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We introduce a unified framework to discuss the emergence of corrugations on material 
interfaces transported by random media. Relating the shape of these interfaces to the 
stirring field giving birth to it, we formalize a population balance dynamics for the 
r-elements (segments of length r) needed to cover the interface contour in the course of 
its deformation. As long as corrugations grow kinematically, shapes change continuously, 
their fractal dimension d f (r, t) is a non-monotonous function of the scale r, and increases 
in time t with no bounds. Interface creation and destruction balance, however, in self-
propagating fronts like flames, and in fronts smearing by molecular diffusion, through a 
mixing induced overlap mechanism, leading to a stationary shape. These findings, which 
help reexamining old observations in a new perspective, also reconcile kinetics with 
geometry.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous introduisons un cadre unifié pour discuter l’émergence de corrugations sur les 
interfaces matérielles transportées dans des milieux agités aléatoirement. En reliant la 
forme de ces interfaces au champ d’agitation qui la crée, nous formalisons une dynamique 
de bilan de population pour les r-éléments (segments de longueur r) nécessaires pour 
couvrir le contour de l’interface au cours de sa déformation. Tant que les corrugations 
croissent cinématiquement, les formes changent continuellement, leur dimension fractale 
d f (r, t) est une fonction non monotone de l’échelle r et augmente dans le temps t sans 
limite. La création et la destruction d’interfaces s’équilibrent toutefois pour les fronts auto-
propagés tels que les flammes, et pour les fronts qui s’étalent par diffusion moléculaire, 
par un mécanisme de chevauchement induit par le mélange, conduisant à une forme 

* Correspondence to: Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, Marseille, France.
E-mail address: emmanuel.villermaux@univ-amu.fr.
https://doi.org/10.1016/j.crhy.2018.10.009
1631-0705/© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.crhy.2018.10.009
http://www.ScienceDirect.com/
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:emmanuel.villermaux@univ-amu.fr
https://doi.org/10.1016/j.crhy.2018.10.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crhy.2018.10.009&domain=pdf


E. Villermaux / C. R. Physique 19 (2018) 306–315 307
stationnaire. Ces résultats, qui permettent de réexaminer d’anciennes observations dans 
une nouvelle perspective, réconcilient également la cinétique avec la géométrie.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ce qui est réel, c’est le changement continuel de forme :
la forme n’est qu’un instantané pris sur une transition.

Henri Bergson (1907), L’évolution créatrice

Our aim is to describe the shape of interfaces, contours, lines, and surfaces transported by moving continuous media, and 
to relate this shape to the process giving birth to it, namely to a feature of the motion itself. Our examples are mostly in 
fluids, although the discussion is not restricted to any kind of medium in particular. We will only need the motions to have 
a velocity field such that its velocity increments v(r), that is, the mean separation velocity of two points in the medium 
distant by r is known, and is statistically steady in time (i.e. depends on r only). We call it the stirring field.

Our definition of the ‘shape’ is such that it should be related to the stirring field. Since the latter is r-dependent, we will 
call the shape of the interface the relationship existing between the number N(r, t) of segments of length r needed to cover 
it versus r at a given time t as (Fig. 1a),

N(r, t) ∼
(

R

r

)df

(1)

where R is an outer scale defining the total extend of interface, and df is a fractal dimension [1]. Accordingly, the net length 
of the interface measured at scale r is

L(r, t) ∼ rN(r, t) (2)

while a surface embedded in the three-dimensional space has an area r2 N(r, t) ∼ r2−df .
Enforcing a strict power-law dependence on r in (1) does not imply that df will, in general, be a constant number. In 

fact, depending on the precise form of v(r), and depending if the interface has reached a steady state, or if it is developing 
in time t , the dimension df(r, t) will be shown to be generically dependent on both r and t .

