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This paper is a survey of the initial developments of the research on quasicrystals starting 
from their discovery by Daniel Shechtman (Nobel Prize in Chemistry in 2011) in 1982 at 
the National Bureau of Standards (now National Institute for Standard and Technology) 
in Gaithersburg (Maryland, USA) up to the beginning of the early 1990s, a time when 
the crystallographic methods were well developed and mastered enough to decipher 
the ultimate atomic structures of quasicrystals. These early works have enlarged our 
understanding of spatial order in solids through a strong multidisciplinary effort between 
mathematicians, physicists, chemists and material scientists.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Cet article relate le développement initial des recherches sur les quasicristaux depuis 
leur découverte par Daniel Shechtman (prix Nobel de chimie en 2011) en 1982 au 
National Bureau of Standards (aujourd’hui National Institute for Standards and Technology) 
à Gaithersburg (Maryland, États-Unis) jusqu’au début des années 1990, période durant 
laquelle se sont développées les méthodes cristallographiques adaptées à l’analyse de ces 
structures atomiques quasicristallines. Ces premiers travaux ont permis d’élargir notre 
compréhension de l’ordre dans les solides grâce à une forte pluridisciplinarité alliant 
mathématiciens, physiciens et spécialistes de la science des matériaux.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. A short chronology of Shechtman’s discovery

The first observation of quasicrystals by electron microscopy was made by Daniel Shechtman in early April 1982 during 
his study of the structural morphology of a rapidly solidified (Al, Mn) alloy at the Metallurgy Institute of the National Bureau 
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Fig. 1. Typical dendritic morphologies of precipitates of the icosahedral phase in (Al, Mn) along various crystallographic orientations (a) and (b) of the 
aluminum matrix.

of Standards, now National Institute of Standards and Technology (NIST, Gaithersburg-Maryland, USA). This work was part 
of a two-year sabbatical 1981–3 DARPA–NSF1 project on rapid solidification, where Shechtman was hired as an electron 
microscopist.2

This group on rapid solidification of binary alloys was created by Robert J. Schaefer, who was interested in partitionless 
solidification and precipitation, and all of the experimental work of the DARPA–NSF project was done at the Metallurgy 
Institute at NIST. The project included several Aluminum based alloys (Al, X) with X = Cr, Mn, Fe, Co, and Ni for low 
compositions in X roughly up to 10 at. %. The fruitful decision of extending the composition range up to Al6X and beyond 
was made by Shechtman himself.

On 8 April 1982, looking at a new set of rapidly solidified Al6Mn samples prepared by Robert Schaefer and Frank Bian-
caniello, Shechtman discovered a new precipitation in the aluminum matrix grains with the typical dendritic morphology 
shown in Fig. 1. As a highly experienced microscopist, he noticed an unusually strong contrast variation in standard bright 
field imaging mode according to the precipitate orientation with respect to the incident electron beam. After a careful 
examination of the sample under various orientations, he eventually obtained a set of diffraction patterns exhibiting an as-
tonishing 3D icosahedral symmetry, inconsistent with 3D periodicity, but with still a remarkable sharpness of the diffraction 
spots comparable to the one observed in the best-quality crystals.

This paradoxical discovery has been made possible because electron microscopy allowed him to observe 3D diffractions 
of single grained precipitates as shown in Fig. 1 where he could recognize at once the long range order of these precipitates 
together with their overall non-crystallographic icosahedral symmetry as revealed by the diffraction patterns as the one of 
Fig. 2. Transmission Electron Microscopy (TEM) has indeed been here the key tool necessary to allow for the discovery of 
quasicrystals.

The TEM diffraction pattern perpendicular to a 5-fold rotation axis shown in Fig. 2, very emblematic of quasicrystals, 
deserves particular attention:

– the 5-fold symmetry (icosahedral symmetry in 3D) is inconsistent with periodicity;
– the sharpness of the diffraction spots are comparable to those obtained from best crystalline silicon standards;
– the locations of the diffraction spots can be obtained by a simple geometric construction using simple homothetic 

inflation by the golden mean τ = (1 + √
5)/2 of elementary regular pentagons;

– whatever the direction, there are no single rows of periodically spaced spots in the pattern: this rules out the possible 
hypothesis of the structure resulting from possible multiple twins of usual crystals.3

Hence, this new structure appeared as a paradoxical object: on the one hand, it exhibited a long-range order like in 
crystals because of the sharpness of the diffraction spots; on the other hand, it could not be crystalline because of its 
overall pentagonal symmetry.

1 Joined program between the Defense Advanced Research Projects Agency and the National Science Foundation.
2 As a visiting professor at the Technion, Cahn had met Shechtman in 1971 when he was in his last year of graduate studies. When they met again in 

1979, Cahn invited him to NIST to participate in the DARPA project on rapid solidification. After 1984, NIST hired Leo Bendersky at a permanent position 
to continue the electron microscopy work of the group.

3 Although this point was obvious from the very beginning, the idea of the 5-fold symmetry resulting from possible microtwinning of crystalline material 
kept being regularly opposed to Shechtman and his colleagues during a very long time after the first high-resolution image published in the Comptes rendus 
de l’Académie des sciences in 1985 by Shechtman et al. [1].
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Fig. 2. The famous electron diffraction pattern observed by Dan Shechtman of the icosahedral phase in Al6Mn is characterized by sharp diffraction spots, 
comparable to those in high-quality crystals, but distributed according to an overall pentagonal symmetry that forbids this material from being a periodic 
distribution of atoms.

At that time, Shechtman felt a need for an explanation of his unbelievable finding before thinking in publishing these 
results. As he said, “there is no such animal”; the notion of quasiperiodicity and Mackay’s experimental demonstration that 
Penrose’s quasiperiodic two-dimensional tiling would diffract sharply, were unknown to the initial metallurgy group, so that 
the discussions at NIST ceased and no further work was done on quasicrystals. Moreover, all tentative explanations that 
Shechtman received from knowledgeable scientists in the field of crystallography and metallurgy were simply that quinary 
structures cannot appear in crystals — that he knew perfectly well — so that his observations should most probably be 
artefacts due to a multiple twinning of standard crystals. But because this twinning was impossible to be experimentally 
revealed in electron microscopy, Shechtman completed other work before returning to Israel in the fall4 of 1983.

