yet [23]. Expanding in a similar 
manner as in [65] and keeping only leading order contributions for each boundary component (including the non-convex 
ones) the expression of (12) remains valid. For instance, Ref. [109] studied the case of circular and spherical obstacles. The 
effect of large obstacles is similar to that of curvature in the domain boundary; small obstacles have a differing mathematical 
formulation and have a small effect on connectivity unless they are very numerous.

A further modification to equation (13) is that of including reflection effects. Here, pairs of nodes that would otherwise 
not connect due to a direct LoS path, are allowed to connect if a reflected LoS exists [110].

Keyhole domains involve large connected regions with a small gap through which a signal may pass; they require differ-
ent techniques depending on the relative size of the various length scales (size of hole as well as connection range, typical 
distance between nodes and overall system size); see Ref. [108].

6. Directional antennas

Much of the work on network connectivity that can be found in the literature assumes that each wireless node, whether 
a small mobile device or a large base station, radiates its power and therefore information isotropically, i.e. uniformly in 
all directions. In two dimensions, this can be achieved by an axially symmetric antenna (though most antennas are not 
symmetric), but in three dimensions it is not physically possible to radiate electromagnetic waves uniformly. Nevertheless, 
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a theoretical isotropic antenna is often used as a reference antenna for measuring and characterising the antenna gain G(θ)

of real devices and is specified in dBi, or decibels over isotropic. This refers to the power in some direction θ divided by the 
power that would have been transmitted by an isotropic antenna emitting at the same total power.

Anisotropic radiation gain profiles allow wireless communication links to be established along longer distances in their 
boresight (strongest) direction. A trade-off usually exists however in other directions which have a lower antenna gain. 
To see this, let us assume negligible inter-node interference, and define the connection probability between transmitting 
node i and receiving node j through the relation Hij = P(SNR · |h|2 ≥ ℘), where SNR denotes the long-term average received 
signal-to-noise ratio and h is the channel transfer coefficient for single input single output (SISO) antenna systems.

Assuming lossless antennas, then the signal power at the receiver, given by the Friis transmission formula [111], gives 
SNR ∝ Gij G jir

−η
i j , where ri j = |ri − r j| is the Euclidean distance between the two nodes, η is the path loss exponent (typ-

ically η ≥ 2), and Gij is the gain of the antenna i observed in the direction of node j. Isotropic radiation patterns have 
a constant gain G = 1, while anisotropic ones are functions of the polar angle θ , appropriately normalized by the condi-
tion 

∫ 2π
0 G(θ) dθ = 2π in two dimensions and 

∫ 2π
0

∫ π
0 G(θ, φ) sin θ dθ dφ = 4π in three. Now, as a simple example, we may 

approximate a microstrip (patch) antenna gain profile by a cardioid function in two dimensions by [112]

Gij(θi j) = 1 + ε cos θi j, (14)

where ε ∈ [0, 1] measures the extent of deformation from the isotropic case (ε = 0), and θi j is the direction of receiving 
node j relative to the antenna orientation of node i. It follows that the connection function is now explicitly and quite 
strongly dependent on the angles and orientations of the wireless nodes. Note that if the channel gain |h|2 is assumed 
to be exponentially distributed as to model for example a Rayleigh fading channel, the connection function is then also 
exponentially dependent on the antenna gain parameters θ and ε . In a similar way, one can define other smooth functions 
that approximate the gain profiles of various other antennas (e.g., horn and dipole) as well as multi-directional, e.g., by 
modifying G = 1 + ε cos nθ with n > 1 equally spaced and identical lobes. An alternative approach to smooth gain profiles is 
to use sectorised models [113] or keyhole models [114]. Both models are somewhat over-simplified and may not be able to 
capture in full for example the nulling capability of realistic antennas or may ignore any side or back lobes [115]. Regardless, 
it is still possible to study in some depth and to some accuracy various wireless network properties such as their capacity 
[116], power consumption [117], security [118], and medium access control (MAC) protocol (MAC) design and efficiency 
[119].

The impact of directional antennas on the connectivity of the resulting network topology encapsulates all the above 
wireless network properties. It is well accepted that a better connected network will have shorter multihop paths from 
source to destination, use less energy, will access the wireless medium less often, cause less interference, and have higher 
throughput. This is however an idealized scenario in what is often a very large and complex multi-layered network system. 
Therefore, the impact of directional antennas on the connectivity of wireless networks has been studied both analytically 
and numerically in both ad hoc and cellular networks and has unveiled a number of interesting results.