The question envisaged here is not new. In a celebrated paper, G. I. Taylor [5] established a connection between the 
velocity fluctuations and the dispersion of a single particle in turbulent flows, making this way a remarkable (but unnoticed 
at that time) parallel with Langevin’s method to describe thermally activated diffusion [6]. L. F. Richardson related the 
structure of the velocity differences v(r) to the scale-dependent dispersion coefficient of pairs of particles in a not less 
celebrated (and unnoticed at the time, see [7]), contribution [8].

However the status of the shape of material lines and surfaces (and not only the dispersion properties of their con-
stitutive particles) in stirred, random or turbulent media was only considered much later (see, e.g., [2,9]), and notably by 
the time the concept of fractals became popular (see [10] for a review). For instance, it was argued that the shape of the 
stationary surface separating a turbulent from a non-turbulent medium has a dimension df = 7/3 (or 4/3 when the surface 
is intercepted by a plane cut as in Fig. 1c) and that this number could be related to Kolmogorov’s scaling for v(r) at high 
Reynolds number. This statement was soon moderated by more refined measurements showing that while N(r, t) is indeed 
steeper than for a smooth object, it is however not a strict power law in r [11] and is in addition, for a growing interface 
as in Fig. 1b, time dependent [3,12,13]. Similar ideas to those used to describe fronts passively advected were applied to 
self-propagating fronts like flames [14] and were criticized too [15,16], including when the intrinsic destabilization of these 
fronts cooperates to their corrugation [17].

It is our aim to describe the structure of these interfaces beyond the standard, and not always convincing scaling ar-
guments by articulating a relationship between the geometry of the corrugations, and the dynamics ruling their existence, 
from their birth, to their possible destruction. The objects we will describe are illustrated in Fig. 1. They consist in both 
arborescent lines (Fig. 1b) and surfaces (Fig. 1c) of passively transported scalar quantities, as well as stationary chemically 
reactive fronts in turbulent flows (Fig. 1d). For each of these situations, we will decipher the method of construction of 
N(r, t) in Eq. (1) by computing the scale-by-scale budget of the r-elements covering the interface (Fig. 1a) in relating it 
to the structure of the stirring field v(r). In this process, it will be seen that the knowledge of the microscopic principles 
of scalar mixing are required to describe properly the shape of interfaces that dilute, mix, or react in the field distorting 
them.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. a) Stirring kinematics of a blob in a flow where the separation velocity v(r) = 〈�r/�t〉 depends on the separation r itself. The distorted blob 
net length L(t) is different from the end-to-end dispersion R(t). Adapted from [2]. b) The corrugation of a line transported by a turbulent flow shown 
at successive instants of time [3]. c) A cut through a compound plume from nearby sources of two different color dyes stirred in a turbulent jet. d) An 
instantaneous cut on the axis of a neutral (pH = 7) water turbulent jet (4 cm in diameter, the Reynolds number is of order 104), seeded with a pH-sensitive 
fluorescent dye issuing in an acid environment at pH = 2. The fast acid-basic neutralization of the dye occurs on a sharp, corrugated interface [4].

2. Scale-by-scale budget of front corrugations

2.1. Population balance of r-elements

We call N(r, t) the number of segments of length r needed to cover an interface contour at time t (see Fig. 1a). Because 
the substrate supporting the interface is stirred, and because the segments are delimited by material points carried by the 
flow, each segment is, in the mean, stretched by the base flow by an amount �r during the time interval �t . Conservation 
of the number of segments that transit under stirring from r to r + �r during �t writes [3]:

N(r + �r, t + �t) = N(r, t) − Ṅ(r, t)
∣∣
loss �t (3)

giving, on ensemble average,

∂t N +
〈
�r

�t

〉
∂r N = − Ṅ(r, t)

∣∣
loss (4)

where Ṅ(r, t)|loss is a possible sink term that represents the rate of destruction of r-elements either by diffusive reconnection 
between nearby elements, or erasing by front propagation, as we will see.

