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After a short review of prominent properties of gravitational waves and of the newly born 
gravitational astronomy, we focus on theoretical aspects. Analytic approximation methods 
in general relativity have played a crucial role in the recent discoveries of gravitational 
waves. They are used to build theoretical template banks for searching and analyzing the 
signals in the ground-based detectors LIGO and Virgo, and, further ahead, space-based 
LISA-like detectors. In particular, the post-Newtonian approximation describes with high 
accuracy the early inspiral of compact binary systems, made of black holes or neutron stars. 
It mainly consists of extending the Einstein quadrupole formula by a series of relativistic 
corrections up to high order. The compact objects are modeled by point masses with spins. 
The practical calculations face difficult problems of divergences, which have been solved 
thanks to dimensional regularization. In the last rotations before the merger, the finite size 
effects and the internal structure of neutron stars (notably the internal equation of state) 
affect the evolution of the orbit and the emission of gravitational waves. We describe these 
effects within a simple Newtonian model.

© 2019 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Après une brève revue des propriétés importantes des ondes gravitationnelles et de la 
nouvelle astronomie gravitationnelle, nous nous concentrons sur les aspects théoriques. 
Les méthodes d’approximation analytiques en relativité générale ont joué un rôle crucial 
dans les récentes détections d’ondes gravitationnelles. Elles sont utilisées pour créer des 
banques de modèles (patrons) théoriques qui servent à rechercher et analyser les signaux 
dans les détecteurs au sol LIGO et Virgo et dans les détecteurs dans l’espace de type 
LISA, développés plus tard. En particulier, l’approximation post-newtonienne décrit avec 
une grande précision le spiralement initial des systèmes binaires compacts de trous noirs 
ou d’étoiles à neutrons. Elle consiste principalement à étendre la formule du quadrupôle 
d’Einstein par une série de corrections relativistes jusqu’à un ordre élevé. Les objets 
compacts sont modélisés par des masses ponctuelles avec spins. Les calculs pratiques font 
face à des problèmes difficiles de divergences, qui ont été résolus grâce à la régularisation 
dimensionnelle. Dans les dernières orbites proches de la fusion, les effets de taille finie et 
de structure interne des étoiles à neutrons (notamment l’équation d’état interne) affectent 
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l’évolution de l’orbite et l’émission des ondes gravitationnelles. Nous décrivons ces effets 
dans le cadre d’un modèle newtonien simple.

© 2019 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Gravitational waves and the new astronomy

Paramount breakthroughs in Astronomy and fundamental Physics occurred with the discovery of gravitational waves 
(GWs) generated by the orbital motion and merger of compact binary systems, made of black holes or neutron stars [1,
2]. A new window of observations of our Universe opened up, radically different from and complementary to that of the 
traditional astronomy, essentially based on electromagnetic (EM) waves. The salient properties of GWs shape the key features 
of the new “Gravitational Astronomy’.

• GWs are produced by the overall, “bulk” motion of large masses at relativistic speeds (close to the speed of light c), 
in contrast to EM waves, which are in general composed of the incoherent superposition of photons emitted by the 
atoms and molecules composing the source [3]. As a result, the wavelength of GWs is in general much larger than 
the size of the source, and there is a deep analogy between GWs and ordinary sound waves. However, in contrast to 
sound waves, GWs propagate in vacuum. They are ripples in the Riemannian curvature of space-time, which is the 
fundamental dynamical entity in general relativity (GR).

• GWs propagate almost without alteration through the densest regions of the Universe, and have thus the potential 
of carrying information from very far away—probably up to the first instants after the Big Bang. This is due to the 
weakness of the gravitational interaction as compared to other forces, and to the fact that GWs cannot be screened by 
any type of matter field. Indeed the charge associated with the gravitational interaction is the mass, which is always 
equal to the inertial mass by the equivalence principle, and therefore is always positive. Actually, the positivity of the 
mass-energy of an arbitrary system (involving ordinary bodies and black holes) constitutes an important and difficult 
theorem in GR [4,5].

• GWs emitted by coalescing compact binary systems contain the information about their distance [6]. In this respect, 
these systems constitute an analogue of the standard candels of EM-based astronomy (like Cepheid variables and Type-
Ia supernovas), and can rightly be called “standard sirens”. However, in the case of the GW sirens, there is no need for 
calibrating the distance scale; the calibration is automatically done by GR. One can thus measure the Hubble–Lemaître 
cosmological parameter H0 with GWs, independently of the traditional EM measurements. 1

• The gravitational astronomy is one of “precision”. It is possible to measure with high precision the parameters of com-
pact binary systems (masses and spins) by direct comparison with a solution to the purely gravitational two-body 
problem in GR. See Fig. 1, which shows the signal of the first binary black hole event, directly analyzed with the GR 
prediction. So far, no deviation from GR has been observed. For compact sources, most of the non-gravitational effects, 
which usually plague the dynamics of ordinary systems (magnetic fields, presence of an interstellar medium, etc.), are 
in general dominated by the gravitational force. 2

• This highlights the crucial role played by analytic approximation methods (reviewed in Secs. 2 and 3) and also nu-
merical calculations, since they permit an accurate description of the two-body problem in GR, without which the full 
information contained into the signal could not be extracted. The theoretical solution to the problem of motion and ra-
diation is used in the form of accurate GW templates, which are correlated with the observed signal using the technique 
of matched filtering [7].