Since ad hoc networks operate in a decentralized and self-organizing manner, it can be assumed that in most such 
cases antenna orientations are either random from deployment (e.g. air-dropped sensor devices) or are randomly chosen 
from a set of possible configurations without any coordination with other nodes. In such instances, randomized and greedy 
beamforming approaches improve ad hoc network connectivity under certain circumstances [91,120]. Namely, it was shown 
that while directional antennas and beamforming can significantly improve point-to-point wireless links when perfectly 
aligned, when antenna orientations are chosen at random the 1-hop network connectivity is typically deteriorated when 
the path loss exponent η > d in d = 2, 3, dimensions [72]. In contrast, multihop connectivity is greatly improved, especially 
in the dense regime as can be seen by the decreasing number of hops (relays) needed between stations [121]. Implicit for 
this return, is perfect interference management and a good MAC protocol, which controls the user access to the channel 
[122]. Moving to higher dimensions and confined or indoor geometries have also been studied from a network connectivity 
perspective [73]. Interestingly, boundary effects can significantly deteriorate coverage if antenna orientation is randomly 
chosen. In contrast, when considering interference effects in ad hoc networks, directional antennas double up in benefits 
since transmitters cause less interference while having a longer reach, and also receivers can null out interfering signals 
from unwanted directions [123]. These kind of insights and statistics are useful when designing wireless sensor networks 
(WSNs) and wanting to choose the right density of directional nodes to be deployed in order to meet certain connectivity 
requirements.

Advancements in beamforming and beamtracking algorithms make directional antennas core aspects in 5G cellular net-
works and also certain Wi-Fi routers. Incorporating realistic gain profiles into stochastic geometry models has been taxing 
towards mathematical tractability, and therefore sectorised approximations of the above are often used instead [124,125] in 
order to derive closed form expressions for the network coverage, data rates, and multiuser transmission sum rates [126]. At 
such high frequencies however, blockage effects from pedestrians and cars become significant so several models have been 
proposed to capture these effects as well [127,128].

One of the latest advancements in network connectivity related to directional antennas is that of wireless power transfer. 
These technologies pose many new opportunities and challenges towards the development of energy-neutral wireless com-
munication networks [129]. One particularly interesting application is that of Simultaneous Wireless Information and Power 
Transfer (SWIPT) where the receiver may split its received signal into different domains, e.g., time, power, antennae, and 
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space and process it accordingly [130]. Optimal power splitting strategies exist and depend on a number of factors includ-
ing the deployment density of base stations, and their antenna directivity [131]. Namely, SWIPT networks with directional 
antennas are generally more robust with respect to both information and power coverage [132].

7. Temporal networks

Having focused so far on the connectivity behaviour of SRGGs under various limits, we now turn our attention to tem-
poral networks. In our context, this refers to networks with a fixed set of nodes together with links that change with time. 
As always, we are interested in spatial networks and the effects of spatial structure and boundaries. We explore network 
properties such as the expected delay (the time it takes for a node to make a link), or the minimum time for paths to form. 
Even when ignoring any underlying spatial geometry of the network it is often difficult to provide closed form expressions 
for things such as path formation. Recently, [133] provided upper and lower bounds for the probability of accessibility 
(probability there is a path between i and j at time t) of a network for the general case when links between nodes are 
random, and possibly time dependent, and is only tractable when the link probabilities are identical across the network. 
Interestingly, their predictions for the accessibility probability perform well when compared with the inter-contact time of 
taxis in Rome, where taxis are said to be connected if they are within some critical distance [134,133]. By modelling the 
probability a link is made in a given time slot by an exponential random variable they are able to capture the characteristics 
of a temporal-spatial network. For further discussions on space free temporal networks, the reader is referred to [135] for a 
review while [136] provides a thorough overview of dynamics on multi-layer networks.

Incorporating the spatial structure of wireless networks naturally increases the complexity of the analysis. One solution 
is to model the network dynamics by fixing the underlying structure of the point process � and only allowing for the set of 
edges to vary with time. Indeed, by this model [66] obtained closed form expressions for the probability the network is fully 
connected as a function of time by analysing the distribution of isolated nodes for a uniform PPP on the torus (enabling 
N̄ < ∞, but ignoring boundary effects) where the pairwise link probability depends on their Euclidean separation. In these 
static networks, it is again those nodes that are highly isolated that hinder the flow of information through the network but 
can be improved if a random re-wiring of the network is done.