Central to the population balance dynamics of N(r, t) is thus the r-dependence of the separation (or pair dispersion) 
velocity 〈�r/�t〉 between two material points separated by r. This velocity is in practice affected by fluctuations inducing 
exchanges between neighboring r-classes in the population N(r, t). These are reflected by a non-zero 〈�2r/�t2〉 term at 
the next order in Eq. (4), giving rise to a lognormal distribution of stretching factors in random flows [18,19]. However, the 
present discussion only requires the knowledge of the r-scaling of 〈�r/�t〉, irrespective of its fluctuations.

2.2. Stirring law

In nature, the separation velocity 〈�r/�t〉, may it concern time-dependent flows like in turbulence [3], or stationary 
flows like in random porous media [20] for instance, always presents a crossover between a simple shear dominated régime, 
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and a régime with a scaling dependency either enforced by a conservation law, or by a prescribed geometrical disorder. We 
call d the characteristic crossover lengthscale, which coincides, for instance, with the Taylor scale in turbulent flows (which 
marks the frontier with the intermediate dissipative range of scales where viscosity progressively regularizes the motion, 
down to the Kolmogorow scale, where the motion is essentially damped), or with the pore size in a porous medium, and 
we make distances r dimensionless as

r ≡ r

d
(5)

A generic expression for the separation velocity 〈�r/�t〉 suitable for the variety of stirring fields alluded to above is〈
�r

�t

〉
≡ v(r) (6)

= u r1−ξ
(

1 − e−rξ
)

(7)

−−−→
r�1

u r (8)

−−−→
r	1

u r1−ξ (9)

interpolating, through a continuous crossover, between a linear shear regime v(r) ∼ r for r � 1, and a regime at larger scale 
where the velocity difference between two points scales like r1−ξ . The exponent ξ depends on the specific situation at 
hand; we have ξ = 2/3 in high-Reynolds-number turbulence, and ξ = 1 in porous media; however, the subsequent analysis 
holds for any 0 ≤ ξ ≤ 1.

The velocity u is a representative root mean square velocity of a possibly time-dependent velocity, whose fluctuations 
give precisely rise to one particle dispersion [5,21]. The formulation in Eq. (7), which has no other fundamental justification 
than bridging two well-controlled scaling regimes through a simple crossover easily manipulable for further computations, 
is reminiscent of the one used by Kraichnan [22] for turbulence (i.e. a velocity rapidly fluctuating in time, but with a 
permanent spatial structure).

2.3. Arborescent growth

We first consider situations where the destruction term in the general population balance is zero. Then, Eq. (4) becomes

∂t N + v(r)∂r N = 0 (10)

This conservation equation for N(r, t) is strictly equivalent to a Liouville equation for the density of segments n(r, t) such 
that N(r, t) = ∫ r

0 n(r′, t)dr′ , or n(r, t) = ∂r N(r, t), which obeys

∂tn + ∂r [v(r)n] = 0 (11)

already used in this form in a different but related context [23].
It is clear that the dynamics in Eq. (10) has no stationary state. The r-elements are continuously stretched by the 

base flow, therefore providing room for ever more numerous smaller r-elements, and in the absence of destruction 
mechanism, their number grows in a multiplicative fashion as in Figs. 1a, b. When v(r) is not a constant and de-
pends on r, the r-elements are however unevenly stretched. This is easily figured out quantitatively by noticing that 
d ln(erξ − 1)/dr = ξ/[r1−ξ (1 − e−rξ

)] and by further scaling time t by

t ≡ u t

d
(12)

to obtain from Eq. (10)

∂t N + ∂ψ N = 0, with ψ = 1

ξ
ln

(
erξ − 1

)
(13)

indicating that N(ψ, t) now propagates at speed unity in the {ψ, t} space, the ψ − r transformation having compensated for 
the r-dependence of v(r).

