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We study an agent-based model of evolution of wealth distribution in a macroeconomic 
system. The evolution is driven by multiplicative stochastic fluctuations governed by the 
law of proportionate growth and interactions between agents. We are mainly interested in 
interactions increasing wealth inequality, that is, in a local implementation of the accumu-
lated advantage principle. Such interactions destabilise the system. They are confronted in 
the model with a global regulatory mechanism that reduces wealth inequality. There are 
different scenarios emerging as a net effect of these two competing mechanisms. When 
the effect of the global regulation (economic interventionism) is too weak, the system 
is unstable and it never reaches equilibrium. When the effect is sufficiently strong, the 
system evolves towards a limiting stationary distribution with a Pareto tail. In between 
there is a critical phase. In this phase, the system may evolve towards a steady state with 
a multimodal wealth distribution. The corresponding cumulative density function has a 
characteristic stairway pattern that reflects the effect of economic stratification. The stairs 
represent wealth levels of economic classes separated by wealth gaps. As we show, the 
pattern is typical for macroeconomic systems with a limited economic freedom. One can 
find such a multimodal pattern in empirical data, for instance, in the highest percentile of 
wealth distribution for the population in urban areas of China.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étudions un modèle d’évolution de la répartition de la richesse dans un système 
macro-économique basé sur les agents. L’évolution est mue par des fluctuations stochas-
tiques multiplicatives régies par la loi de la croissance proportionnelle et des interactions 
entre agents. Nous nous intéressons principalement aux interactions qui accroissent les 
inégalités de richesse, c’est-à-dire à une mise en œuvre locale du principe de l’avantage 
accumulé. De telles interactions déstabilisent le système. Elles sont confrontées dans le 
modèle à un mécanisme réglementaire mondial qui réduit les inégalités de richesse. Dif-
férents scénarios se dessinent, comme un effet net de ces deux mécanismes concurrents. 
Lorsque l’effet de la régulation globale (interventionnisme économique) est trop faible, le 
système est instable et n’atteint jamais l’équilibre. Lorsque l’effet est suffisamment fort, le 
système évolue vers une distribution stationnaire limitante avec une queue de Pareto. Entre 
les deux, il y a une phase critique. Dans cette phase, le système peut évoluer vers un état 
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stable avec une répartition multimodale des richesses. La fonction de densité cumulative 
correspondante suit un motif d’escalier caractéristique qui reflète l’effet de la stratification 
économique. Les escaliers représentent les niveaux de richesse des classes économiques 
séparées par des écarts de richesse. Comme nous le montrons, le schéma est typique des 
systèmes macro-économiques avec une liberté économique limitée. On peut trouver un tel 
modèle multimodal dans les données empiriques, par exemple, dans le percentile le plus 
élevé de la répartition des richesses pour la population des zones urbaines de la Chine.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Wealth inequality in the world has been continuously rising since the seventies of the last century [1,2]. According to 
Thomas Piketty, the author of the book Capital in the Twenty-First Century [1,3], this process is an inherent feature of global 
capitalism and will dominate the world economy and social structure in the twenty-first century unless some special mea-
sures are taken to inhibit or reverse it. Such measures require a very strong international integration and implementation 
of economic interventionism at the scale of the whole globe. Left to itself, the growth of wealth inequality may at some 
point threaten the democratic order and lead to strong instabilities [1,4]. The scale of wealth inequality is well illustrated 
by data on wealth concentration [4,5]. The wealth of the richest one percent of the world population is roughly equal to the 
wealth of the remaining 99%. The number of richest individuals who own the same wealth as the poorer half of the world 
decreases year by year. According to Oxfam’s estimates based on the Crédit Suisse Global Wealth Databook, this number 
was equal to eight at the end of 2016. Even though it is only an estimate, which may be slightly biased, it certainly reflects 
an enormous scale of wealth concentration and thus also of wealth inequality.

Both empirical and theoretical research on wealth distribution is an important and active branch of contemporary eco-
nomics (see [6,7] for review) and it is closely interrelated with the problem of optimal conditions for economic growth [8,9]. 
The modern, systematic analysis of income and wealth distributions dates back to Vilfredo Pareto, who made an important 
observation about wealth and income statistics [10]. The status of this observation has evolved in the course of time into 
what is known today as the Pareto law [11]. The law concisely summarises statistical properties of the distribution of in-
come and wealth of the richest part of the population. Another important contribution was made by Robert Gibrat, who 
formulated the law of proportionate effect [12], which lies at the heart of economic processes responsible for the evolu-
tion of wealth distribution viewed from the large macroeconomic scale. While studying the issue of wealth inequality, one 
has to go beyond the equilibrium formulation and look at the dynamics of the underlying processes from a non-stationary 
perspective in a non-equilibrium framework. In this framework, one can, for example, analyse the stability of wealth dis-
tribution with respect to perturbations of tax rates, saving tastes, productivity levels, return rates on capital, growth rates, 
etc. In the simplest case [13], the evolution is modelled by a single stochastic evolution equation. The population statistics 
can be imitated by replacing some parameters of this equation by random variables or associated stochastic processes. For 
example, the return rate can be modelled as a Gaussian variable with a non-zero width, or as a stochastic process whose 
values are positively correlated with wealth if one wants to model the Matthew effect of accumulated advantage. There is 
some freedom in incorporating various aspects of population statistics in this approach, but unfortunately one cannot im-
plement correlations between individuals or their collective behaviour, as, for example, herding [14]. To do this, one has to 
study the whole population of individuals. It can be done in the framework of agent-based modelling, which was pioneered 
in [15] (see [16] for review). We adopt it here to describe the dynamics of wealth distribution in a macroeconomic system 
by a set of interacting stochastic equations. Piketty argues that the primary cause for wealth inequality to rise is that the 
rate of return on capital is greater than the economy growth rate. Individuals who have a surplus of capital can invest it and 
multiply it at a rate that is usually larger than the economic growth rate [1,3,13]. This is, roughly speaking, equivalent to 
what is commonly known as the Matthew effect of accumulated advantage, or the rich-get-richer (poor-get-poorer) mech-
anism, which provides a generic explanation of inequalities and heterogeneous behaviour observed in many phenomena 
throughout many scientific disciplines [17–19]. In this work, we discuss how to incorporate the rich-gets-richer mechanism 
into the framework of agent-based modelling and discuss how it influences the population dynamics and the evolution of 
wealth distribution at the macroeconomical scale.

