
C. R. Physique 20 (2019) 569–582
Contents lists available at ScienceDirect

Comptes Rendus Physique

www.sciencedirect.com

Studies on the cold binary fragmentation of even–even 
230–250U isotopes

Étude de la fragmentation froide binaire des isotopes pairs–pairs 230–250U

Kolathu Parambil Santhosh ∗, Annu Cyriac

School of Pure and Applied Physics, Kannur University, Swami Anandatheertha Campus, Payyanur 670327, Kerala, India

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 25 March 2019

Keywords:
Heavy particle radioactivity
Spontaneous fission
Cold binary fission

Mots-clés :
Radioactivité des particules lourdes
Fission spontané
Fission froide binaire

Within the framework of the Coulomb and proximity potential model (CPPM), we studied 
the cold binary fission of even–even 230–250U isotopes using the two versions of the nuclear 
proximity potential, Proximity 1977 and Proximity 2000. The most favorable binary fission 
path is the one that has a high Q value and a minimum driving potential with respect 
to the mass and charge asymmetries. A nucleus with doubly-closed shell or near doubly-
closed shell always appears as the heaviest nucleus in the favored channel of the binary 
fission of all the mentioned isotopes. For the 230,232,234U isotopes, the highest yield was 
predicted for the isotope of Pb (Z = 82) as one fragment, whereas for the 236U isotope, 
fragmentation with the isotope of Hg (Z = 80) as one fragment possesses the highest 
yield. For the 238U isotope, fragmentation with the isotope of Pt (Z = 78, N = 126) as one 
fragment possesses the highest yield. In the case of the 240,242,244,246,248,250U isotopes, the 
highest yield is for the fragmentation with Sn (Z = 50) as one fragment. It was found that 
asymmetric splitting is superior for U isotopes with mass number A ≤ 238 and symmetric 
splitting is superior for U isotopes with A ≥ 240. The computed penetrability and half-lives 
using the two different proximity potentials for the cold binary fission of 230–250U isotopes 
were compared with the available experimental data collected from Holden et al. [Pure 
Appl. Chem. 72 (2000) 1525]. The two results were found to be in agreement with each 
other.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans le cadre du modèle CPPM (Coulomb et potentiel de proximité), nous avons étudié 
la fission froide binaire d’isotopes pairs–pairs 230–250U, en utilisant les deux versions 
Proximity 1977 et Proximity 2000 du potentiel de proximité nucléaire. La voie la plus 
favorable pour la fission binaire est celle qui a une valeur de Q élevée et un potentiel 
d’entraînement minimal par rapport aux asymétries de masse et de charge. Pour tous les 
isotopes mentionnés, le canal le plus favorable est celui dans lequel le noyau le plus lourd 
est à couche doublement compléte ou presque doublement compléte. Pour les isotopes 
230,232,234U, on prévoit que le rendement le plus élevé est obtenu quand l’un des fragments 
est un isotope de Pb (Z = 82), tandis que, pour l’isotope 236U, la fragmentation qui donne 
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naissance à un isotope du mercure (Z = 80) a le meilleur rendement. Pour l’isotope 238U, 
la fragmentation conduisant à l’isotope de platine (Z = 78, N = 126) a le rendement le plus 
élevé. Dans le cas des isotopes 240,242,242,244,244,246,248,250U, le rendement le plus élevé est 
obtenu quand la fragmentation mène à l’étain (Z = 50). Le fractionnement asymétrique 
est favorisé pour les isotopes de l’uranium avec un nombre de masse A ≤ 238 et le 
fractionnement symétrique pour les isotopes de l’uranium avec A ≥ 240. La pénétrabilité 
et les demi-vies calculées à l’aide des deux potentiels de proximité pour la fission froide 
binaire des isotopes 230–250U ont été comparées aux données expérimentales disponibles, 
reproduites par Holden et al. (Pure Appl. Chem. 72 (2000) 1525). On a constaté que les 
deux résultats étaient en bon accord.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Pioneering studies on nuclear fission have played a key role in understanding the nuclear phenomena and related prop-
erties. The low-energy fission of heavy elements (Z > 90) was one of the most complex phenomena of nuclear reactions. 
Most of the nuclear reactions take place through the binary fission process, a low-energy fission, where the fissioning nu-
cleus ends up in two fission fragments and the fragments were formed after overcoming the fission barrier. In 1939, Hahn 
et al. [1] discovered that the uranium atom was fragmented into two parts, which are more or less equal in size. Bohr and 
Wheeler [2] developed a theory of fission based on the liquid drop model. The authors gave a theory of the effect based 
on the usual ideas of penetration of potential barriers. Milton et al. [3] noticed that during fission, some of the fragments 
are produced at high kinetic energies, whereby emerging nuclei are formed nearly in their ground state. As a consequence, 
fragments will not possess excitation energy and neutrons will not be emitted. In order to achieve such large kinetic energy 
values, the scission point configurations should correspond to very compact shapes and consequently the deformations for 
final fragments are close to that of their ground states [4,5]. This kind of nuclear fission is termed cold fission or neutron-
less fission. Guet et al. [6], determined the mass distributions of the primary fragments for the highest values of the kinetic 
energy, and concluded that the superposition of two fragments takes place in their ground state even before scission, from 
which the cold fragmentation term emerged. The cold (neutronless) fission of many actinide nuclei leading to fragments 
with masses of approximately 70–160 atomic mass units has also been studied [4,7–13]. Montoyo et al. [14] studied even–
odd effects of the minimal total fragmentation excitation energy in the thermal neutron-induced fission of 233U and 235U as 
well as the spontaneous fission of 252Cf. Asghar et al. [15] used the “Cosi fan tutte” spectrometer installed at the high-flux 
reactor of the “Institut Laue-Langevin”, Grenoble, France, to measure the light-fragment-group mass–energy correlations for 
229Th(nth, f), 232U(nth, f), and 239Pu(nth, f) and found that the shells in the nascent fragments seem to play an important 
role in the thermal-neutron-induced fission. Within the Hartree–Fock–Bogoliubov (HFB) [16–18] framework, based on the 
highly predictive parametrizations, DIM [19], DIS [20], and DIN [21] of the Gogny [22] Energy-Density Functional (EDF), 
Rodriguez et al. [23] described the fission in the isotopes 232–280U and computed the fission paths, collective masses, and 
zero-point quantum corrections.