• The new astronomy is also “fundamental”. As far as we know, our gravitational theory is fundamental, and GR may be 
valid in a large range of energies, perhaps up to the Planck scale. Thus GW observations have a lot of implications for 
fundamental physics. With GWs, one can confront GR with alternative theories of gravity (such as scalar–tensor theory, 
massive gravity theory, etc.), and one can test fundamental principles such as the equivalence principle. One can also 
question the standard model of cosmology �-CDM, including the great mysteries of contemporary physics constituted 
by cold dark matter (CDM), the cosmological constant �, and dark energy [8].

• Last but not least: The multi-messenger aspect of the gravitational astronomy, i.e. its synergy with other vectors of 
information, most importantly EM waves, but maybe also neutrinos in the future. For instance, the joint observation of 
GWs from a binary neutron star event and of a gamma ray burst (GRB) permitted to show that the speed of GWs is 
equal to c with a precision of ∼ 10−15. This ruled out a series of alternative theories of gravity. But, of course, the multi-
messenger astronomy has outstanding implications in astrophysics, such as refining the model of GRBs, understanding 
the explosions of kilonovas and the mechanisms for the production of heavy elements.

1 A resolution of the XXXth general assembly of the International Astronomical Union (IAU) recommended that the expansion of the Universe be referred 
to as the “Hubble–Lemaître law”.

2 We shall discuss an exception in Sec. 4: The internal structure and the non-gravitational equation of state of neutron stars do affect the GW signal close 
to and during the final merger.
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Fig. 1. The first binary black hole event of September 14, 2015 (GW150914) seen by the two LIGO detectors [1]. The signal can be directly confronted with 
the GR prediction. Shown is the best adjustment with the result from the modeled analyses using IMR–Phenom and EOB–NR template waveforms (see 
Sec. 3). These analyses are in agreement with the full numerical calculation of the merger of two black holes. The last cycles before the merger are also 
reasonably well interpreted by the quadrupole formula. The masses and spins of the black holes are inferred from the comparison with GR. The signal can 
also be matched by a superposition of wavelets, but these are devoid of any physical content.

Consider an isolated (with finite spatial support) source of GWs. Let m be the mass of the source, r its size, and ω ∼ 2π/P
the typical angular frequency of oscillations of the source, with P the typical period. We have ω ∼ v/r with v the typical 
internal velocity. We suppose that the source is self gravitating, so the gravitational force is responsible for the dynamics 
and the GW generation. The wavelength of the emitted GW is λ ∼ c P/2, with a factor 1/2 inserted to take into account 
the quadrupolar nature of GWs, whose frequency is f ∼ ω/π. Note that r/λ ∼ 2v/c (posing λ = 2πλ), so that the source is 
much smaller than one wavelength of the emitted GW, since εPN ∼ v/c � 1 in the non-relativistic (post-Newtonian) regime. 
For the self-gravitating source, we typically have Gm ∼ r3ω2, indeed this is exactly Kepler’s third law Gm = a3ω2 in the 
case of a Newtonian binary system (with a the semi-major axis of the orbit). Furthermore, if the source is compact, its size 
is of the order of the Schwarzschild radius, r ∼ 2Gm/c2, and the GW frequency scales inversely proportional to the mass: 
Gmf ∼ c3/(π

√
8). But the mass decreases because the GW extracts energy from the source, hence the frequency of the GW 

increases: this is the famous “chirp” of GWs, which we shall compute with high precision in Sec. 3.

2. Successes with the Einstein quadrupole formula

The “precision” gravitational astronomy requires inputs from the theory side. Searching and analyzing GW signals that 
are well predicted by GR is made using the technique of matched filtering, which cross-correlates the detector output with 
our best prediction of the expected signal, called the template. The template is weighted (in the Fourier domain) by the 
power spectral density of the noise in the detector. It depends on a set of trial parameters describing the source’s model 
(such as masses and spins) and that are measured in the process. As GR is a complicated non-linear theory, there is no 
hope of finding an exact solution to the Einstein field equations, but tremendous progresses have been made with the 
development of perturbative and approximation methods in GR, notably the post-Newtonian (PN) approximation. Conjointly 
with analytic developments, continued efforts in numerical relativity led to the computation of the final merger of binary 
black holes and other GW sources like supernova explosions.

The first analytic computation of GWs is the Einstein quadrupole formula [9,10], valid at the dominant “Newtonian” 
order in a PN expansion, with the small PN parameter being the slowness estimate εPN ∼ v/c, ratio of a typical internal 
velocity in the source and the speed of light. Originally derived for matter sources with negligible self gravity (hence 
the source’s oscillations producing GWs have a non-gravitational origin), the formula was later shown to be still valid for 
weakly self-gravitating sources, such as a Newtonian binary system [11]. The GW amplitude is characterized by two tensorial 
polarization modes, traditionally denoted by h+ and h× , that are transverse to the direction of propagation n = (ni) (with 
i = 1, 2, 3 and n2 = 1), pointing from the GW source towards a far-away detector. The detector is sensitive to a certain linear 
combination of the two polarizations,

h = F+h+ +F×h× (1)

where the “form factors” F+ and F× depend on the direction and orientation of the source with respect to the local frame 
of the detector. The polarizations are defined as the projection of the waveform along two polarization vectors p and q in 
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the plane orthogonal to n, and forming with it an orthonormal right-handed triad (n, p, q). The quadrupole formula gives 
the polarizations at a large distance d from the source (and at retarded time t − d/c) as(

h+
h×

)
= 2G

c4d

⎛
⎝ pi p j−qiq j

2
piq j+p jqi

2

⎞
⎠{

d2 Q ij

dt2

(
t − d/c

) +O (εPN)