Solutions to Eq. (13) are of the form N(r, t) = f [ln(erξ − 1) − ξt], for which the function f [·] is fixed by an initial 
condition. Imposing that the contour is initially smooth (df = 1), like in Figs. 1a, b for instance (we also set the initial blob 
size to d, without loss of generality), that is,

N(r, t = 0) = 1

r
(14)

one has, at any posterior time t ,
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Fig. 2. a) Sketch of the arborescent pair dispersion process: each pair of material particles is stretched at velocity v(r), dependent on r, thus corrugating 
the line. b) Number of segments N(r, t) of size r needed to cover an initially smooth contour (N(r, t = 0) = 1/r) for successive instants of time t according 
to (15) for t = 0, 1, 2, 3. Inset: the fractal dimension of the contour df(r, t) versus r for the same times.

N(r, t) =
{

ln
[

1 + e−ξt(erξ − 1)
]}−1/ξ

(15)

hence illustrating, as seen in Fig. 2, how the material contour becomes fractal with a dimension

df(r, t) = −d ln N(r, t)

d ln r
(16)

depending both on scale, and time. The contour remains approximately smooth at small scale (r � 1), and gets progressively 
more corrugated for scales slightly larger than the crossover scale, thus reflecting the r-dependence of the underlying stirring 
law v(r). The very large scales evolve at a slower pace (since r/v(r) ∼ rξ is an increasing function of r) and remain thus 
close to smooth (i.e. df ≈ 1) for a longer time. Both the scale dependence of df(r, t) [11] and its short-time increase [12,24,
13] are experimental facts, as long as new effects, discussed in the sequel, come into play.

The net material blob contour length

L(t) = lim
r→0

{rN(r, t)} = et (17)

increases exponentially in time because of the multiplicative nature of lengths stretching, as is common place in random or 
turbulent flows not dominated by a sustained shear [25–27]. Note that the net blob length L(t) is fundamentally different 
from the end-to-end dispersion distance of the distorted contour R(t), that is the distance separating the extreme ends of a 
stretched blob (see Fig. 1a). As soon as R(t) 	 1, the integration of Ṙ = R1−ξ given by (7) leads to

R(t) ∼ t1/ξ (18)

independent of the initial size of the material contour, a relationship also known, with ξ = 2/3, as Richardson’s law [8].

2.4. Global, r-independent decay

The burgeoning growth of material lines cannot go on indefinitely and there are several reasons for that. One is internal 
to the dynamics described above. The fractal dimension is predicted by Eq. (15) to increase with no bounds in time and 
thus to exceed the dimension of the embedding space (equal to 3 in the experiments shown in Fig. 1). Overlaps between 
adjacent sub-parts of the contour must necessarily occur, leading to the destruction of r-elements, and therefore to growth 
saturation.

Another reason is that we are describing the corrugation of objects that, as they are transported by the moving substrate, 
are likely to diffuse in it. The contours we are describing are borders of finite size lamella of substances carried by the flow 
(scalar dyes typically). A distorted scalar blob of dye mixes when it is stretched, meaning that its concentration starts, after 
some time, to decay. If the blob can be detected as long as the scalar concentration it carries remains above a threshold 
concentration cs, then the time it takes for the contour to fade away and vanish in the diluting, stirred environment is of 
order (in units of d/u):

ts ∼ ln

(√
Pe

cs

)
, where Pe = u d

D
(19)

is a Péclet number with D the molecular diffusion coefficient of the dye, a number usually large, but finite (see, e.g., [28,
29]).
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Fig. 3. a) Sketch of the destruction mechanism of r-elements on a self-propagating interface giving rise to the destruction rate in Eq. (24). The propagation 
velocity c is perpendicular to the interface. b) Stationary shape of the interface obtained from the integration of Eq. (26) with ξ = 2/3.