In the present paper, we have considered even–even uranium isotopes with the mass numbers A = 230, 232, 234, 236, 
238, 240, 242, 244, 246, 248, and 250, and estimated the yield in the binary fragmentation of these isotopes using two 
versions of the nuclear proximity potential, Proximity 1977 and Proximity 2000, by minimizing the fragmentation potential 
with respect to the mass and charge asymmetries. Shi and Swiatecki [24] used the proximity potential for the first time 
in an empirical manner to study asymmetric fission, and Gupta et al. [25] used it extensively in the preformed cluster 
model (PCM). Myers et al. [26] and Reisdorf [27] suggested several modifications over the real proximity potential. Dutt et 
al. [28–30] have used the proximity potential of different versions for studies involving the fusion cross section of different 
target–projectile combinations. Yao et al. [31] used different proximity potentials to calculate the half-lives of the alpha 
decay for even–even nuclei from light to heavy mass. The proximity potential has been used broadly for studies in the areas 
of alpha decay [32–35], cluster decay [36–39], ternary fission [40–42], alpha decay of heavy and superheavy nuclei [43–45]
and cluster radioactivity of superheavy nuclei [44]. In the present work, which is an extension of our earlier work [46], we 
have computed the penetrability and half-lives using the two different proximity potentials for the cold binary fission of 
230–250U isotopes, which were compared with the available experimental data collected from Holden et al. [47]. We would 
like to mention that a similar study has been performed on even–even 244–258Cf isotopes and even–even 238–248Pu isotopes 
by Santhosh et al. [48,49], where the cold reaction valleys were plotted, and the corresponding barrier penetrability and 
yields were calculated for all binary fragmentations of the above-mentioned isotopes.