}
+O

(
1

d2

)
(2)

The quadrupole moment Q ij of the source is just, at the leading approximation, the usual mass type moment of the Newto-
nian mass density ρ in the source,

Q ij =
∫

d3xρ
(

xix j − 1

3
x2

)
(3)

The total energy E of the matter source decreases because of the GW emission, and this is controlled by the “flux-balance” 
equation

dE

dt
= −F GW (4)

where the GW flux in the right-hand side is given at the leading PN approximation (i.e. “Newtonian” order in the radiation 
field) by

F GW ≡ G

5c5

{
d3 Q ij

dt3

d3 Q ij

dt3
+O

(
ε2

PN

)}
(5)

Witness the factor c−5 in front of the flux, which shows that the corresponding radiation reaction effect in the matter 
equations of motion is actually of order 2.5 PN, namely O(ε5

PN).3 Similarly there is a quadrupole flux-balance equation for 
the angular momentum J i , given by

d J i

dt
= − 2G

5c5 εi jk

{
d2 Q jl

dt2

d3 Q kl

dt3
+O

(
ε2

PN

)}
(6)

The laws of motion of a relativistic conservative system (neglecting the GW emission) admit ten Noetherian invariants 
associated with the symmetries of the Poincaré group. In addition to the energy E and angular momentum J i , there is 
the linear momentum Pi and the invariant of the center of mass Gi . The latter CM invariant is associated with the invari-
ance under Lorentz boosts. When the GWs are turned on, all the invariants obey some flux-balance equations. In addition 
to (4)–(6) we have

dPi

dt
= − G

c7

{
2

63

d4 Q ijk

dt4

d3 Q jk

dt3
+ 16

45
εi jk

d3 Q jl

dt3

d3 Dkl

dt3
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(
ε2

PN

)}
(7a)

dGi

dt
= Pi − G

c7

{
2

21

d3 Q ijk

dt3

d3 Q jk

dt3
+O

(
ε2

PN

)}
(7b)

where Q ijk is the Newtonian mass octupole moment and Dij is the current type quadrupole moment. Notice that (7) rep-
resent subdominant radiation reaction effects of order 3.5 PN. The flux of linear momentum Pi is well known, as it is 
responsible for the “gravitational recoil” of the source by GW emission (see, e.g., [12]). However, strangely enough, the 
expression of the flux of center-of-mass position Gi in Eq. (7b), has only been computed and recognized recently [13–15].

The equations (4)–(6) for energy and angular momentum give the evolution of the orbital parameters (semi-major axis 
and eccentricity) of the compact binary system under GW emission [16,17]. An average over the orbital period is applied, 
so as to consider the secular evolution of the orbit on a radiation reaction time scale much longer than the orbital period. 
The first success of the quadrupole formula has been that it works perfectly when accounting for the observed decay of 
the orbital period of the Hulse–Taylor binary pulsar [18]. This test represented the first quantitatively precise proof of the 
existence of GWs [19–21]. Nevertheless, since εPN ∼ 10−3 is very small for binary pulsars, the quadrupole formula is not 
expected to yield any deviation with respect to observations in the regime of binary pulsars.4

Even more impressive, a second success occurred recently, because the GW signals from binary black hole and neutron 
star events can be reasonably well interpreted with the quadrupole formula. In the case of black hole binaries, this is truly 
remarkable because εPN ∼ 0.5 in the last rotations. Take the example of the first event GW150914, shown in Fig. 1. We are 
observing the signal at high frequency, close to the final merger, so the orbit has been circularized by radiation reaction—a 

3 By order nPN we refer to a small post-Newtonian term of the order of ε2n
PN.

4 But see the controversial debate on this point at the time of the binary pulsar [22,23].
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consequence of the balance equation for angular momentum (6). For a binary system modeled by two point masses, and 
moving on a circular orbit, the GW polarizations (2) become(

h+
h×

)
= 2Gmν

c2d

(
Gmω

c3

)2/3
( (

1 + cos2 i
)

cos(2φ)(
2 cos i

)
sin(2φ)

)
(8)

where ν = m1m2/(m1 + m2)
2 denotes the symmetric mass ratio between the two compact objects, m = m1 + m2 is the 

total mass, and i is the inclination angle of the binary’s orbital plane with respect to the plane of the sky (the polarization 
vector p pointing by convention towards the “ascending node”). In the quadrupole approximation, the phase of the signal 
is φGW = 2φ, where φ = ∫

ω dt is the orbital phase and ω the angular frequency; the signal frequency is usually denoted by 
f GW = ω/π.