Let us consider first that the extinction time ts above affects uniformly all the elements constitutive of the distorted 
lamella. The population balance dynamics of its contour now incorporates a loss term such that Eq. (3) becomes

N(r + �r, t + �t) = N(r, t) − N(r, t)
�t

ts
(20)

or

∂t N + v(r)∂r N = − N

ts
(21)

Setting Ñ(r, t) = N(r, t) et/ts , we have

∂t Ñ + v(r)∂r Ñ = 0 (22)

which is, not surprisingly, formally identical to Eq. (10). A global, r-independent decay does not alter the relative proportion 
of the r-elements constitutive of the contour, but simply diminishes their overall number, proportionally to e−t/ts . This 
ingredient alone thus cannot account for the saturation of the fractal dimension. In fact, it should even be refined to 
incorporate the notoriously broad (exponential, see [28]) distribution of mixing times ts in random flows of which Eq. (19) is 
a representative mean. To the longest mixing time in the distribution corresponds unmixed sub-parts of the lamella whose 
contour ultimately vanishes as a tiny segment. The fractal dimension, after the initial increase described in Section 2.3 for 
t < ts thus decreases down to close to 1 for t > ts [12,30], but no stationary state exist.

3. Propagating fronts: destruction of r-elements

Global scalar decay does not lead, as discussed above, to any kind of statistically steady interface shape. We consider 
now two ingredients for which interface creation and destruction actually balance.

3.1. Constant propagation velocity

Interfaces may propagate on their own. For instance, a flame is a thin out-of-equilibrium region separating a metastable 
bulk phase (the reactants) from a stable one (the products) and the return to equilibrium proceeds from the propagation of 
one phase into the other, at a velocity c locally perpendicular to the interface [31]. In that case, the interface is no more 
attached to tagged material particles in the stirring medium, but moves intrinsically through it. This phenomenon causes 
the destruction of r-elements in the following way.

Let R be the global extent of the interface (which may be the end-to-end distance of a distorted blob discussed in Eq. 
(18), or the diameter of the nozzle for a jet flame like in Fig. 1d, the size of the burner or the tube diameter in which the 
front propagates etc.), setting its typical radius of curvature. We discuss for simplicity the argument, illustrated in Fig. 3a, in 
two dimensions and we let the propagation be directed inwards.

Consider first a smooth circular interface of radius R , in the absence of stirring. The interface radius shrinks at constant 
speed Ṙ = −c and will vanish down to a point in a finite shrinking time R/c. We may also write equivalently 2πR Ṙ =
−Lc where L = 2πR is the interface length. This relationship still holds when the interface is corrugated, as first noticed 
by G. Damköhler [32]. This explains why if L is larger than 2πR , the interface speed Ṙ is increased relative to c by an 
amount L/R , which is proportional to the interface length, and thus why turbulent (and thus corrugated) flames propagate 
faster than laminar (straight) flames [33,34]. In our illustrated example of Fig. 3, the effective propagation speed Ṙ of the 
corrugated interface is thus such that



312 E. Villermaux / C. R. Physique 19 (2018) 306–315
2πR Ṙ = −L c (23)

where L is the net interface length measured at scales small enough for it to be r-independent (i.e. r < d), smooth, and thus 
propagating at speed c. With L/R ∼ (R/d)df−1, the propagation speed is anticipated to be Ṙ ∼ c (R/d)df−1 (see, e.g., [35,36]
and references therein).

We rewrite Eq. (23) at any scale r as R Ṙ ∼ L(r)c(r). Both Ṙ and c(r) are unknown at this stage, as well as df . Making use 
of Eqs. (1) and (2), which provide Ṅ = N(r)Ṙ/R , we find that the destruction rate of r-elements is

Ṅ
∣∣
loss ∼ rN2 c(r)

R2 (24)

a strongly decaying function of r (for a smooth interface in a medium at rest, Ṅ
∣∣
loss = c/r).