This extraordinary observation lay relatively dormant for two years, although it was still very present in Shechtman’s 
mind. In spring 1984, he met Ilan Blech — one of his former professors at the Technion (Haifa, Israel) — at a congress in 
San Diego (California, USA). Blech was very impressed by Shechtman’s 5-fold diffraction patterns and he devised a very 
clever and simple model of random stacking of parallel regular icosahedra connected by their edges, sort of an icosahedratic 
glass similar to the drawings shown in Fig. 3. This model – although leading to a much too low density for being realistic 
– gave remarkably good results for the numerically calculated diffraction patterns with well-localized strong peaks at the 
wavevector positions5 observed by Shechtman. The main understanding of this localized diffraction was there based on 
the remark that the set of interplanar distances of the model form a discrete uniform ensemble of vectors.6 Blech’s model 
has been the starting point of an enormous body of work on random tilings, especially in the USA, mainly by theoretical 
physicists.

This gave Shechtman enough confidence to return to his findings and write a first publication [4] together with Blech, 
entitled “The Microstructure of Rapidly Solidified Al6Mn” and submitted to the Journal of Applied Physics (JAP). Incredibly 
enough, the paper was rejected by the referee on the basis that the subject was too narrow to be of possible interest to the 
usual reader of JAP. . .

The authors then submitted in summer a revised version of the paper to Metallurgical Transactions A (now Metallurgical 
and Materials Transactions), and Shechtman presented a copy to John-Werner Cahn, a very famous senior scientist at the 
NIST Metallurgy Institute worldwide known for his works in thermodynamics of solids (in particular the so-called spinodal 
decomposition with the famous Cahn–Hilliard equations). John-Werner Cahn read the paper in his way to Santa Barbara 
where he was implied in a long-term seminar, “Theoretical physics and materials sciences”, at the Institute of Theoretical 
Physics (UCSB California). Although he was already aware of Shechtman’s work, it was there that he had seen all the data at 

4 After his return to NIST in the summer of 1984, Shechtman continued to come to NIST every summer for more than a decade.
5 The fluctuation to background diffuse intensity was not discussed in these original computations by Blech, focused only on the locations of the expected 

Bragg peaks.
6 Interesting enough, this property was shown in 2005 to be one of the main ingredients in the Strungaru theorem [2] that states that a Delaunay 

distribution of atoms has a sharp diffractive component in its Fourier spectrum if the pair interatomic vectors form a uniformly discrete set.
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Fig. 3. (a) The initial atomic model of Al6Mn proposed by I. Blech was a so-called icosahedral glass or icosahedratic phase, made of a set of randomly 
distributed parallel regular icosahedra attached by edges. (b) Blech’s model (a) is one of the many examples of random tilings of non-crystallographic polygons 
as those regular pentagons connected by edges and first imagined by A. Dürer [3].

once for the first time and realized that this work was of real importance. He thought that the way the paper was written 
did not give enough emphasis to this icosahedral phase and that neither JAP nor Met. Trans. were the right journals for 
publishing this finding.

The day after his arrival in Santa Barbara in mid-August 1984, Cahn presented Shechtman’s experimental results at a 
blackboard lunch to the seminar group. Denis Gratias was a member of this group invited by Cahn as a crystallographer 
specialized in group theory and incommensurate structures in metallurgy (the so-called long-period alloys). He was im-
mediately fascinated by these diffraction patterns and convinced by the veracity of the icosahedral symmetry compared 
to twinning. After a short discussion where Gratias explained why these patterns could not be the results of twins (see 
previous paragraphs), Cahn convinced Gratias to join the metallurgy group at NIST7 — soon called the quasicrystal group (see 
Fig. 4) — as a crystallographer. Thus, Shechtman, Cahn and Gratias started working together at NIST at the end of August 
1984. Shechtman proposed to Cahn to write a short manuscript specifically on the icosahedral phase to be submitted to 
Physical Review Letters (PRL) with the input from Gratias on incommensurate phases. There, the main idea was that sharp 
diffraction like Bragg diffraction could occur outside periodicity.8 This paper [7], entitled “Metallic Phase with Long-Range 
Orientational Order and No Translational Symmetry”, was finished in mid-September, a few days before Shechtman returned 
to Israel.

Although both papers [4,7] announced the creation by rapid solidification of a sharply diffracting aperiodic metallic 
Al–Mn solid phase, they differed in several ways. The first paper [4] was more explicitly focused on the metallurgical 
aspects of the experiment, whereas the PRL paper [7] was confined to the compelling case made by the experiments alone 
at NIST that challenged several prevailing paradigms of fundamental crystallography. Whatever model could be proposed 
that might distract attention from the experiments, the experimental result by itself was strong and sufficient to force a 
change in thinking of the possibility of ordered solids to exhibit Bragg diffraction outside periodicity. In that sense, the 
PRL paper posed the very basic question of a new possible long-range atomic ordering in solids that would go beyond 
periodicity. It was sent to PRL on 7 October and disseminated out for comments.

One of those copies reached Paul Steinhardt and Dov Levine, who were working on a theoretical model of a hypothetical 
icosahedratic phase, the calculated diffraction patterns of which were identical along the 5-fold and 3-fold directions to the 
experimental patterns9 obtained by Shechtman. They submitted their model [8] to PRL a couple of weeks after Shechtman 
et al. and coined the name quasicrystal as an abbreviation for quasiperiodic crystal. Their work had enormous influence in 
stimulating theory: quasiperiodicity entered for the first time in the field of solid-state physics and crystallography. The two 
publications of Shechtman [7] and Levine [8] in PRL appeared in November 1984; they received an immediate worldwide 
acceptance and excitement, and confirmation about the name quasicrystals for this new kind of ordering in metallic alloys.