An interesting variation of this model is when an ALOHA channel access scheme is employed, in this scenario a node 
can either transmit or receive (half-duplex) a message during each time step. This model adds directionality to the network 
where the possible edge set varies with time. By considering a connection function where two nodes connect if they 
form a receiver-transmitter pair, a noise condition is met and there is no intermediary node that is transmitting, [137]
showed that the time for a path to form between a source and destination scales linearly with their Euclidean separation. 
Moreover, [138] highlighted that for the SIR model there is a phase transition for a critical transmit probability ℘ where the 
mean delay becomes infinite. This work was extended to nearest neighbour communication models by [139], where they 
also provide bounds on the delay of Poisson networks. An infinite mean delay is a consequence of there being arbitrarily 
large voids in the Poisson network, so conditioning on there being another point in the process mitigates this. However, 
even conditioning on there being two points in �, the expected shortest delay between the points grows faster than their 
Euclidean separation [140].

It is often convenient to assume an infinite mobility model in the network where there is a new, independent, realisation 
of � at each time slot, i.e. there is no spatial correlation between time slots, and as a consequence simplifies the analysis. 
By employing this method, coupled with the static case, one can obtain upper and lower bounds for the performance of 
these spatial-temporal networks with mobility (see Sec. 8). For the high mobility case the local delay is always finite for the 
SIR model [139] due to lack of correlation between time slots, this alludes to how mobile networks have the potential to 
resolve problems of disconnectivity.

8. Mobility

8.1. Mobile networks

In mobile networks there is no fixed network topology, instead, nodes move around the domain according to a particular 
set of rules. This resultant mobility causes links to be continually made and broken. Wireless communication networks are 
a natural application where the nodes could represent hand held smart devices or vehicles say. Of particular interest are 
decentralised mobile (ad hoc) networks since as the number of smart devices continues to grow, so does the strain on 
the pre-existing network architecture. By relaying packets in a multi-hop fashion, rather than through a centralised router, 
the network becomes easily scalable without large overheads [141], provided the devices are mobile. The importance of 
mobility to ad hoc network performance was highlighted by both [142] and [143]. For the static case, comprised of n nodes 
with fixed transmit power, Gupta and Kumar [142] showed the capacity per node of the network scales like O  

(√
1

n log n

)
, 

suggesting network performance decreases with node density. However, Grossglauser and Tse [143] showed that in an 
interference limited environment mobility can in fact improve network capacity; albeit at the cost of increased delay. As 
one might expect, network performance remains sensitive to the choice of mobility model used, for instance in [144–146]
showed that the delay-capacity trade-off differs for the random waypoint and Brownian motion models (see below), and 
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thus characterising the level of inhomogeneity is important [147]. For the remainder of this section we discuss a number of 
interesting and practical mobility models.

8.2. Random walk

One of the simplest mobility models is the random walk (RW) where nodes move independently from one another, 
and their direction of movement at each time step T is chosen at random; thus a particular nodes location at any time 
t is simply x(t) = (t − � t

T �)v� t
T � + ∑� t

T �−1
i=0 v i T , with vi denoting the velocity at time i. In finite domains, the path is 

reflected off the boundary and the resulting spatial node distribution is uniform [148]; for dim ≤ 2 the RW is recurrent. 
As a consequence key metrics are often analysed using a uniform point process [149] and results are compared with other 
models that have an asymptotic stationary distribution, but ignores any inhomogeneities in the network. Alternatively, it 
is sometimes convenient to consider a mobility model on a lattice, where the vertices represent intersections of streets in 
cities such as New York; one such model is the correlated RW, which is a generalised version of the standard RW [148]. On 
the two-dimensional lattice, a user continues in the same direction with probability ℘ , opposite direction with probability 
q and orthogonal direction with probability 2r, such that ℘ + q + 2r = 1. A further extension of the RW is the Manhattan 
model where q = 0, i.e. you never revisit the last lattice site, and the speed between consecutive time steps and other users 
on the same street are correlated [148].