The methodology employed for our calculation is described in Section 2. The details of the study can be found in 
Section 3, results and discussion. The conclusions are summarized in Section 4.
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2. The model

If the value of Q of the reaction is positive, the binary fission is energetically possible, i.e.

Q = M −
2∑

i=1

mi > 0 (1)

Here M is the mass excess of the parent, mi is the mass excess of the fragments. A parent nucleus exhibiting binary 
fission has the interacting potential V given by

V = Z1 Z2e2

r
+ V p(z) + h̄2�(� + 1)

2μr2
, for z > 0 (2)

Here Z1 and Z2 are the atomic numbers of the fission fragments, z is the distance between the near surfaces of the two 
fragments, r is the distance between the centers of these fragments and is given as r = z + C1 + C2, where C1 and C2 are 
the Süsmann central radii of fragments. The term � represents the angular momentum, μ the reduced mass and V p is the 
proximity potential. The proximity potential V p is given by Blocki et al. [50] as

V p(z) = 4πγ b

[
C1C2

(C1 + C2)

]
Φ

(
z

b

)
(3)

where γ is the nuclear surface tension coefficient and Φ represents the universal proximity potential [51].

2.1. Proximity potential 1977

The nuclear surface tension coefficient γ is given by,

γ = 0.9517
[
1 − 1.7826(N − Z)2/A2] MeV/fm2 (4)

where N , Z , and A represents neutron, proton and mass number of the parent, respectively, Φ represents the universal 
proximity potential [51] given as

Φ(ξ) = −4.41e−ξ/0.7176, for ξ > 1.9475, (5)

Φ(ξ) = −1.7817 + 0.9270ξ + 0.0169ξ2 − 0.05148ξ3, for 0 ≤ ξ ≤ 1.9475 (6)

with ξ = z/b, where the width (diffuseness) of the nuclear surface is b ≈ 1 fm and the Süsmann central radii Ci of the 
fragments related to the sharp radii Ri are

Ci = Ri −
(

b2

Ri

)
(7)

For Ri , we use the semi empirical formula in terms of mass number Ai as [50]

Ri = 1.28A1/3
i − 0.76 + 0.8A−1/3

i (8)

2.2. Proximity potential 2000

There was a disagreement in the scientific community with regard to the barrier height as determined by Proximity 
1977 and the experimental data [26]. Myers and Swiatecki [26] applied recent data for nuclear radii and surface tension 
coefficients and developed the novel droplet model. Using this droplet model [52], the matter radius Ci was calculated as:

Ci = ci + Ni

Ai
ti (i = 1,2) (9)

where ci denotes the half-density radii of the charge distribution and ti is the neutron skin of the nucleus. The nuclear 
charge radius (denoted as R00 in Ref. [53]) is given by the relation:

R00i = √
5/3

〈
r2〉1/2

(10)

= 1.240A1/3
i

{
1 + 1.646

Ai
− 0.191

(
Ai − 2Zi

Ai

)}
fm (i = 1,2) (11)

where 〈r2〉 represents the mean-square nuclear charge radius. According to Ref. [53], Eq. (10) was valid for the even–even 
nuclei with 8 ≤ Z < 38 only. For nuclei with Z ≥ 38, the above equation was modified by Pomorski et al. [53] as
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R00i = 1.256A1/3
i

{
1 − 0.202

(
Ai − 2Zi

Ai

)}
fm (i = 1,2) (12)

These expressions give a good estimate of the measured mean square nuclear charge radius 〈r2〉. The half-density radius ci

was obtained from the relation

ci = R00i

(
1 − 7

2

b2

R2
00i

− 49

8

b4

R4
00i

+ · · ·
)