In the meantime, the NIST experiments of metallurgical elaboration, TEM, and X-rays characterizations were successfully 
reproduced and confirmed in France at the “Centre d’étude de chimie métallurgique” (CECM, Vitry, France). The first TEM 
high-resolution images obtained in France in early January 1985 by Shechtman et al. [1] and Portier et al. [9], were theo-
retically calculated in dynamical electron diffraction a couple of months later by Marianne Cornier (Quiquandon) et al. [10]. 
They definitely ruled out the multiple twinning explanation. In view of these results, the famous French scientists Louis 

7 Cahn was unsuccessful in requesting additional funds from DARPA, but received funding from the NIST internal management to begin a major effort on 
the subject.

8 Gratias was aware of the works of H. Bohr [5] and A. Besicovic [6] on almost-periodicity, thus confirming on mathematical bases the possible existence 
of Bragg diffraction beyond periodic objects.

9 The 2-fold patterns were slightly different, Levine and Steinhardt’s model showing more spots than observed; in fact, as it has been understood later, 
this model was built on a F-type 6D lattice, whereas the real structure, at that time, had a P-type 6D lattice; F-type 6D lattices were indeed discovered a 
couple of years later.
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Fig. 4. (a) The research group on quasicrystals in early 1985 at NIST (from left to right, Dan Shechtman, Frank Biancaniello, Denis Gratias, John Cahn, Leonid 
Bendersky, and Robert Schaefer); a set of high-resolution TEM micrographs is to be seen on the table that had been taken by R. Portier in January 1985 
at CECM, Vitry; they were the first HREM observations along the 2-fold orientation of Al6Mn quasicrystals. (b) The electron microscope of the Metallurgy 
Institute at NIST where Dan Shechtman (sitting in front) discovered quasicrystals (on the back, John Cahn and Denis Gratias).

Michel, André Guinier, and Jacques Friedel, among others, gave their full support to engage new research efforts in France 
on the subject.

Michel Fayard, head of the Chemistry department of the CNRS, created in early January 1985 a “Programme international 
de collaboration scientifique” (PICS) between the Institute of Metallurgy at NIST (Gaithersburg, USA), the CECM/CNRS (Vitry, 
France) and the department of Materials Sciences at Technion (Haifa, Israel). This gave the opportunity to Shechtman, Cahn, 
and Gratias to meet in January 1985 at the CECM, Vitry, France, where a new research team had formed around Yvonne 
Calvayrac and Jean Bigot to elaborate and study these new aluminum-based alloys, research that lasted many years.

It turns out that, at the same time, an international seminar of mathematical crystallography was organized at IHES by 
Louis Michel and Marjorie Sénéchal [11]. Both knew about the quasicrystal discovery through Gratias, who learned group 
action theory a couple of years earlier at IHES under the supervision of Louis Michel. The three authors were thus invited to 
give a presentation of their experimental results. Gratias insisted in his talk on almost-periodicity as the plausible concept 
for understanding the apparent paradox of Bragg diffraction of solids exhibiting pentagonal symmetry. Michel Duneau, 
André Katz, and Aloysio Janner were in the audience and immediately after Gratias’ talk, André Katz [12] explained on the 
blackboard the technique of the cut-and-project method10 he had derived with Michel Duneau (see Fig. 5), whereas Aloysio 
Janner (see [15]) made the connection with the superspace description. It was during this extraordinary session – where 
most of the interventions were improvised and spontaneous – that many of the basic concepts of quasicrystallography were 
enounced for the first time. This started a renewal of interest in higher-dimensional crystallography and aperiodic tilings in 
mathematics (see, for instance, [16]).

In the USA, the APS meeting of March 1985 at Baltimore opened the first quasicrystal session with already 13 abstracts 
received in December 1984. Shechtman was invited as a key-note speaker and Gratias gave a lecture explaining the cut-and-
project method. About 300 papers were submitted worldwide in 1985 followed by tens of thousands several years later. A 
new quasicrystalline decagonal phase was discovered in 1985 by Leonid Bendersky [17]. Stable quasicrystals11phases were 
found in commercial alloys (Al–Cu–Li) by Dubost et al. [18] at CEGEDUR–Péchiney, where large quasicrystalline single grains 
were obtained for the first time. Numerous new stable icosahedral quasicrystals were then found in many aluminum-based 
ternary alloys, in particular the (Al, Cu, Fe) system by An-Pang Tsai and his group [19].

10 This method has been independently proposed by the Russian group of Pavel Kalugin, Alexei Kitayev, and Leonid Levitov [13], and by the American Veit 
Elser [14].
11 They are now hundreds of stable icosahedral and decagonal phases in binary and ternary metallic systems. They are obtained by the standard met-

allurgical technics used to grow large single crystals. They are stable in the sense that they are part of the equilibrium phase diagrams like any other 
metallurgical crystalline phase.
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It is only in 1992 that the International Union of Crystallography (IUCr) eventually altered its definition of crystals (see 
[20]). Previously IUCr had defined a crystal as “a substance in which the constituent atoms, molecules, or ions are packed in a 
regularly ordered, repeating three-dimensional pattern.” The new definition became “A material is a crystal if it has essentially a 
sharp diffraction pattern. . . ” The word essentially is to be understood here as “most of the intensity of the diffraction is concen-
trated in relatively sharp Bragg peaks, besides the always present diffuse scattering. . . ” Although quite unsatisfactory, this broader 
definition allows for possible future discoveries of other kinds of crystals.

Although no scientific revolution has ever been easier in Europe than quasicrystals, this ten-year delay for changing the 
definition of crystal came mostly from an opposition in the USA against this major paradigm change. In fact, in a letter 
[21] to Nature dated October 1985, the famous double Nobel Prize chemist and crystallographer Linus Pauling rebelled 
strongly against these quasicrystals that he considered as simple multi-twinned ordinary crystals: “crystallographers can now 
cease to worry that the validity of one of the accepted bases of their science has been questioned” and “There are no such things as 
quasicrystals, there are only quasiscientists.” Strong refutations have immediately been published [22] in the issue of Nature
dated January 1986, with the letter “Pauling’s model not universally accepted”, signed by several groups, but most of the 
US crystallographers stayed outside the field during years.