8.3. Random waypoint

The next, and arguably most well studied of the mobility models, is the Random waypoint (RWP) mobility model, which 
has an asymptotic (non-uniform) stationary distribution. In the RWP node movements are independent from one another 
and a single node chooses a waypoint uniformly at random, travels to it with a constant speed, pauses for sometime with 
probability ℘T then repeats the process. The time a node waits at each waypoint, i.e. its “think time”, can be either be 
constant or vary from waypoint to waypoint depending on the model. As such, the RWP can be characterised by a sequence 
of waypoints and pauses, and unlike the RW a node continues on a path often for multiple time slots. Due to the continual 
crossing of paths in the middle of the domain, the probability of finding a node in the bulk is higher compared with the 
boundaries; an effect which is argued to capture the mobility patterns of users in a city. The stationary distribution of 
the RWP has a simple closed form in 1-d [150] and an integral form for any convex polygon which is easily computed 
numerically [151]. Interestingly the spatial distribution of nodes in the RWP model is exactly that of the betweenness 
centrality of a uniform network in the disk (and other convex domains), in the limit as the number of users → ∞ [152]. 
Intuitively, this is a consequence of nodes within the bulk having increased importance as they are more likely to lie on 
the shortest multi-hop path between any pair of nodes. The mobility of the RWP leads to the outage probability being both 
spatially, and temporally, correlated [153,149] in an interference limited environment; an affect which increases in a dense 
network with blockages [154].

8.4. Lévy

A Lévy mobility model (sometimes referred to as a scale free RW [155]) is a modified RW where the path lengths are 
taken from a heavy tailed distribution, thus having infinite second moment, meaning that long “flights” occur with a power 
law frequency rather than being exponentially rare [156]. These heavy tailed distributions are interesting in the analysis of 
wireless networks since they are also a characteristic of human mobility [155,157,158], which was observed from the traces 
of bank notes [157]. As such, Lévy mobility has been used to model the spread of infectious diseases due to air travel, and 
the mobility of portable smart devices in wireless networks [158].

There are typically two cases studied: the Lévy flight and Lévy walk, where the former has each flight taking a fixed 
time, and the latter having finite velocity culminating in a strong spatial-temporal correlation [158]. These flights of large 
length l follow a power-law distribution f X (l) ∼ l−α−1, with 0 < α < 2, which exhibit in a self-similar manner resulting in a 
typical trajectory having a fractal dimension of α [159,160]. The scale free nature of Lévy mobility models leads to a super-
diffusive behaviour, but when think times are also modelled using a power law, the model can either be super-diffusive or 
sub-diffusive [161].

Analogously to how the sum of i.i.d. random variables with finite mean converges to a Gaussian under the CLT, the sum 
of these i.i.d. random variables with infinite second moment tends to a symmetric stable Lévy distribution law with density 
[162–164]

f α,c
stable(x) = 1

2π

∞∫
−∞

exp
(−i t x − |c t|α)

dt

where c > 0 is a scale factor. For α = 1, it reduces to the Cauchy distribution, whilst the Gaussian distribution is recovered 
when α → 2. For the Lévy flight model, Ref. [158] show that the critical delay behaves like N̄α , whereas for the Lévy walk 
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the delay is N̄
1
2 for α < 1, and for α ≥ 1, it behaves like the Lévy flight. This transitional behaviour at α = 1 for the Lévy 

walk is a consequence of the mean flight length being infinite for α < 1 [158,165]
The truncated Lévy flight was later introduced to ensure a finite second moment [166]. Each flight has length l cho-

sen from a levy stable distribution, and is re-sampled if the length is less than zero or greater than some cut off length 
lmax. Similar to the normal levy flight model the direction of travel and speed are chosen uniformly from U (0, 2π) and 
U (vmin, vmax) respectively; as such the mobility can be described by a sequence of flights and pauses. At each destination, 
the pause time is sampled from a different levy stable distribution and is re-sampled if it is less than zero or greater the 
specified maximum time tmax.

8.5. SLAW

Arguably, the Self-similar least action walk (SLAW) model [167] provides a more accurate model for human mobility, 
which was shown when they compared simulation to real life traces, but in contrast to those previously mentioned lacks a 
rigorous mathematical formulation. (You can download the simulation in a link provided in the paper.) It aims to capture 
the four key features of human mobility: flights and pause-times follow a truncated power law; inter-contact times also 
follow a similar power-law decay; human mobility exhibits heterogeneous features and waypoints are fractal in nature. 
Essentially this model captures how humans continuously revisit the same places (work, home, gym, etc.) in their daily 
lives, which defines a concept of a local area of mobility, but they occasionally travel long distances (visit family, days out), 
whilst the places they do visit tend to be popular.