For the purposes of detection and subsequent data analysis, the most important information provided by GR is the time 
evolution of the phase and frequency, which are computed from the energy balance prescription (4). For circular orbits, 
neither the angular momentum balance equation (6) nor the averaging procedure is necessary. Both E and the flux F GW

are only functions of the orbital frequency ω, and the flux is readily computed from Eq. (5) in the case of a Newtonian 
system of two point masses on a circular orbit. Hence, the balance equation becomes an ordinary differential equation for 
the frequency:

ω̇

ω2
= 96ν

5

(
Gmω

c3

)5/3

(9)

By integrating this equation, one successively obtains the orbital frequency as a function of time, and the orbital phase as a 
function of frequency. For convenience, we use the dimensionless variables

x =
(

Gmω

c3

)2/3

, 
 = νc3

5Gm

(
tc − t

)
(10)

Note that x can be seen as a small PN parameter of the order of O(ε2
PN); tc denotes the instant of coalescence, at which the 

distance between the particles formally vanishes and the frequency diverges. With those notations, and with φ0 denoting 
an initial constant phase, we find

x = 1

4

−1/4 (11a)

φ = φ0 − x−5/2

32ν
(11b)

These formulas, together with (8), describe the “chirp” of GWs at the lowest approximation, i.e. the way the frequency, 
phase, and amplitude of the signal increase, until some point at the onset of the merger of the compact objects, at which 
the approximation is no longer valid.

Inspection of Eqs. (8)–(11) shows that the GW signal depends on one combination of the two masses only, called the 
chirp mass and given by M = m ν3/5. Roughly speaking, there are two observables, the amplitude h and the frequency chirp 
ω̇, from which one can determine at once the chirp mass M and the distance d. Actually, things are more complicated 
because in a given detector, the measured amplitude is a certain linear combination (1) of the two polarizations, which also 
depends on the direction of the source and its orientation with respect to the detector. We need thus several detectors to 
determine these extra angles, and also the inclination angle i in Eq. (8). Note that the measured mass is the redshifted one, 
M = (1 + z)Msource, where z is the cosmological redshift of the source (z ∼ 0.1 in the case of GW150914) and Msource
is the actual chirp mass of the binary. As for the measured distance, it is exactly the “luminosity distance” d ≡ dL used 
by cosmologists, who refer to the chirping binaries as standard sirens. Finally, the quadrupole formula gives consistent 
estimates (even for GW150914 !) for the mass, the distance, the maximal amplitude of the signal, and the number of orbital 
cycles from the entry frequency of the detector’s band till the merger, with the proviso that we supplement the quadrupole 
formula with an information from full GR, namely that the merger occurs at a separation of the order of the mass. Then, of 
course, the merger itself can only be described numerically.

In GR, there is a notion of the total energy contained in the space-time, including both the contribution from the matter 
sources and that of the gravitational field: this is the so-called Arnowitt–Deser–Misner (ADM) mass–energy [24], which is 
exactly conserved. Let us apply this notion to the problem of the coalescence of two black holes, assuming a very crude 
model, in which the binary’s orbit is merely Newtonian and circular, and the radiation field is described by the quadrupole 
formula (4). At very early times t → −∞, the black holes were moving almost freely on quasi-hyperbolic orbits, and later 
formed a gravitationally bound system by GW emission, which then spiralled in till the merger. At any time the ADM 
mass-energy is

EADM = mc2 − Gm2ν

2r
+

t∫
dt′ F GW(t′) (12)
−∞
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Fig. 2. The three phases of the coalescence of two compact objects (here black holes), with the theoretical methods required to build accurate templates 
in each phase. While neutron star binaries are observed in the band of the LIGO-Virgo detectors mostly during the early inspiral phase, the more massive 
black hole binaries are essentially seen in the last orbits of the inspiral and in the final merger and ringdown phases.

where the quadrupole flux is given by (5)—this equation is an integrated version of Eq. (4), which represented the time 
variation of the Bondi mass [25]. Since initially the black holes were infinitely far apart (r → ∞), the conserved ADM 
energy is just equal to mc2, while after the merger it also equals

EADM = Mcc2 +
tc∫

−∞
dt F GW(t) (13)

where Mc is the mass of the black hole formed by the coalescence, occurring at the instant tc . Hence we see, using the 
constancy of the ADM mass, that the energy that has been radiated away during the process is

�EGW = (m − Mc)c2 =
tc∫

−∞
dt F GW(t) = Gm2ν

2rc
(14)

That is, it is equal to the mechanical binding energy of the binary system at the instant of coalescence tc, which occurs 
when the separation is of the order of the mass, say rc ∼ 2Gm

c2 . In the case of GW150914, the final mass Mc has been 
measured, and about three solar masses have been released in the form of GWs in a few tens of second. This corresponds 
to a total power of the order of 1049 W, well consistent with the result of sophisticated numerical simulations of the merger 
of two black holes in GR. This power is huge, but notice that it is only about a thousandth of c5/G , which represents the 
natural general relativistic scale for a power, i.e. the Planck scale, which happens in this case not to depend on Planck’s 
constant h̄. Thus we may imagine that the gravitational astronomy could some day bring us a surprise, with the discovery 
of a GW source that is even more powerful than a binary black hole system.

3. Analytic approximation methods for computing the GW chirp

Though the quadrupole formula is very useful, it is not sufficient when we want to perform precise calculations, and it 
becomes inoperational in the final merger phase of the compact objects. As we have seen, it does not permit to measure the 
two masses m1 and m2 separately, but only the chirp mass M. The degeneracy over the masses is removed by including 
the relativistic PN corrections ∼ O(ε2

PN) in the quadrupole formula (4). In addition, the PN corrections depend on the spins 
of the compact objects (i.e. their intrinsic classical angular momenta). Taking into account the spins in the GR templates is 
important, and their measurement represents a valuable astrophysical information.