(i = 1,2) (13)

Using the droplet model [50], the neutron skin ti reads as

ti = 3

2
r0

(
J Ii − 1

12 c1 Zi A−1/3
i

Q + 9
4 J A−1/3

i

)
(i = 1,2) (14)

Here r0 is 1.14 fm, the value of the nuclear symmetric energy coefficient is J = 32.65 MeV, and c1 = 3e2/5r0 =
0.757895 MeV. The neutron skin stiffness coefficient Q was taken to be 35.4 MeV. The nuclear surface energy coefficient γ
in terms of neutron skin was given as

γ = 1

4πr2
0

[
18.63 (MeV) − Q

(t2
1 + t2

2)

2r2
0

]
(15)

where t1 and t2 were calculated using Eq. (13). The universal function Φ(ξ) was reported as

Φ(ξ) =
{

−0.1353 +
5∑

n=0

[
cn

n + 1

]
(2.5 − ξ)n+1

}
for 0 < ξ ≤ 2.5 (16)

Φ(ξ) = −0.09551 exp
[
(2.75 − ξ)/0.7176

]
for ξ ≥ 2.5 (17)

The values of different constants cn were c0 = −0.1886, c1 = −0.2628, c2 = −0.15216, c3 = −0.04562, c4 = 0.069136, 
and c5 = −0.011454. For ξ > 2.74, the above exponential expression is the exact representation of the Thomas–Fermi 
extension of the proximity potential. This potential is labeled as Proximity 2000.

The potential for the internal part (overlap region) of the barrier is given by

V = a0(L − L0)
n, for z < 0 (18)

Here L = z + 2C1 + 2C2 and L0 = 2C , the diameter of the parent nuclei. By the smooth matching of the two potentials at 
the touching point, it is possible to determine the constants a0 and n.

Using the one-dimensional WKB approximation, the barrier penetrability P is given by

P = exp

{
−2

h̄

b∫
a

√
2μ(V − Q )dz

}
(19)

The reduced mass μ is given as μ = mA1 A2/A, where m is the nucleon mass and A1, A2 are the mass numbers of the 
binary fission fragments, respectively. The turning points a and b are determined from the equation V (a) = V (b) = Q .

The ratio between the penetration probabilities of a given fragmentation over the sum of the penetration probabilities of 
all possible fragmentation is calculated as the relative yield and is given by

Y (Ai, Zi) = P (Ai, Zi)∑
P (Ai, Zi)

(20)

3. Results and discussion

We identified the probable fragments from the binary fission of even–even 230–250U isotopes through the cold reaction 
valley plots. The introduction of the cold reaction valley is related to the structure of minima in the driving potential. 
The driving potential is the difference between the interaction potential V and the decay energy Q of the reaction. The 
interaction potential is taken as the sum of the Coulomb and proximity potentials. The barrier penetrability is very sensitive 
to the Q value and is computed using the latest experimental mass tables of Wang et al. [54] wherever possible. When the 
experimental mass excess values were not available, we have calculated the Q values using the mass tables of KTUY [55].

The driving potential of all possible fragment channels (A1, A2) are calculated, and then a single pair of charges for 
each channel is determined by minimizing the driving potential with respect to ηZ , for a fixed value of η. We based our 
study on the mass asymmetry η and the charge asymmetry ηZ between the two heavy fragments, the relative separation 
between the different fragments, and the Q -value for the fission products. However, the predicted favorable channel for 
binary fission is the one characterized with high Q -value, which at the same time has a local minimum in the driving 
potential.
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Fig. 1. Driving potential for the 230U and 232U isotopes, plotted as a function of the mass number A1.

Fig. 2. Driving potential for the 234U and 236U isotopes, plotted as a function of the mass number A1.