This has been the opportunity for European and Asiatic scientists to take some advance in sample preparation techniques 
and crystallography, whereas the US physicists developed mostly the entropy aspects of the random tiling models that are 
an important part of the stability of quasicrystals. No one ever provided experimental evidence confirming the structures 
proposed by Pauling for quasicrystals12 and there was so much literature confirming Shechtman’s finding that Linus Pauling’s 
opposition eventually failed.

Quasicrystals received an unanimous enthusiastic interest from the mathematics and solid-state physics communities. 
The research developed very quickly in Europe: in France, with a joined research program (PICS) with the NIST, the first 
International Workshop on Aperiodic Crystals in Les Houches (March 1986), the creation of the “Groupe de recherche CNRS 
quasicristaux”, which lasted until the 1990s, and then, starting 1997, in Germany with the DFG “Schwerpunkt Quasikristalle”. 
Together, more than a hundred European laboratories have been involved in those programs with quite comfortable finan-
cial support. In the 2000s, an European Network of Excellence on Complex Metallic Alloys (CMA) gathered 21 European 
countries. Nowadays, the most active research on the subject has moved to Asia, in particular in Japan, with the group of 
Tsai (see, for instance, [23]).

1.2. Prolegomena of quasicrystals (see J. Friedel in [24])

As very often in science, the concepts that were at the basis of quasicrystals were already known for quite a long time.
In 1972, Yves Meyer [25] had published a book entitled Harmonic Analysis and Number Theory, in which he invented non-

periodic sets of points that diffract on dense enumerable sets of Bragg peaks with hierarchical intensities. These ensembles 
are now clearly recognized as the first quasicrystalline frameworks now called Meyer sets. In 1977, Peter Martin de Wolff 
[26], followed by Aloysio Janner and Ted Janssen [15], invented the superspace description for describing incommensurate 
phases. A few years before, in 1974, R. Penrose [27] built a non-periodic tiling made of two kinds of tiles with an overall 
5-fold symmetry. In 1981, Alan Lindsay Mackay chose the Penrose tiling as a prototype of possible atomic distributions with 
5-fold symmetries in a magnificent pioneer paper [28], “De Nive Quiquangula: on the pentagonal snowflake”, where he 
concluded: “it gives an example of a pattern of the type which might well be encountered but which might go unrecognized if unex-
pected”. The link between the Penrose tiling and the superspace description started with the 1981 paper “Algebraic theory 
of Penrose’s non-periodic tilings of the plane” by Nicolaas Govert de Bruijin [29], who discovered the hidden properties of 
this tiling in considering internal variables that would later be recognized as the basis of the cut method. Soon after, in 
1984, Peter Kramer and Roberto Neri [30] found new periodic and non-periodic space fillings by projection from higher di-
mension spaces. Finally, as previously discussed, a few weeks after Shechtman’s publication, Dov Levine and Paul Steinhardt 
[8] proposed the first explicit ideal structural model that they designated as quasicrystals, an abbreviation for quasiperiodic 
crystals.

2. The N-dimensional crystallography

Shechtman’s discovery challenged two principles of crystallography.
First, in 1784, René-Just Haüy postulated that all crystals were made up of clusters of atoms repeated periodically in 

three dimensions [31]. This periodicity implies that only 1-, 2-, 3-, 4-, and 6-fold rotation axes, only 14 Bravais lattices, 32 
point groups, 51 crystal forms, and 230 space groups are possible to describe crystals anywhere in the universe. During 
200 years, all measured crystals entered that scheme, periodicity becoming the definition of a crystal and an axiom of 
crystallography.

Secondly, it is well known since the beginning of the 20th century that diffraction from periodic objects results in sharp 
spots arrayed on the nodes of a reciprocal lattice. But the converse, that sharp diffraction spots could only come from a 

12 Although regular periodic phases have been found with atomic clusters similar to those observed in quasicrystals called approximant phases, those are 
easily distinguished from quasicrystals by their diffraction patterns.
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Fig. 5. (a) The simplest geometric construction of a quasiperiodic sequence of points consists in collecting all the centers of the unit squares of the graph 
paper that are intersected by a straight line Ec of irrational slope designated as the cut (red line), and project them perpendicularly to another line E‖ in 
blue designated by the physical space. The sequence of points in yellow along E‖ is a quasiperiodic distribution of short and long segments. (b) Choosing 
Ec parallel to E‖ for simplicity, we observe that collecting the centers of the unit squares hit by the line E‖ is equivalent for selecting the centers that are 
located inside a strip extending along E‖ with thickness � being the convex envelope of the projection of the unit square along the line E⊥ perpendicular 
to E‖ . This, in turn, is equivalent in attaching a segment σ to each center – called an atomic surface – and collecting their intersections with E‖.

periodic object, was a widely accepted fallacy, which is the main and unique responsible cause of the apparent paradox of 
Shechtman’s results: the concept of almost-periodicity under its simplest form, called quasiperiodicity after the works of 
Ernest Esclangon [32], Harald Bohr [5], and Abram Besicovitch [6] on almost-periodic continuous functions, was enough to 
pretend solving this apparent paradox.

Indeed, a function (of d real variables) on an affine (d-dimensional) space E‖ is said to be quasiperiodic if it is the 
restriction to Ec (embedded as an affine subspace) of a periodic function of n real variables defined in a higher-dimensional 
space Rn where the direction of the cut is irrational (i.e. if the vector subspace parallel to the cut contains no point of the 
lattice besides the origin). For example, the function f of two real variables x and y defined by: f (x, y) = cos x + cos

√
2y

is periodic in the (x, y)-plane. But, if we take the diagonal restriction of this function along the line y = x, i.e. the function 
φ of one variable φ(x) = cos x + cos

√
2x is not periodic because of the incommensurability between the two arguments in 

the cosine functions; φ(x) is a quasiperiodic function.