At the beginning of the building of the LIGO/Virgo detectors in the end of the 1980s, it was thought that the quadrupole 
formula was sufficient for detecting and analyzing binary neutron star coalescence. But in the early 1990s, it was realized 
[26,27] that neutron star binaries spend thousands of cycles in the band of the detectors, and that the GW templates should 
be able to monitor the signal with a precision of a fraction of a cycle over the entire bandwidth, say δφ

2π � 0.1, where φ is the 
orbital phase (11b). It was then estimated that PN corrections in the quadrupole formula must be developed up to at least 
the daunting 3 PN order ∼ ε6

PN. Also recall that the quadrupole formula, as seen as a small radiation reaction contribution 
in the dynamics of the source, is itself a 2.5 PN effect ∼ ε5

PN relatively to the Newtonian acceleration. This shows the highly 
relativistic character of compact binary systems observed in the LIGO/Virgo band as compared to the binary pulsar, for 
which the PN corrections in the orbital Ṗ are negligible. At the time of the binary pulsar, only the 1 PN correction to the 
quadrupole formula was known [28–31]. Furthermore, it was also realized that the PN corrections are important, not only 
for the precise off-line analysis of the signals once they are detected, but also for the on-line process of detection [26].

The coalescence signal of two compact objects can be decomposed into three phases, see Fig. 2.
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• The early inspiral during which the frequency and amplitude of the signal chirp with time (the chirp was discussed 
and defined in Sec. 1). During this phase, the signal is universal, i.e. it does not depend on the nature of the compact 
objects, be they black holes or neutron stars or more exotic objects like boson stars. The signal depends only on the 
masses and the spins. The PN approximation constitutes the ideal tool for describing the inspiral phase. For low mass 
compact binaries such as double neutron stars, the detectors are mostly sensitive to the inspiral phase, and the currently 
known analytical PN templates are accurate enough for detection and analysis, at least for moderate spins. Thus, the 
data analysis of neutron star binary events like GW170817 [2] is based on the PN templates.

• The merger phase, when the dynamics undergoes a transition from adiabatic inspiral to some unstable plunge, followed 
by the rapid collapse of the two objects to form a black hole. Numerical relativity (NR) has succeeded in the years 
2005 to compute the merger of two black holes [32–34]. A non-trivial point (which did not seem to be obvious some 
years ago [35]) is that the overlap between the PN and NR regimes exists and is quite significant.5 The important 
issue of matching the PN and NR waveforms has been solved using several techniques [36,37]. One is the hybrid 
inspiral–merger–ringdown (IMR or IMR-Phenom), which consists in introducing between the PN and NR domains of 
validity an overlapping time interval that is parametrized in a phenomenological way [38,39]. The other technique 
recasts the actual PN two-body equations of motion and radiation into a simpler effective one-body (EOB) form [40,41]. 
The EOB dynamics is described in a non-perturbative way, which permits to extend the domain of validity of the PN 
approximation. A variant of EOB called EOB–NR is matched to the NR results. Both the IMR and EOB waveforms are 
extensively used in the LIGO/Virgo data analysis of the recent binary black hole events.

• The “ringdown”, when the newly formed black hole, which is highly deformed due to the nonlinear dynamics of the 
collision, relaxes to a stationary configuration given by the Kerr solution—the unique stationary rotating black hole in 
GR, depending only on the mass and the spin. The perturbed black hole emits quasi-normal mode radiation, and the 
modes can be analyzed by comparing with black hole perturbation theory [42]. A test of the “no-hair” theorem for 
black holes can be implemented by looking at the presence of an abnormal quadrupole moment endowed by the black 
hole, which would be independent of the mass and the spin. Alternatively, this can be viewed as a test of the existence 
of a new, exotic form of matter alternative to black holes.

We now review the state of the art on PN approximations applied to the inspiral of two compact objects. The first 
problem is that of the equations of motion, and has been solved up to the 4 PN order ∼ ε8

PN for non-spinning compact 
bodies. 6 Different methods have been used, with equivalent results: the Hamiltonian formalism in ADM coordinates [44–46]
and the Fokker action of GR in harmonic coordinates [47–50]. In addition, partial results have been obtained with the 
effective field theory [51,52]. The second problem is the one of the GW field, and of course, this is that problem whose 
solution is directly used by LIGO/Virgo. Here the state of the art is 3.5PN order ∼ ε7

PN beyond the result of the quadrupole 
formula [31,27,53–59], and the 4.5 PN term is also known [60]. To reach this result, a cocktail of approximation methods in 
GR called “MPM–PN” has been used:

• In a first stage, we control the gravitational field generated by an isolated matter system in the exterior zone of the 
system. A non-linearity or post-Minkowskian (PM) expansion is combined with a multipolar (M) expansion parametrized 
by some sets of source multipole moments, yielding the most general solution to the Einstein field equation in the ex-
terior zone [61–64]. In particular, this solution recovers the Bondi–Sachs formalism [25,65] for the asymptotic structure 
of radiative fields at infinity from the matter source. This is the MPM part of the method.

• The MPM solution is matched to the PN field in the near and interior zones of the source. This is achieved by a matching 
equation, within a specific variant of the theory of matched asymptotic expansions. The matching is performed up to 
any PN order and yields unique expressions for the multipole moments of the source [53,66] as well as for the radiation 
reaction contributions in the inner PN metric [67,68]. This completes the MPM–PN approach.