The destruction speed of r-elements c(r) is equal to c for a smooth contour as already stated, that is for corrugation 
scales r of the order of d or below, and is equal to zero for a straight interface propagating perpendicular to itself. In-
between these two extremes and for an interface shrinking self-similarly in a time R/Ṙ , the destruction speed c(r) is such 
that the shrinking time L(r)/c(r) = R/Ṙ is independent of r, or

c(r) = Ṙ
( r

R

)1−df
(25)

a decaying function of r when df > 1, expressing consistently that small scale corrugations are erased faster than larger 
ones. As already noted, c(r � d) ∼ c since the interface is smooth there, within a logarithmic correction 

√
ln(u/c) resulting 

from the Eikonal distortion of the front under stirring [37], accounting equivalently for the fact that no interface destruction 
occurs in the absence of intrinsic propagation, when c = 0.

Under stirring, the production term v(r)∂r N in the general population balance in Eq. (4) competes with the above 
destruction term, and a steady state may now eventually be reached. The equilibrium is such that v(r)∂r N = −Ṅ

∣∣
loss and is 

described by

∂r

(
1

N

)
∼ r

R2

c(r)

v(r)
(26)

which solves for the stationary shape N(r) ∼ r−df , and self-consistently for the dimension df as a function of the stirring 
velocity exponent ξ . The asymptotic r-dependences of N(r) are prescribed by those of v(r) in Eq. (7). Setting C = c/u ×
(d/R)2−ξ , we have (in scaled units):

N(r) ∼ 1

C r
, for r � 1 (since c(r � 1) = c, and N(r → 0) → ∞) (27)

N(r) ∼ 1

C r1+ξ/2
, for r 	 1 (28)

The interface is smooth at small scale, and fractal at larger scale, with dimension df = 1 + ξ/2. The crossover scale between 
these two extremes is at r = 1 independent of c and solely prescribed by the structure of the stirring field, while the 
net length of the interface L = d limr→0{rN(r)} = d C−1 is proportional to the ratio of the stirring speed u to the intrinsic 
interface speed c. The mean interface speed (or combustion velocity) Ṙ = c L/R ∼ u × (R/d)1−ξ is increased accordingly. It 
is, in this geometrical description, proportional to the stirring speed u, independent of c, as anticipated by Damköhler. A 
more refined description [37] would slightly alter this trend as

Ṙ ∼ u√
ln(u/c)

(
R

d

)1−ξ

(29)

for which Ṙ ≈ u when u/c 	 1, but also Ṙ → 0 when c → 0, as it should. The interface speed is a weakly increasing 
function of its global extent R , a fact known empirically [35,36].

3.2. Passive fronts: diffusive reconnections

We now come back to passively advected fronts, or at least fronts whose interface smears out by diffusion but which, 
when straight and smooth, do not propagate. We consider here the consequence of an ingredient already mentioned at the 
beginning of Section 2.4, namely the necessary overlaps that occur between adjacent sub-parts of the contour associated 
with the development of its corrugations.

A distorted blob in a free stirred environment like in Figs. 1a, c has a contour length L(t) growing like eγ t (with γ = u/d), 
while its global extent R(t) grows according to t1/ξ only (see Eqs. (17) and (18)). At some point, the blob interface is 
so convoluted and densely packed in space that the distance between adjacent portions of it become of the order of the 
diffusion length 

√
D/γ . These reconnections are visible on the contour in Fig. 1c, composed of the intrication of two sources 
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Fig. 4. a) Sketch of the diffusive coarsening mechanism leading the destruction of r-elements, thus limiting the interface growth. b) A planar cut through 
a water turbulent jet (diameter 4 mm at exit, Reynolds number 104) seeded with a weakly diffusing fluorescent dye. The interface of the jet with the 
still environment is the tiny white contour bordering the jet; it is highlighted in the inset. c) The number of segments N(r) of size r needed to cover the 
contour in b). The crossover lengthscale d = 1 mm is of the order of the Taylor scale based on the transverse size of the jet at mid-height.

with distinct colors and displaying obvious overlaps. These overlaps are, besides, the key phenomenon to understand the 
structure of complex mixtures, and their rate of evolution towards uniformity [38]. Molecular diffusion smears the contours 
into a larger ensemble, called the coarse grained scale [39] given by, when written at scale r,