More generally, [168] studied the critical transmission range needed for the RGG for a general mobility M and in 

particular for the RWP model showed rc is O  
(√

log n
n

)
for a non-zero pause time. Their analysis holds more generally for 

any bounded mobility model without blockages.
There is a plethora of other models which claim to capture at least one feature that characterises human mobility with 

the analysis of these models being largely focused on comparing them to real life traces and simulating network behaviour. 
Therefore, for the application of wireless networks it largely remains a balancing act between mathematical tractability and 
model accuracy. One approach is to focus on particular aspects of human mobility such as regions of high/low densities or 
the fractal distribution of waypoints [7,8] that capture the essence of the problem and allow for the analysis of some key 
network metrics.

9. Fractals

So far, we have considered only fairly simple domains. The RGG and SRGG have mostly been studied on square or flat 
torus domains, with occasional forays into rectangular, more general polygonal and some examples with curved boundaries 
and/or obstacles. However, both from a mathematical and a practical point of view, it is important to consider more complex 
geometries. A good starting point for natural fractals was Richardson’s observation that the length of rivers and coastlines 
depends on the length scale used to measure them with an exponent related to a non-integer fractal dimension [169,
170]. Fractals are important in biology, for example trees and lungs [171], where they solve optimisation problems such 
as maximal surface area for a given volume. Both natural features and optimisation leads to fractal structures in the built 
environment, such as in land use and transport networks [172]. For wireless applications specifically, Ref. [173] observes 
from empirical measurements that the coverage domain of a cellular base station is fractal, and the popular self-similar 
least action walk (SLAW) model for human mobility uses fractal distributions [174].

Spatial networks with fractal boundaries were studied in Ref. [175]. The fractals were defined using a self-similar con-
struction: Let {Ti} be a finite set of contracting similarity transformations, that is, |Ti x| = ri |x| with ri < 1. Then, there is 
a unique non-empty closed set F satisfying F = ∪i T i(F ) as shown by Hutchinson [176]. The open set condition says that 
there exists an open set V with ∪i T I (V ) ⊆ V . In this case, the Hausdorff and Minkowski dimensions are both equal to the 
similarity dimension, which is the unique positive solution D of 

∑
i rD

i = 1. It would be interesting to investigate fractal 
boundaries where these dimensions are not equal, such as some classes of self-affine sets [177]. There are also some other 
mathematically natural random fractal constructions including critical percolation [178] and aggregate tessellations [179].

In Ref. [175] the connection rule was line of sight (LOS). At high density, there are many nodes located near the boundary 
with a positive probability of not linking to the rest of the graph. This leads to a connection probability of the form 
exp(−aλD/d), where a is a constant (or generally a log-periodic function of the density λ), d = 2 is the dimension of 
the underlying space, and 1 < D < 2 is the similarity dimension of the boundary. In particular, the connection probability 
decreases with density, and in practical networks would need additional nodes situated near the opening of small enclosures 
near the boundary.

An alternative scenario is for the measure defining the PPP to be fractal. These were considered in Ref. [8] along with 
some non-fractal self-similar measures. Here, the defining transformation is � = ∑

i pi� ◦ T −1
i , with pi a probability vector 

(that is, pi ∈ (0, 1) with 
∑

i pi = 1). If pi = rD
i , the measure is “almost uniform” (AU) in the sense that there is a fixed ε > 0

for which any ball centred on a point in the support F contains at least ε times the measure in any other ball centred on 
a point in F and of the same radius. Ref. [8] investigates whether the number of isolated nodes is Poisson distributed and 
whether the network is likely to connect if there are no isolated nodes. The first property can fail if the measure is not 
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AU, and the second can fail if the support is finitely ramified, that is, can be disconnected by removing a finite number of 
points. Whether the measure is fractal or smooth is less important.