• The MPM–PN solution is applied to systems of compact bodies treated as point masses (possibly with spins), using 
delta functions singularities. The model thus entails ultra-violet (UV) divergences, that are cured by means of dimen-
sional regularization. Here we borrow dimensional regularization from quantum field theory and use it as a powerful 
regularization scheme in classical GR. In addition, independently of the model of point particles, there are infra-red (IR) 
divergences in the general formalism, treated by a variant of dimensional regularization.

We report the most complete results concerning the PN corrections in the orbital phase—crucial for both processes of 
detection and subsequent parameter analysis. Extending the “Newtonian” result (11b), we have:

φ = φ0 − x−5/2

32ν

∑
p

(
ϕpPN + ϕ

(l)
pPN ln x

)
xp (15)

5 Because of prohibitive computing times, the NR calculations are limited to a few tens of orbits before the merger, and will likely never be competitive 
with the PN approximation when monitoring tens of thousands of cycles in the early inspiral.

6 See [43] for an history of the problems of motion and radiation, and for references to previous PN approximations.
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Fig. 3. Observational constraints on the PN parameters, from measurements of the black hole events GW150914 and GW151226 (left panel) and from 
the neutron star event GW170817 (right panel). The limits are obtained by assuming the GR values (16) for all the PN parameters but for one. This 
particular one is allowed to vary and is measured by the technique of matched filtering. For instance, the 1.5 PN parameter agrees with the GR prediction 
ϕ1.5 PN = −10π within a fractional accuracy of the order of 10%, which constitutes an interesting test of the tail effect [27,71].

where the sum runs over the successive PN corrections: xp ∼ O(ε
2p
PN), with p being an integer or half integer. Some of the 

PN terms involve the logarithm of x, which we indicate by adding a superscript (l) to the PN parameter. Up to the 3.5 PN 
order, we have [54–59] 7

ϕ−1 PN = 0 (16a)

ϕ0 PN = 1 (16b)

ϕ0.5 PN = 0 (16c)

ϕ1 PN = 3715

1008
+ 55

12
ν (16d)

ϕ1.5 PN = −10π (16e)

ϕ2 PN = 15293365

1016064
+ 27145

1008
ν + 3085

144
ν2 (16f)

ϕ
(l)
2.5 PN =

(
38645

1344
− 65

16
ν

)
π (16g)

ϕ3 PN = 12348611926451

18776862720
− 160

3
π2 − 1712

21
γE − 3424

21
ln 2

+
(

−15737765635

12192768
+ 2255

48
π2

)
ν + 76055

6912
ν2 − 127825

5184
ν3 (16h)

ϕ
(l)
3 PN = −856

21
(16i)

ϕ3.5 PN =
(

77096675

2032128
+ 378515

12096
ν − 74045

6048
ν2

)
π (16j)

The PN parameters have been factorized by the dominant quadrupolar effect, so that ϕ0 PN = 1 by definition. Notice the term 
ϕ−1 PN, which corresponds to a dipolar effect; this term would appear in scalar–tensor theory, but is absent in GR, hence 
ϕ−1 PN = 0. The 1.5 PN term is especially interesting as it corresponds to the dominant nonlinear tail effect—backscattering 
of linear quadrupolar GWs onto the space-time curvature generated by the mass of the source. In scalar–tensor theory, there 
would be a dipolar tail term at the 0.5 PN order [69,70], but again this effect is absent from GR. The observational limits on 
the measurement of the PN parameters by LIGO/Virgo are shown in Fig. 3.

Going beyond 3.5 PN order, the 4 PN parameter has not yet been computed by PN theory, but its leading term in the 
small mass ratio limit ν → 0 is known from black hole perturbation theory [72,73]:

ϕ4 PN = 2550713843998885153

2214468081745920
− 45245

756
π2 − 9203

126
γE − 252755

2646
ln 2 − 78975

1568
ln 3 +O(ν) (17a)

7 Here γE is the (probably irrational/transcendental) Euler’s constant.
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ϕ
(l)
4 PN = −9203

252
+O(ν) (17b)

We expect that PN theory will be able to fully confirm this result, as well as, of course, to provide all the mass ratio 
corrections O(ν) therein. Finally, the complete 4.5 PN parameter has been derived by PN theory, and is due to an iterated 
nonlinear tail effect [60]:

ϕ4.5 PN =
(

−93098188434443

150214901760
+ 80

3
π2 + 1712

21
γE + 3424

21
ln 2

+
[

1492917260735

1072963584
− 2255

48
π2

]
ν − 45293335

1016064
ν2 − 10323755

1596672
ν3

)
π (18a)

ϕ
(l)
4.5 PN = 856

21
π (18b)

We emphasized that in the matched filtering analysis of GWs, it is important to take into account the effects of spins. 
Here we report the spin-orbit (SO) coupling contributions, which are linear in the two spins and result from the coupling 
with the orbital angular momentum. They are known up to the 4 PN order [74,75]:

ϕSO
1.5 PN = 1

Gm2

[
235

6
Sz + 125

8

δm

m
�z

]
(19a)

ϕ
SO (l)
2.5 PN = 1

Gm2

[(
−554345

2016
− 55

8
ν

)
Sz +

(
−41745

448
+ 15

8
ν

)
δm

m
�z

]
(19b)

ϕSO
3 PN = π

Gm2

[
940

3
Sz + 745

6

δm

m
�z

]
(19c)

ϕSO
3.5 PN = 1

Gm2

[(
−8980424995

6096384
+ 6586595

6048
ν − 305

288
ν2

)
Sz

+
(

−170978035

387072
+ 2876425

5376
ν + 4735

1152
ν2

)
δm

m
�z

]
(19d)

ϕSO
4 PN = π

Gm2

[(
2388425

3024
− 9925

36
ν

)
Sz +

(
3237995

12096
− 258245

2016
ν

)
δm

m
�z

]
(19e)

where the mass difference is denoted by δm = m1 − m2, S1 and S2 are the two individual spins, and Sz and �z are the 
projections of the particular combinations S = S1 + S2 and � = m

m2
S2 − m

m1
S1 perpendicular to the orbital plane, i.e. parallel 

to the orbital angular momentum. The quadratic spin–spin (SS) coupling contributions to the orbital phase are also known 
[76].