2.1. The cut method

The simplest extension for generating quasiperiodic sets of points was explained by Katz in an improvised talk at IHES 
in the afternoon of 21 January 1985 using the following scheme.

Take a graph paper made of square units, designate by x and y, respectively, the horizontal and vertical directions; draw 
a generic straight line Ec of angle α with the x direction and collect all the unit squares that are hit by the line as shown 
in Fig. 5(a); choose whatever distinguished points in those squares, for example their centers, and project them on another 
line say E‖ . One obtains a sequence of points separated by long and short segments that do not repeat periodically if tan α
is an irrational number: the sequence is quasiperiodic.

This simple scheme is highly instructive. Quasiperiodicity is induced uniquely by the irrationality of the slope tanα of the 
cut Ec and not by its localization in the plane nor by the orientation of the projection of the distinguished points onto the 
line E‖ . Indeed, the way the projection on E‖ is achieved has no influence on the quasiperiodicity of the sequence: if the 
projection direction has a rational slope, the relative lengths of the long and short segments are in a rational ratio: this is a 
quasiperiodic sequence built out of a periodic set of points. Also, moving the cut Ec line results in exchanging here and there 
some L and S segments, this generates infinitely many different sequences that are all equivalent.

This simple technique succeeds in generating a discrete set of points because the intersection of the line with the graph 
paper generates a set of connected unit squares that cover a non-zero surface: in fact, generic irrational cuts of lattices 
are empty or contain at most one point. To collect an infinite discrete set of lattice points like the red ones in Fig. 5, it 
is necessary either to consider a cut by a slice with finite thickness transverse to the cut, or to attribute a non-zero but 
finite extension to the lattice nodes transverse to E‖ as shown in Fig. 5(b) where, for simplicity, E‖ and Ec are a same line. 
In the first case, we collect the lattice points that are inside a strip of thickness �; in the second case, we attach to each 
lattice node a segment of length σ , called an atomic surface, and collect the intersections of these atomic surfaces with the 
cut. These two constructions are made equivalent in choosing � = σ . Crystallographers prefer the second one, using atomic 
surfaces, for two reasons:

– it is very convenient for defining the distribution of several different atomic species by a collection of different atomic 
surfaces located at different sites with different shapes;

– this scheme enters the technique of N-dimensional crystallography invented by de Wolf f [26] and set up in a general 
framework by Janner and Janssen [15] for the incommensurate phases.

All quasiperiodic structures generated by the previous technique share the following properties [33].
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Fig. 6. The spectrum of the Fourier transform of a quasiperiodic chain of scatterers of equal weight generated by the cut method on the left, is located on 
the dense set of all projected nodes of the reciprocal lattice �∗ where each projected node located at q‖ is weighted by sin(σq⊥)/q⊥ as drawn in blue on 
the right.

– The repetitivity property states that any finite packing of atoms that appears in a given quasiperiodic structure appears 
infinitely many times in the same tiling uniformly with a well-defined frequency. For any given finite radius r, there 
exists only a finite number of different atomic configurations called the r-atlas within any ball of radius r. This number 
grows with r, whereas it remains bounded for a periodic crystal.

– The local isomorphism property asserts that, if the projection of � is everywhere dense in E⊥, any finite packing of atoms 
that appears in a given quasiperiodic structure in E‖ also appears in any other structure defined by a cut parallel to E‖ .

These two properties are often stated together as the local isomorphism property. They are however quite different 
by essence. The first one describes the repetitivity of finite-size patterns in one given tiling and may be considered as 
the quasiperiodic version of the standard repetitivity property (or homogeneity) in ordinary crystals. The second one has 
no simple counterpart in standard crystallography; it relates two different tilings; the closest relation that can be found 
with standard crystallography is the so-called homometric property of certain degenerate structures that have same self-
correlation functions.

2.2. The Fourier transform

The major question posed by Shechtman’s discovery [4,7] was the widely accepted fallacious idea in crystallography that 
diffraction patterns exhibiting Bragg spots would necessarily correspond to periodic objects. The works on incommensurate 
phases (displacement, chemical or magnetic order) published long before the discovery of quasicrystals are examples of this 
belief that they are a fallacy. But those were treated as specific structures resulting form the modulation of functions of 
atomic displacement, chemical or magnetic ordering that superimpose on the skeleton of a standard periodic structure. The 
diffraction pattern could thus be analyzed as a convolution of a host reciprocal lattice, generating the so-called fundamental
spots with the Fourier transform of a periodic modulation function, incommensurate with the periods of the host lattice, 
that generates the so-called satellite spots. In that sense, the diffraction patterns of incommensurate phases made of sharp 
spots was understood as the result of more periodicities than the dimension of the space resulting in a convolution of 
reciprocal lattices (see Janner and Janssen [15]).

Shechtman’s diffraction pattern of Fig. 2 could not be analyzed that way: there were neither host lattice with fundamen-
tal spots nor satellite spots. It was therefore very important to have an explicit calculation of the Fourier transform of the 
theoretical structures obtained by the cut method to get the demonstration that the diffraction pattern is indeed a set of 
Bragg peaks.

The complete calculation of the Fourier transform has been first given by Katz and Duneau in their original paper [12]. 
They achieved this calculation in following in reciprocal (Fourier) space the construction made in direct space (see Fig. 6). 
Enough is to say here that, because the actual structure results in a d-dimensional cut (E‖) of a high N-dimensional periodic 
structure of lattice �, the Fourier spectrum is carried on the set of the projection of the nodes of the reciprocal lattice �∗
on the reciprocal cut E∗‖ , i.e. an enumerable set of Bragg peaks. The complete calculation shows that each projected node is 
weighted by an intrinsic amplitude that is the Fourier transform σ̂ along E∗ of the characteristic function σ — taking value 
⊥
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Fig. 7. Projections of the 6 basic unit vectors on the physical space E‖ and on the perpendicular space E⊥ . These two tables give the explicit expressions of 
the scalar products 〈α|i〉 and 〈ᾱ|i〉 that are the matrix coefficients (up to the global normalization factor κ ) of the projectors ̂π‖ and ̂π⊥ onto, respectively, 
E‖ and E⊥ .