3.1. Cold reaction valley of even–even 230–250U isotopes

In the case of the binary fission of even–even 230–250U isotopes, its driving potentials for the touching configuration 
(z = 0) of fragment combinations are calculated. Figs. 1–6 represent the plots for the driving potential versus A1 (mass of 
one fragment) for all the above isotopes. The observed mass-asymmetry valleys in these figures are because of the shell 
effects of one or both fragments. The fragment combinations having minima in the potential energy are the most probable 
binary fission fragments.

From Figs. 1–6, we noticed that, for 230U apart from the alpha particle, 10Be, 14C, 20O, 24Ne, 28Mg, 48,50Ca,68,70Ni, 94Sr, 
96Zr, etc. are seen to be possible for emission, as these are the minima observed in the cold valley plot. Two deep regions are 
observed in the fission region, both having comparable minima. The minimum in the first region corresponds to the splitting 
20O + 210Po and 24Ne + 206Pb, whereas that in the second region is due to the splitting 94Sr + 136Xe and 96Zr + 134Te. The 
driving potential values for the above combinations lie very close to each other. It was found that the four mentioned 
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Fig. 3. Driving potential for the 238U and 240U isotopes, plotted as a function of the mass number A1.

Fig. 4. Driving potential for the 242U and 244U isotopes, plotted as a function of the mass number A1.

combinations include doubly or nearly doubly-magic nuclei viz, 210Po (N = 126, Z = 84), 206Pb (N = 124, Z = 82), 134Te 
(N = 82, Z = 52) and 136Xe (N = 82, Z = 54).

All the other isotopes also have deep valleys in the fission regions, each having several comparable minima. For the 
232,234,236U isotopes, the minima obtained in the first region are at 210,212,214Po and 208,210Pb, and they are due to the 
doubly-magic 208Pb (N = 126, Z = 82), near doubly-magic 210Po (N = 126, Z = 84), 212Po (N = 128, Z = 84) and 210Pb 
(N = 128, Z = 82). The minima observed in the second region are at 46Ar (N = 28, Z = 18) and 50Ca (N = 30, Z = 20). In 
the third region, minima are observed at 134Te (N = 82, Z = 52) and 132Sn (N = 82, Z = 50).

For the 238,240,242U isotope, a deep minimum is observed at 106Mo+ 132Sn, 108Mo+ 132Sn and 110Mo+ 132Sn respectively, 
due to the presence of doubly-magic 132Sn. Other minima are observed at 52Ca, 82Ge, 206Hg, 212Pb, etc.

For 244,246,248,250U, three distinguishable deep valleys are observed in the cold valley plot. It can be seen that, in the 
first region, minima are observed at 202Os (N = 126), 198W (N = 124), 200W (N = 126) and 198Hf (N = 126). In the second 
region, the observed minima are at 84Ge (N = 52), 78Ni (N = 50) and 80Zn (N = 50). Finally, in the third valley, a minimum 
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Fig. 5. Driving potential for the 246U and 248U isotopes, plotted as a function of the mass number A1.

Fig. 6. Driving potential for the 250U isotope, plotted as a function of the mass number A1.

at doubly-magic 132Sn (N = 82, Z = 50) is observed for the splitting 112Mo + 132Sn, 114Mo + 132Sn, 116Mo + 132Sn and 
118Mo + 132Sn, respectively.

3.2. Barrier penetrability and yield calculation

The barrier penetrability for each fragment combination found in the cold valley for even–even 230–250U isotopes is 
calculated using Proximity 1977. The most favorable fragment combinations for all the six isotopes mentioned above are 
obtained by calculating their relative yields. For a better comparison of barrier penetrability and relative yields, calculations 
were carried out for all the isotopes using Proximity 2000 as well. Using Eq. (20), the relative yield is calculated and is 
plotted as a function of the fragment mass numbers A1 and A2, as displayed in Figs. 7–17.