4. Influence of the internal structure of compact bodies

The PN parameters have been obtained within the so-called “pole–dipole” model, which approximates the rotating com-
pact body as a point mass with a spin, but neglects the effect of the finite size and the internal structure of the body, such 
as the internal velocity field and the type of equation of state. In particular, the quadrupolar tidal deformation of the body 
is ignored. Neutron stars have a strong internal gravity, so it is very difficult to deform them. We expect that they should be 
distorted by the gravitational field of the companion only in the last orbits before the merger [77,78]. On the other hand, 
the numerical computation of the merger of two neutron stars shows that it is strongly dependent on the internal structure 
and on the (unknown) equation of state [79,80]. Therefore, a legitimate question to ask is whether and at which PN order 
the internal structure of extended compact objects influences the orbital phase evolution. Here we answer this question by 
means of a simple Newtonian model for the tidal interaction between extended bodies without spins during the inspiral 
phase, at the lowest quadrupolar level. 8 The Newtonian equations of motion of N extended spinless bodies (a, b = 1, . . . , N) 
to linear order in the quadrupole moments are

ma
dvi

a

dt
= G

∑
b 	=a

[
mamb

∂

∂ yi
a

(
1

rab

)
+ 1

2

(
ma q jk

b + mb q jk
a

) ∂3

∂ yi
a∂ y j

a∂ yk
a

(
1

rab

)]
(20)

where ma are the masses, and we denote the position and velocity of the center of mass of the bodies by ya(t) and 
va(t) = d ya/dt , with the Euclidean separation between centers of mass being rab = |ya − ya|. The quadrupole moments of 
the bodies, supposed to be made of a perfect fluid, read

8 See Refs. [81–86] for entries in the literature.
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qij
a =

∫
Va

d3za ρa

(
zi

az j
a − 1

3
δi j z2

a

)
(21)

with Va the volume of the body, za = x − ya(t) the distance between a generic point x inside the body and the center of 
mass, ρa = ρ(ya +za, t) the Newtonian mass density of the body, ρ(x, t) being the usual Eulerian density. The mass-centered
condition reads∫

Va

d3za ρa zi
a = 0 (22)

The conserved energy of the N-body system is the sum of the internal (Newtonian) energies ea and of the orbital contribu-
tions, including the quadrupole effects:

E =
∑

a

{
ea + 1

2
ma v2

a − G

2

∑
b 	=a

mamb

rab
− 1

2
qij

a E
i j
a

}
(23)

where we have introduced the tidal field acting on body a and due to the other bodies b 	= a:

E i j
a ≡ G

∑
b 	=a

mb
∂2

∂ yi
a∂ y j

a

(
1

rab

)
(24)

Posing wa = dza/dt for the internal velocity field of body a, �a = �(ya + za, t) for the specific internal energy satisfying the 
thermodynamical relation d� = −P d(1/ρ) (with P the pressure), and ua for the internal self-gravity given by the Poisson 
integral over the volume of the body, we have

ea =
∫
Va

d3za ρa

(
1

2
w2

a + �a − ua

2

)
(25)

The coupling of the quadrupole moment qij
a with the external tidal field E i j

a of the other bodies implies a variation of the 
internal energy given by

dea

dt
= 1

2

dqij
a

dt
E i j

a (26)

We consider the case where the quadrupole moment is induced by the tidal field of the other bodies. To linear order, 
we can introduce a coefficient λa characterizing the deformability (or “polarizability”) of the body under the influence of 
the external field, such that

qij
a = λa E i j

a (27)

The “response” coefficient λa depends on the internal structure of the body, and is commonly given as λa = 2
3G kar5

a in terms 
of the radius ra of the body and the mass-type quadrupolar Love number ka ≡ k(2)

a (see for instance [82]). In fact, it will be 
more convenient to characterize the internal structure of the body by the dimensionless parameter

�a = c10

G4m5
a
λa = 2

3
ka

(
c2ra

Gma

)5

(28)

In the case of the induced quadrupole moments (27), the total energy of the system becomes

E =
∑

a

{
1

2
ma v2

a − G

2

∑
b 	=a

mamb

rab
− 1

4
λa E i j

a E i j
a

}
(29)

Consider a compact binary system (N = 2) moving of an exact circular orbit. From Eq. (27), we see that the two 
quadrupole moments face each other, and remain constant along the circular orbit. The equation of the relative motion 
reduces to dv/dt = −ω2x, where x = y1 − y2 and v = dx/dt are the relative position and velocity (with r ≡ r12). We find 
from (20) the orbital frequency

ω2 = Gm

r3

[
1 + 9ν

(
X3

1�1 + X3
2�2

)
γ 5

]
(30)

We pose Xa = ma/m so that X1 X2 = ν is the symmetric mass ratio, denote γ = Gm
rc2 and employ the notation (28). In turn 

the conserved energy (29) for circular orbits reduces to
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E = − Gm2ν

2r

[
1 − 6ν

(
X3

1�1 + X3
2�2

)
γ 5

]
(31)

As the effect of the deformation of the bodies computed here is purely “Newtonian”, we see that the c’s we have introduced 
into our definitions naturally cancel out in Eqs. (30) and (31).