1 inside the atomic surface and 0 everywhere else — of the atomic surface at this node.13 This weight factor σ̂ (q⊥) tends 
to zero for |q⊥| tending to infinity.

This fundamental result (first presented by Katz and Duneau on 21 January 1985 at the IHES colloquium) was very 
important:

– it demonstrated that Bragg diffraction does also occur for objects that are not periodic;
– it demonstrated that in the cut model, because of the intrinsic weight factor due to the finite size of the atomic surfaces, 

the set of Bragg peaks with an intensity greater than any strictly positive threshold is discrete.

For the experimental point of view, this last property is necessary to solve the formidable problem of unambiguously
indexing diffraction peaks out of a dense set of possible reflections.

2.3. The example of the icosahedral phase in the 6-dim space

Immediately after the colloquium at IHES in January 1985, Cahn, Gratias, and Shechtman were convinced that the 
N-dimensional approach was the only way to properly describe the atomic structures of quasicrystals as a N-dimensional 
object. A key issue to convince crystallographers to eventually consider quasicrystals as different from amorphous solids 
was to demonstrate how to embed the diffraction data of the icosahedral phase in a high-dimension space. This required 
performing a careful indexing [34] of the diffraction peaks.

In fact, they noticed in early 1985 that, in the electron diffraction patterns, the Bragg peaks, noted here q‖ , could be 
indexed in a way similar to cubic crystals, but in using two integers per cubic direction instead of one: q‖ ∼ (h + h′τ , k +
k′τ , 	 + 	′τ ) with h, h′, k, k′, 	, 	′ ∈Z, where τ = (1 + √

5)/2 is the golden mean (positive solution to x2 − x − 1 = 0).
This suggested using the cut method in embedding this 3-dim object in a N = 3 × 2 = 6-dim Euclidean space E6 to 

recover full periodicity. The global problem was thus to decompose the 6-dim space into two complementary and orthog-
onal 3-dim spaces, E‖ and E⊥ with E‖ being the 3D physical space and E⊥ a 3D internal space and designated here as 
perpendicular space.

It was natural, since only the orbit of the quinary axes has multiplicity 6 in the icosahedral group 235 (Hermann–Maugin 
notations), to choose the quinary axes as the projections in the physical space of the six unit vectors of the 6-dimensional 
lattice � in E6. Moreover, observing that the group 235 has two equivalent representations in dimension 3 that can be 
deduced from each other by a π/2 rotation along the z axis, we choose E⊥ being defined by the projections in the perpen-
dicular space E⊥ of the quinary axes after this π/2 rotation along z′ , as shown in Fig. 7.

It turned out that, using the above framework, Cahn, Shechtman, and Gratias could prove that the most intense reflec-
tions observed in the X-ray and neutron powder diffraction patterns should be located at particular wavevectors defined by 
|q‖| ∼

√
N + Mτ , with N being an integer and M = �Nτ� (see appendix).

This predictive and highly not intuitive result has been of an enormous impact to validate the N-dimensional description 
with the cut formalism: the experimental X-ray and neutron powder diffraction patterns of the icosahedral phase Al6Mn 
made at NIST and CECM followed perfectly the predicted hierarchy of intensities, as exemplified in Fig. 8, and the global 

13 It also shows that two locally isomorphic structures S and S ′ deduced from each other by a translation T in the large space have Fourier coefficients 
related by a trivial phase change, F ′(q) = F (q) exp 2iπq · T . Therefore, their correlation functions to any order are identical, making them physically indis-
tinguishable. This is the basis of an extended definition of a symmetry operation being an operation that transforms a structure into a locally isomorphic 
one, i.e. physically indistinguishable from the initial one.
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Fig. 8. X-ray powder diffraction spectrum of the icosahedra phase Al62, Cu25.5, Fe12.5 (CECM, CNRS, Vitry). Each peak q‖ in the physical space is characterized 
by two integers (N, M) such that |q‖| = κ

√
N + Mτ and the most intense ones are those where M = �Nτ �; for example, the three most intense reflections 

in the middle of the spectrum are labelled, from left to right, (18, 29), (20, 32), and (52, 84).

scaling factor between the calculated and the experimental pattern gave the first estimation of the unit-cell 6-dimensional 
parameter A6, around 0.6–0.7 nm for the usual icosahedral phases (a detailed discussion is to be found in [34]).

This 6-dimensional indexing scheme was far more than a simple housekeeping work of crystallography; it was the 
necessary path to restore the 6-dimensional periodicity, the basic tool to understand these intriguing structures and describe 
them with a finite number of words.

Since all observed wavevectors q‖ were thus identified as the unambiguous projections in E‖ of 6-dimensional vectors 
Q 6 of �∗ , the computation of the Fourier transforms could then be performed directly in the 6-dimensional space. For 
example, the pair correlation function — also designated as Patterson function by crystallographers — is easily displayed in 
E6 using:

P (R6) =
∑

Q 6∈�∗
| f (q‖)|2e2iπQ 6·R6 (1)

The second good news came at NIST at the end of 1985, when the first Fourier transforms (1) were calculated in 
6-dimensional space using the experimentally observed intensities collected in powder neutron diffraction. It revealed mag-
nificent cigar-shaped intensities elongated in the perpendicular direction giving a crude aspect of the atomic surfaces as 
segments parallel to E⊥ and attached to each lattice node (see [35–37]).