10. Metadistributions

In any system with a source of randomness other than the node locations, it is helpful to consider metadistributions, 
that is, the distribution of some quantity conditioned on fixing the node locations. The first example of such an analysis 
was for Poisson bipolar networks, where the set of transmitters are modelled by a PPP, and each transmitter is paired with 
a receiver located at fixed distance R away in a direction chosen uniformly at random [180]. As a result, bipolar networks 
are comprised of transmitter and receiver pairs, and there no longer exists a mesh network structure where a device has 
the potential to form a connection between multiple devices (directly or indirectly in a multi-hop fashion). The authors in 
Ref. [180] considered the metadistribution of the link outage probability, whilst Ref. [181] which considered the metadis-
tribution of the signal to interference ratio (SIR). Each link in the network has an outage probability depending on the 
locations of the other nodes, thus, fixing a large network we find a distribution of SIR. Since the PPP is an ergodic process, 
this also gives the distribution of outage probabilities for a transmitter located at the origin, considering randomly located 
nodes. Averaging over the node locations, or equivalently, the metadistribution, we obtain the mean outage probability. 
The motivation for understanding the metadistribution is that it gives much more information than the mean about the 
performance of typical individual links.

The SRGG has a source of randomness other than node locations, namely the links. Given the node locations, each node 
has an isolation probability, that is, the probability that it has degree zero. Ref. [66] considered the metadistribution of the 
isolation probabilities. In this paper, and previously in Refs. [180,181] it was noted that the metadistribution is not generally 
available in closed form, however it is easier to find analytic expressions for the moments using the probability generating 
functional. Mnatsakanov’s method [182] was used to extract the metadistribution numerically from these moments. For 
short ranged connection functions the metadistribution peaked at zero and/or one, whilst for a small world generalisation 
involving longer links, it became more concentrated towards a value strictly between zero and one. This paper also consid-
ered a temporal SRGG, with links correlated in time as determined by an Ising spin model, using the above calculation to 
investigate the distribution of times required to send information to all nodes on the network.

11. Entropy

Randomness can helpfully be understood using the notions of information theory and entropy. Given a discrete prob-
ability distribution with probability mass function pi ∈ [0, 1] with 

∑
i pi = 1, the Shannon entropy is well known to be 

H = − 
∑

i pi log pi (the logarithm is often base 2, but may be e or 10 and we adopt the convention 0 log 0 = 0). The concept 
of entropy appears in the network literature in several distinct ways. The earliest use is to describe the information content 
of a single graph by constructing a probability distribution on the nodes [183]; the many approaches along these lines are 
reviewed in Ref. [184]; see also the more recent Ref. [185]. Other work considers entropy of processes on the network, 
such as flow of water [186] or nerve impulses [187]. Alternatively, entropy can refer to a graph ensemble, a probability 
distribution on graphs [188], for example arising from a statistical mechanical approach [189].

Most work to date have focused on non-spatial graph ensembles. More recently, spatial graph ensembles have been 
considered; the spatial character of the graph leads to distinctive properties of the entropy as a function of the parameters. 
The first known work to allude to the entropy of SRGG ensembles appeared in the wireless communications networking 
community [190]. Here, randomness may arise from both node locations and links; for the RGG the only randomness is in 
the node locations, whilst for the SRGG it is interesting to consider entropy conditional on fixing the locations and retaining 
the random links [191], in a similar vein to the metadistributions discussed above. Averaging this entropy over the node 
locations [192–194] then gives the conditional entropy, related to the mutual information between the graph topology G
and the node locations P through the relation I(G, P ) = H(G) − H(G|P ).

12. Conclusion

We have reviewed models for spatial networks, for which there is a growing literature in probability, statistical physics, 
complex networks and wireless communications, among other fields. The original model is the random geometric graph 
(RGG), studied for almost 60 years, and of ongoing interest.

As we have seen, the RGG has many generalisations, to different point processes, linking rules as a function of distance 
and orientation, confined geometries (including non-convex), temporal and mobility effects, complex (fractal) geometry in 
the point process and/or boundary, and interference (multi-point interactions). There are some instances of universality, 
for example, that the connectivity probability can be expressed in terms of boundary components and moments of the 
connection function, and is thus to a large extent independent of the details of the geometry and connection function. 
However, most generalisations have led to completely new qualitative behaviour.

The scope of open problems in this field is truly vast. Even an apparently simple question as giving an effective approxi-
mation for the connection probability of the soft random geometric graph in one dimension has not been solved. Extensions 
and combinations of the above topics will provide a source of mathematically and practically interesting problems for many 
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years. Whatever the reader’s inclination, the following questions may be helpfully posed: How do the results for spatial net-
works differ from non-spatial (for example random graph) models? How do the results depend on details of the geometry 
(for example point processes, confining boundaries)? What are the properties of typical networks, avoiding averaging over 
locations and links?
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