The above dynamics is conservative, i.e. we have neglected the dissipative radiation reaction effect on the orbit. This 
effect is taken into account when we impose the flux-balance equation (4). Again there is no need to impose the angular 
momentum balance equation (6) for circular orbits. The total quadrupole moment of the system is the sum of the orbital 
one and of the intrinsic moments of the bodies, given by (21):

Q ij = mν
(

xi x j − 1

3
δi jr2

)
+ qij

1 + qij
2 (32)

Plugging this into the flux formula, computing the time derivatives using the equations of motion including the contributions 
from the quadrupole moments, see Eq. (30), and keeping only the terms linear in these quadrupoles, yields the flux (still 
for exact circular orbits) as

F GW = 32G

5c5 r4ω6m2ν2
[

1 + 6
(

X4
1�1 + X4

2�2
)
γ 5

]
(33)

At this stage, we reexpress the invariants E and F GW in terms of the orbital frequency ω instead of the separation 
distance r using Eq. (30). The interest of doing this in GR (e.g., when doing relativistic PN calculations), comes from the fact 
that the separation r depends on the choice of the coordinate system, while the orbital frequency ω is invariantly defined 
in a large class of coordinate systems. Recalling the definition for the invariant dimensionless PN parameter x in (10), we 
obtain

E = −1

2
mνc2x

[
1 − 9ν

(
X3

1�1 + X3
2�2

)
x5

]
(34a)

F GW = 32c5

5G
x5ν2

{
1 + 6

[
(X1 + 2ν) X3

1�1 + (X2 + 2ν) X3
2�2

]
x5

}
(34b)

At this stage, we can already draw a firm conclusion: the effect of the internal structure of non-spinning bodies is propor-
tional to x5, and is thus comparable to a relativistic effect occurring at the 5 PN order. Recall though that we computed this 
effect using merely Newton’s law of gravity. Of course, the latter estimate is just formal, but we expect it to be physically 
correct in the case of compact bodies. But the numerical value of the coefficient involving the �a ’s is to be taken into 
account. For instance, Gma

c2ra
∼ 0.15 for neutron stars (hence x5 ∼ 8·10−5 at the merger), and the numerical estimates of the 

Love numbers for neutron stars are of the order of one or say, a tenth [83,84]. Therefore, the deformability parameters (28)
for compact bodies should be of the order of �a ∼ 1000, depending of course on the equation of state, as shown in Fig. 4.

As in Sec. 2, the phase and frequency evolution follow from (4), where both E and F GW have been computed for the 
conservative dynamics in Eqs. (34). This approximation is justified as we are interested in the secular, adiabatic evolution 
of the orbit over a radiation reaction time scale. We need thus to evaluate the secular variation of the energy E , which we 
immediately find from (34a) to be

dE

dt
= −1

2
mνc2

[
1 − 54ν

(
X3

1�1 + X3
2�2

)
x5

]
ẋ (35)

Combining this with the flux (34b), we get an ordinary differential equation for x. It turns out to depend on the following 
combination of the two deformability parameters:

�̃ = 16

13

[(
X1 + 11ν

)
X3

1�1 + (
X2 + 11ν

)
X3

2�2

]
(36)

normalized in such a way that, in the case of two identical neutron stars (with the same mass, X1 = X2 = 1
2 , and the same 

equation of state), it reduces to �̃ = �1 = �2. We obtain the quadrupole finite-size effect due to the internal structure on 
the frequency and phase evolution, extending the point-mass results given by (11), as

x = 1

4

−1/4

[
1 + 39

8192
�̃
−5/4

]
(37a)

φ = φ0 − x−5/2

32ν

[
1 + 39

8
�̃x5

]
(37b)

These corrections should be added linearly to the purely gravitational PN corrections presented in Sec. 3. For compact 
bodies, the effect appears at the very small order 5 PN, but for neutron stars it becomes relatively large at the merger, of 
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Fig. 4. Observational constraints on the tidal deformability (or polarizability) and the inner equation of state of neutron stars obtained with GW170817 [2]. 
The parameters �a are defined by (28). Contours enclosing 90% and 50% of the probability density are shown with dashed lines. The predictions for tidal 
deformability given by a set of representative equations of state are given with grey lines. For a stiff equation of state, the pressure increases a lot for a 
given increase in density (for instance P ∝ ργ with a large value of the polytropic index γ ), thus it gives more resistance to the gravitational force and the 
neutron star is less compact. The stiffest equations of state are excluded, while the softest (which predict more compact neutron stars) are still allowed; 
they appear in the dark blue region. The constraints are shown for a low-spin scenario, with dimensionless spin parameter |χ | � 0.05, which is probably 
favored for neutron stars.

the order of a radian in the phase. Remarkably, it has been possible to put a bound on the tidal deformability of neutron 
stars with the recent binary neutron star event GW170817, and to infer a constraint on several possible equations of state 
for the nuclear matter inside neutron stars, see Fig. 4.
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