The discovery of new stable quasicrystalline phases by the group of An-Pang Tsai [23] — where large single grains 
could be elaborated at equilibrium by slow cooling — started the possibility of performing quantitative X-ray and neutron 
single-grain diffraction studies. Numerous new ternary alloys were discovered, exhibiting icosahedral and decagonal phases 
at equilibrium with great quasicrystalline perfection estimated by the average peak width of the strong diffraction peaks. 
In November 1990, Marianne Cornier-Quiquandon et al. [38] made a first structure determination of the Al62Cu25.5Fe12.5
single-grain icosahedral phase by neutron diffraction at the “Laboratoire Léon-Brillouin” (LLB/CEA, Saclay, France). They 
used the cut method and devised the atomic surfaces shown in Fig. 9, inspired by previous work from Pierre Guyot and 
Marc Audier [39], who proposed structural units (Mackay clusters) for quasicrystals from a study of the unit cells of the 
crystalline phases α-(AlFeSi) and α-(AlMnSi). In 1992, Michel Boudard et al. [40] obtained very similar results on the alloy 
Al70.3Pd21.4Mn8.3 using X-ray diffraction at the European Synchrotron Radiation Facility (ESRF, Grenoble, France).

The experimental results expressed in E6 were surprisingly simple: the atomic structures are made of quasiperiodic 
aggregations of intersecting atomic clusters like the one shown in Fig. 10. The simplest model proposed by Quiquandon 
et al. [41] is described by three main atomic surfaces only located at the high-symmetry special points of a face-centered 
6-dimensional lattice as shown in Fig. 9(a). It is easily demonstrated that Mackay and Bergman clusters are indeed the most 
frequent atomic aggregates, as suggested by Guyot and Audier [39] in early 1986.

From about the 2000s, the N-dimensional aspect — that is the mathematical essence of quasiperiodicity — has finally 
been accepted by the crystallography community. Concerning the high-dimension symmetry groups, Louis Michel and Jan 
Mozrzymas [42] published in 1988 a very synthetic work entitled Fundamental Concepts of Crystallography in the Comptes 
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Fig. 9. The first simple atomic models issued from experimental diffractions lead to define the icosahedral phase Al62, Cu25.5, Fe12.5 in 6-dimensional space 
by a F (2A6)-type lattice with three (main) atomic surfaces, here polyhedra, shown in (a), and located at the high-symmetry special points of the F 6D-lattice 
(n = (0, 0, 0, 0, 0, 0), n′ = (1, 0, 0, 0, 0, 0) and bc = 1/2(1̄, 1, 1, 1, 1, ̄1). These atomic surfaces are revealed by Fourier-transforming the experimental data in 
6D: (b) shows the expected model on the left and the experimental Fourier map on the right in a cut along the 5-fold plane; the 5-fold direction in the 
physical space E‖ is along the horizontal line and the corresponding 5-fold direction in the perpendicular space E⊥ is along the vertical line.

Fig. 10. Typical atomic structure of the icosahedral phase Al62Cu25.5Fe12.5: (a) the Bergman cluster, (b) the Mackay cluster, and (c) the way they arrange 
and intersect in space.

rendus de l’Académie des sciences that unified all the usual crystallography concepts for any finite dimension using the usual 
tools of group action theory. The International Union of Crystallography changed the definition of crystals in 1992 as already 
mentioned above. New X-ray high-resolution investigations came out that led to very convincing and accurate descriptions 
of the atomic structures of stable quasicrystals in binary systems (see, for instance, the case of YbCd [43–48]). They are all 
described roughly as a quasiperiodic intrication of different atomic clusters with local icosahedral symmetry like those seen 
in Fig. 10. A detailed description of the research on quasicrystals in this recent period can be found in the special issue 
“Quasicrystals” of Comptes rendus Physique [24].

3. Conclusion

The existence of quasicrystals has been well and easily accepted around the world, with the exception of part of the US 
crystallographers led by the double Nobel Price Linus Pauling, who rebelled strongly against this discovery. Quasiperiodicity 
does not exhaust, by far, all possible long-range ordering in solids: many other mathematical deterministic algorithms exist 
that give rise to perfectly ordered distributions of points that are neither periodic nor quasiperiodic. It is not yet known 
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which of these distributions could appear in nature but, because of quasicrystals, it is clear that solid-state physicists and 
crystallographers are now much better prepared to face these new possibilities today than in the 1980s.

4. Appendix

As already noted in the text, the embedding of the actual physical 3-dimensional structure in a higher N-dimensional 
space is the key point in the recovering of full periodicity. Usually, the unique experimental information for a new quasicrys-
tal is its diffraction pattern where the locations of the Bragg peaks are the irrational projections of nodes of a N-dimensional 
reciprocal lattice �∗ with reciprocal unit vectors e∗

i . They form a so-called Z-module, a dense set of peaks of the form 
q‖ = ∑N

i=1 ni π̂‖e∗
i , ni ∈ Z, projections of the nodes Q = ∑N

i=1 nie∗
i . Embedding the physical space in the high-dimension 

space consists in explicitly specifying the orientation of E‖ (and thus E⊥ as complement to E‖) in the N-dimensional space.
We exemplify here the derivation of such an embedding (see [34]) for the case of the icosahedral phase with N = 6.
Let {|i〉} be the orthonormal basis14 of E6 built on the six quinary axes defining the 6-dimensional hypercubic lattice �. 

Let {|α〉} be the three unit vectors along x, y, z defining the standard cubic orthonormal basis of E‖ , and {|ᾱ〉} the three 
unit vectors along x′, y′, z′ defining the standard basis of E⊥ .

The sum of the projectors ̂π‖ in E‖ and ̂π⊥ in E⊥ being the identity:

Id =
6∑
i

|i〉〈i| = π̂‖ + π̂⊥ =
∑
α

|α〉〈α| +
∑
ᾱ

|ᾱ〉〈ᾱ|

the easiest way of characterizing these projectors is to express the basis change from {|i〉} to {|α〉, |ᾱ〉}.
Let V be a vector of the lattice �, V = ∑

i ni |i〉; the decomposition onto E‖ and E⊥ leads to:

V =
∑

i

(∑
α

|α〉〈α|i〉 +
∑
ᾱ

|ᾱ〉〈ᾱ|i〉
)

ni

and thus, the operators R̂‖(⊥) , defined by the two 3 × 6 matrices:

(̂R‖)α,i = 〈αk|i〉 (̂R⊥)ᾱ,i = 〈ᾱk′ |i〉 for i = 1,6 and k(k′) = x, y, z (x′, y′, z′)
transforms a vector V of � expressed on the canonical basis |i〉 directly into its components on the basis {|α〉} in E‖
(respectively on the basis {|ᾱ〉} in E⊥).