η(r) = r/
√

Pe(r) (30)

= r

(
γ (r)r2

D

)−1/2

=
√

D

γ (r)
, with γ (r) = v(r)/r (31)

if γ (r) is the stretching rate at scale r. Since the fusion process of an adjacent lamella on the contour takes a time on the 
order of γ (r)−1 (times a weak correction function of the Péclet number, see Eq. (19)) and is accompanied by the disap-
pearance of corresponding r-elements (typically N(r) → N(r)/3 after fusion, see the sketch in Fig. 4a), the corresponding 
‘propagation speed’ in the terminology of Section 3.1 is

c(r) = γ (r)η(r) = √
Dγ (r) (32)

a decaying function of r because small scale corrugations overlap faster than larger ones. Adapting this new situation to the 
equilibrium between production and destruction of r-elements in Eq. (26), the stationary shape N(r) is now ruled by

∂r

(
1

N

)
= 1

R2

√
D

γ (r)
(33)

The asymptotic r-dependences of N(r) with r scaled by d as in Eq. (5) are, with P = (d/R)2/
√

Pe,

N(r) ∼ 1

P r
, for r � 1 (34)

N(r) ∼ 1

P r1+ξ/2
, for r 	 1 (35)

The net length of the interface L = d limr→0{rN(r)} = d P−1 is larger if the interface is less diffusive, at larger Péclet number 
Pe.
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The dimension of the interface for r 	 1 is also, as for a self-propagating front, given by df = 1 + ξ/2 in that case. With 
ξ = 2/3 (and therefore v(r) ∼ r1/3 which suits to high Reynolds number turbulence), we find df = 4/3, a value commonly 
reported for turbulent interfaces, may they be self-propagating, or passively advected (see the review in [10]). Further 
illustrations are provided by the contour of a turbulent jet seeded with a weakly diffusing dye shown in Fig. 4, or by 
another type of diffuse interface with reconnections when the interface is reactive, undergoing a fast diffusion-controlled 
chemical reaction [4], as in Fig. 1d.

The existing interpretations for this known value of df are, however, very different from the present one. Inline with the 
orthodox theory of turbulence where dissipative effects are confined to small, cut-off scales but do not affect the inertial 
range of scales, df = 4/3 has received an inertial range interpretation ‘à la Kolmogorov’, or more exotic ones involving per-
manent coherent structures [40], all these scenarii being independent of molecular diffusion. Linking here the geometrical 
features of a distorted interface with its mixing kinetics, we show, on the contrary, that molecular diffusion operates, by the 
overlap mechanism, at all scales, a fact seldomly recognized (see, however, [22]). As long as diffusion has not set-in, that is, 
before the mixing time in Eq. (19), we have seen that df(r, t) is a non-monotonous function of r, and increases in time t
with no bounds. It is because interfaces are smeared by diffusion that their corrugations merge, percolate, and rectify. From 
this subtle equilibrium between interface creation and destruction by mixing, r-elements eventually self-organize in relative 
proportions N(r) independent of time. The scaling features of N(r) do not depend on the Péclet number Pe, but the net 
interface length L does.

4. Conclusion

We have provided a new, simple and unified framework to discuss the emergence of corrugations on material interfaces 
stirred by random media. Relating the shape of these interfaces to the process giving birth to it, we have formalized a 
population balance dynamics for the r-elements that cover the interface contour in the course of its deformation. As long as 
corrugations grow kinematically, shapes change continuously, their fractal dimension df(r, t) is a non-monotonous function 
of the scale r, and increases in time t with no bounds. Interface creation and destruction balance in self-propagating fronts 
like flames, and in fronts smearing by molecular diffusion, through a mixing induced overlap mechanism, leading to a 
stationary shape. These findings, which help reexamining old observations, namely the fractal character of stirred interfaces, 
with a new perspective, also reconcile kinetics with geometry in showing why and when the latter depends on the former.
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