For 230U, the combination 24Ne + 206Pb possesses the highest yield due to the presence of a near doubly-magic nucleus 
206Pb (N = 124, Z = 82). The next higher yield is observed for the combination 28Mg + 202Hg, which is due to the near 
doubly-magic 202Hg (N = 122, Z = 80) nucleus. The other various peaks in the relative yield graph of Fig. 7 correspond to 
fragment combinations 32Si + 198Pt, 34Si + 196Pt, 94Sr + 136Xe, 96Zr + 134Te and 98Zr + 132Te. The fragment combination with 
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Fig. 7. Relative yield plotted as a function of the mass numbers A1 and A2 for the 230U isotope using Proximity 1977 and Proximity 2000. The fragment 
combinations with higher yields are labeled.

Fig. 8. Relative yield plotted as a function of the mass numbers A1 and A2 for the 232U isotope using Proximity 1977 and Proximity 2000. The fragment 
combinations with higher yields are labeled.

the 134Te and 132Te isotopes are also favored, due to the presence of nearly closed shells (N = 82, Z = 52) and (N = 80, 
Z = 52) respectively.

In the case of the 232U isotope, 24Ne + 208Pb is the most favored binary splitting and it is due to the presence of a 
doubly-magic nucleus 208Pb (N = 126, Z = 82). Other favored channels for the binary fission of 232U isotope are 28Mg +
204Hg, 32Si + 200Pt, 34Si + 198Pt, 98Zr + 134Te, and 96Sr + 136Xe, from the most to the less probable one. As can be noticed, 
these favored channels include the near doubly-magic nucleus 204Hg (N = 124, Z = 80), neutron shell closure N = 20 of 
34Si, and the neutron shell closure N = 82 of 136Xe and 134Te.

The fragmentation channels that are predicted to be the most favorable ones in the binary fission of 234U isotope are 
26Ne + 208Pb, 28Mg + 206Hg, 30Mg + 204Hg, 34Si + 200Pt, 100Zr + 134Te, 104Mo + 130Sn and 102Mo + 132Sn, from the most 
to the less probable one. One can notice that these channels contain a near doubly-magic 206,204Hg nucleus, doubly-magic 
nuclei 132Sn (N = 82, Z = 50) and 208Pb (N = 126, Z = 82), a neutron shell closure N = 82 of 134Te and a proton shell 
closure Z = 50 of 130Sn.
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Fig. 9. Relative yield plotted as a function of the mass numbers A1 and A2 for the 234U isotope using Proximity 1977 and Proximity 2000. The fragment 
combinations with higher yields are labeled.

Fig. 10. Relative yield plotted as a function of the mass numbers A1 and A2 for the 236U isotope using Proximity 1977 and Proximity 2000. The fragment 
combinations with higher yields are labeled.

In the case of the 236U isotope, more yield is obtained for the fragment combination 30Mg + 206Hg due to the presence 
of a near doubly-magic 206Hg (N = 126, Z = 80) nucleus. The next higher yields are for the fragment splitting 26Ne +
210Pb, 34Si + 202Pt, 104Mo + 132Sn, 102Zr + 134Xe and 106Mo + 130Sn. It is due to the near doubly-magic 210Pb (N = 128, 
Z = 82) nucleus, the magic neutron shell N = 20 of 34Si, the doubly-magic nucleus 132Sn (N = 82, Z = 50) and the near 
doubly-magic 130Sn nucleus.

For the 238U isotope, the highest yield is obtained for the fragment combination 34Si + 204Pt due to the magic neutron 
shell N = 126 of 204Pt. The next higher yields are for the fragment combinations 30Mg + 208Hg, 32Mg + 206Hg, 106Mo +
132Sn, 36Si + 202Pt, and 108Mo + 130Sn. The occurrence of these fragment combinations are attributed to the presence of 
the near doubly-magic 130Sn (N = 80, Z = 50), 208Hg (N = 128, Z = 80), 206Hg (N = 126, Z = 80), 134Te (N = 82, Z = 52) 
and doubly-magic 132Sn (N = 82, Z = 50) nuclei.