Hence, using the components of the 5-fold directions in E‖ and E⊥ given in the table of Fig. 7, we obtain the matrix 
elements of the projectors ̂R‖(⊥) as the scalar product of the unit vectors |i〉 on the bases |α〉 and |ᾱ〉 properly normalized15:

(̂R‖)α,i = κ

⎛⎝ 1 τ 0 −1 τ 0
τ 0 1 τ 0 −1
0 1 τ 0 −1 τ

⎞⎠ , (̂R⊥)ᾱ,i = κ

⎛⎝−τ 1 0 τ 1 0
1 0 −τ 1 0 τ
0 −τ 1 0 τ 1

⎞⎠ , κ = A6

√
2(2 + τ ) (2)

The previous projectors can also be easily computed directly on {|i〉} in expressing the unit vectors of the two bases |α〉
and |ᾱ〉 as 6-dimensional vectors in E6; one obtains then the 6 × 6 matrices:

〈i|̂π‖| j〉 =
∑
α

〈i|α〉〈α| j〉 = 〈i|t R̂‖R̂‖| j〉; 〈i|̂π⊥| j〉 =
∑
ᾱ

〈i|ᾱ〉〈ᾱ| j〉 = 〈i|t R̂⊥R̂⊥| j〉

Since the 6-dimensional lattice � is hypercubic — defined by the orthonormal basis {|i〉} — the very same relations 
hold in reciprocal space for labelling the Bragg reflections with respect to �∗ . Thus, because of relations (2), the vector 
components of the form h + h′τ in E∗‖ transform into h′ − hτ in E∗⊥: the reflection q‖ = κ(h + h′τ , k + k′τ , 	 + 	′τ ) in E∗‖ has 
its counterpart in E∗⊥ , q⊥ = κ(h′ − hτ , k′ − kτ , 	′ − 	τ ).

Elementary calculations show that the length — in A∗
6 unit — of the diffracting wavevectors can be parametrized using 

two integers N and M; defining the 6-dimensional Bragg reflections unit, Q 6 = q‖ + q⊥ , one easily obtains:

Q 2
6 = N/2, q2‖ = κ2(N + Mτ ), q2⊥ = κ2τ (Nτ − M)

with N = h2 + h′2 + k2 + k′2 + 	2 + 	′2 and M = h′ 2 + k′2 + 	′2 + 2(hh′ + kk′ + 		′).
Because N > 0, q2‖ ≤ Q 2 and q2⊥ ≤ Q 2, M is bounded by −�N/τ� ≤ M ≤ �Nτ�. Remembering that, in the cut formalism, 

the atoms are characterized by intrinsic shape functions (the Fourier transforms of the atomic surfaces) that modulate the 
intensities of the Bragg peaks, the most intense peaks, corresponding to the smallest |q⊥| values, are thus found when 
M = �Nτ�, i.e. for peaks located in reciprocal space at |q‖| = κ

√
N + �Nτ�τ .

14 We use Dirac notations in E6 with the standard Euclidean scalar product, since this makes manipulating projectors very easy.
15 Designating by A6 the parameter of the elementary hypercube, one obtains the normalization of |α〉 (and |ᾱ〉) using 〈α|α〉 = ∑6

i=1〈α|i〉〈i|α〉 = 1 as 
being κ = A6

√
2(2 + τ ).
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Fig. 11. The three main 6-dimensional lattices cannot be differentiated along the 5- and 3-fold axes, but are clearly distinguishable in the binary planes.

There are three main Bravais 6-dimensional lattices. Using the standard orthonormal basis with lattice parameter A6, we 
have:

– the body-centered lattice I(A6) defined by:

I(A6) = Z6 + 1

2
(1,1,1,1,1,1)Z6

– the primitive lattice P (A6) defined by:

P (A6) =Z6

– the face-centered lattice F (2A6) defined by:

F (2A6) =Z6 such that
∑

ni = 2p

These three lattices are related by the very general group-subgroup relation that holds to any finite dimension:

I(A6) ⊃ P (A6) ⊃ F (2A6)

of index 2 at each step. The corresponding reciprocal lattices are

I(A6) → F (2A∗
6), P (A6) → P (A∗

6) and F (2A6) → I(A∗
6)

These three lattices16 can be distinguished in the binary planes as shown in Fig. 11. Concerning the powder diffraction 
patterns where the reflections are characterized by the couples (N, M), we have the following rules:

– for I(A6), reciprocal lattice F (2A∗
6), N and M are even;

– for D(A6), reciprocal lattice D ′(A∗
6), M is even;

– for P (A6), reciprocal lattice P (A∗
6), N is even;

– for D ′(A6), reciprocal lattice D(A∗
6), the sum N + M is even;

16 In addition to these three main lattices, two others, called D(A6) and D ′(A6), can be defined as:

D(A6) = F (2A6) + 1

2
(1,1,1,1,1, 1̄)F (2A6) and D ′(A6) = F (2A6) + 1

2
(1,1,1,1,1,1)F (2A6)

Their projections in E‖ are homothetic to P (A6) with scaling factors τ for D(A6) and τ − 1 for D ′(A6). They are thus redundant with P (A6) for crystallo-
graphic descriptions in the physical 3-dimensional space.
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– for F (2A6), reciprocal lattice I(A∗
6), there are no conditions on N and M .

These results concerning the description of the basic Bravais lattices in E6 (and many others, see Duneau [49]) were 
achieved in 1988. They formed the basic crystallographic tool to study the icosahedral phases using 6-dimensional Euclidean 
space.
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