From Fig. 12, it is clear that, for the 240U isotope, the highest yield is obtained for the symmetric fragment combination 
108Mo + 132Sn as it contains a doubly-magic nucleus 132Sn (N = 82, Z = 50). The next higher yields are for the fragment 
combinations 36Si + 204Pt, 110Mo + 130Sn, 42S + 198Os, 40S + 200Os, 46Ar + 194W and 50Ca + 190Hf. It is due to the 
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Fig. 11. Relative yield plotted as a function of the mass numbers A1 and A2 for the 238U isotope using Proximity 1977 and Proximity 2000. The fragment 
combinations with higher yields are labeled.

Fig. 12. Relative yield plotted as a function of the mass numbers A1 and A2 for the 240U isotope using Proximity 1977 and Proximity 2000. The fragment 
combinations with higher yields are labeled.

presence of the magic neutron shell N = 126 of 204Pt, of the near doubly-magic nucleus 130Sn, of the near neutron shell 
closure N = 124 of 200Os, of the neutron shell closure N = 28 of 46Ar, and of the magic shell Z = 20 of 50Ca.

For the 242U isotope, the highest maximum of the yield belongs to the fragment combination 110Mo + 132Sn that 
contains a doubly-magic nucleus 132Sn (N = 82, Z = 50). The other various peaks correspond to the fragment combinations 
42S + 200Os, 46Ar + 196W, 112Mo + 130Sn, 52Ca + 190Hf and 106Zr + 136Te. The occurrence of these fragment combinations 
is attributed to the presence of the near neutron shell closure N = 124 of 200Os, of the near doubly-magic 46Ar, 130Sn, 136Te 
nuclei, and of the magic shell Z = 20 of 52Ca.

In the case of the 244U isotope, the highest yield is for the symmetric fragment combination 112Mo + 132Sn. The next 
higher yields are for the fragment combinations 42S + 202Os, 46Ar + 198W, 48Ar + 196W and 52Ca + 192Hf. This is due to 
the presence of the neutron shell closures N = 126 of 202Os and N = 28 of 46Ar, and of the magic shell Z = 20 of 52Ca.

For the 246U isotope, the highest yield is obtained for the fragment combination 114Mo + 132Sn. The next higher yields 
are for the fragment combinations 46Ar + 200W, 48Ar + 198W, 116Ru + 130Cd, and 52Ca + 194Hf. It was found that the first 
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Fig. 13. Relative yield plotted as a function of the mass numbers A1 and A2 for the 242U isotope using Proximity 1977 and Proximity 2000. The fragment 
combinations with higher yields are labeled.

Fig. 14. Relative yield plotted as a function of the mass numbers A1 and A2 for the 244U isotope using Proximity 1977 and Proximity 2000. The fragment 
combinations with higher yields are labeled.

one is attributed to the magic neutron N = 28 of 46Ar and N = 126 of 200W, and the second combination is due to the near 
doubly closed shell (N = 30, Z = 18) of the 48Ar nucleus. The fragment combination with the 130Cd isotope is also favored 
due to the presence of a nearly magic shell (N = 82, Z = 48).

For the 248U isotope, the highest yield is obtained for the fragment combination 116Mo + 132Sn. The next higher yields 
are for the fragment combinations 48Ar + 200W, 118Ru + 130Cd, 52Ca + 196Hf, and 114Mo + 134Sn. The fragment combina-
tion with the 134Sn isotope is also favored due to the presence of a nearly closed shell (N = 84, Z = 50).

For 250U isotope, the highest yield is obtained for the fragment combination 118Mo + 132Sn. The next higher yields are 
for the fragment combinations 120Ru + 130Cd, 52Ca + 198Hf, 50Ar + 200W, 116Mo + 134Sn, and 48Ar + 202W. The fragment 
combination with the 198Hf isotope is also favored due to the presence of the magic neutron N = 126.

From Figs. 7–17, it becomes clear that, for all the chosen uranium isotopes, the highest yield is obtained for the same 
fragment combination when using the potentials Proximity 1977 and Proximity 2000. Moreover, the ordering of other frag-
ment combinations from the most probable to the least probable one was also the same for both potentials.
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Fig. 15. Relative yield plotted as a function of the mass numbers A1 and A2 for the 246U isotope using Proximity 1977 and Proximity 2000. The fragment 
combinations with higher yields are labeled.

Fig. 16. Relative yield plotted as a function of the mass numbers A1 and A2 for the 248U isotope using Proximity 1977 and Proximity 2000. The fragment 
combinations with higher yields are labeled.

We have computed the half-lives for the binary splitting of the 232,234,236,238U isotopes using Proximity 1977 and Prox-
imity 2000, making use of the relation

T1/2 =
(

ln 2

ν P

)
(21)

where ν is the assault frequency and P is the barrier penetrability.
The computed half-life values have been compared with available experimental values [47] and are presented in Table 1. 

The average deviation is found to be less than 102 times between the theoretical and experimental spontaneous fission 
half-life values. This level of agreement is very satisfactory since spontaneous fission is a much more complex process than 
α decay.

We have extracted the values of experimental penetrability from Holden et al. [47] and compared them with the theo-
retical values of penetrability. The results are shown in Table 1. From the tabulated results, it is clear that the experimental 
penetrability for 236U was reproduced with the same order.
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Fig. 17. Relative yield plotted as a function of the mass numbers A1 and A2 for the 250U isotope using Proximity 1977 and Proximity 2000. The fragment 
combinations with higher yields are labeled.

Table 1
Comparison of the calculated penetrability and calculated half-lives of U isotopes in the range 232 ≤ A ≤ 238 using Proximity 1977 and Proximity 2000 
with the experimental values [47].

Parent nucleus Decay channel Penetrability T1/2 (s)

1977 2000 Exp 1977 2000 Exp
232U 98Zr + 134Te 8.17E−45 2.77E−46 2.82E−42 8.48E+23 2.51E+25 2.45E+21
234U 100Zr + 134Te 6.72E−46 1.70E−47 1.48E−44 1.03E+25 4.07E+26 4.67E+23
236U 102Zr + 134Te 3.53E−45 7.19E−47 8.93E−45 1.96E+24 9.64E+25 7.76E+23
238U 106Mo + 132Sn 9.74E−42 1.93E−43 2.69E−44 7.11E+20 3.59E+22 2.57E+23

4. Conclusions

To study the binary fragmentation of even–even 230–250U isotopes, the Coulomb and the proximity potential are taken as 
the interacting barrier. In each case, the fragmentation potential and Q -values were calculated for all the possible fission 
components. The relative yields were calculated using Proximity 1977 and Proximity 2000. It can be seen that as the mass 
number of the parent nuclei increases, the magnitude of the relative yield also increases. The predicted favorable fragment 
combinations for the binary fission of all the chosen uranium isotopes have been discussed in detail in Section 3.2. For the 
230,232,234U isotopes, the highest yield was predicted for the isotope of Pb (Z = 82) as one fragment, whereas for the 236U 
isotope fragments with the isotope of Hg (Z = 80) as one fragment possess the highest yield. For the 238U isotope, fragments 
with the isotope of Pt (Z = 78, N = 126) as one fragment possess the highest yield. In the case of the 240,242,244,246,248,250U 
isotopes, the highest yield is for the fragments with Sn (Z = 50) as one fragment. The double magicity and near double 
magicity of the predicted heavy fragment (of 206,208Pb, 206Hg, 204Pt, 200,202Os and 130,132Sn) are found to play a key role 
for the most favorable fragment combinations. The computed penetrability and half-lives using the two different proximity 
potentials for the binary fission of 230,234,236,238U agrees with the experimental values of Holden et al. [47] (Table 1).
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