The dynamics of wealth distribution is a complex phenomenon, which is determined by many factors, including legal 
regulations, taxes, welfare, innovations, macroeconomic conditions, international relations, education, consumption, the exis-
tence of tax havens, intergenerational wealth transfers, inheritance, lifecycle accumulation, dynamics of self-made fortunes, 
and many others [6,7]. It is extremely hard to find a quantitative representation of all these factors and to implement them 
into a realistic model that would be capable of mimicking the behaviour of individuals and their decisions. Even if such a 
model had existed, it would have been highly non-linear and would have had thousands of parameters. This is a typical 
situation that is referred to as a curse of dimensionality, meaning that a model having ambitions to be maximally realistic 
suffers in fact from over-parameterisation. The model looses its predictive power and fails to unambiguously explain the 
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observed features. The empirical data can be explained by different combinations of parameters. Moreover, a little change 
of a single parameter in one sector of the model may completely change the results in other sectors.

An alternative approach is to invoke the idea of reductionism, which has a long tradition in natural and economic sci-
ences, in general, and in research on wealth distribution, in particular. We take this approach here. We consider a statistical 
agent model that describes a network of interacting individuals. The model is a variant of the Bouchaud–Mézard model 
[20]. The main difference as compared to the original model is that we consider interactions amplifying wealth inequality: 
when two agents interact, the richer one gets richer and the poorer one gets poorer as a result of the interaction. This is a 
local (microeconomic) implementation of the accumulated advantage principle. Obviously, such local forces destabilise the 
system and drive it out of equilibrium. If there were no other forces, the system would be unstable. In many real situations, 
however, and also in our model, some stabilising forces come into being. They are introduced by policy makers as regula-
tory mechanisms to reduce wealth inequality in the system. In effect, the system may evolve to an interesting steady state 
reflecting these two competing factors. The situation is similar to that known for many systems in statistical and quantum 
physics. For example, a Coulomb gas that consists of repelling particles is unstable. However, if one puts it to a confining 
potential, it may form a stabilised state for which Coulomb repulsion is balanced by external forces coming from the poten-
tial. The most famous example is the Coulomb gas picture that explains universality classes and highly non-trivial statistics 
of eigenvalues of random matrices as a net effect of local repulsion and global confinement [21,22]. A less known example 
of this type is the phase transition triggered by a global constraint in the backgammon model (known also as urn model or 
balls-in-boxes model) [23,24]. Here we look for similar effects in agent-based models.

Research on wealth distribution is a very active branch of science both in economics [2,3,6,25–29,7,8,30] and econo-
physics [9,14,16,20,31–39]. An important contribution of econophysics to this field is the development of multi-agent models 
that are capable to describe statistical, collective effects, and large-scale emergent phenomena. In such models, behaviour 
of a single agent (individual) can be understood only in relation to behaviour of others. Agents shape the system behaviour 
and the system shapes their behaviour. This feedback is often responsible for the emergence of large-scale phenomena in 
macroeconomic systems. The Bouchaud–Mézard model that we build on belongs to this category. So, before we define our 
model, let us recall some fundamental ideas that underlie it. They are present in many other models on wealth distribution.

2. Milestones

2.1. Gibrat’s rule

The basic idea is that the wealth of an individual changes multiplicatively rather than additively [12]. In the discrete 
time description, one can write an equation for the wealth Wτ at time τ

Wτ = �τ Wτ−1 (1)

where �τ is a random factor. By iterating this equation, one obtains a stochastic evolution of wealth. The physical time 
that elapses between two instants of time τ − 1 and τ (indexed by integers) is equal to �t , which is a period characteristic 
of the problem in question. It can be a day, a month, a year, a fiscal period, or any other suitable time unit. For example, 
in intergenerational wealth transfer issues, it is the generation time which is the average time between two consecutive 
generations. Expressed in physical units, time is t = τ�t . Eq. (1) is commonly known as the law of proportionate effect 
or Gibrat’s rule [12]. If the �’s are independent of W ’s and of each other and the probability distribution of � does not 
change with time, then Eq. (1) describes a one-dimensional geometric Brownian motion in the discrete time formalism. If 
one takes the logarithm of both sides of Eq. (1), one gets an equation log Wτ = rτ + log Wτ−1, being a discrete version 
of the standard Brownian motion for log Wτ with random changes given by random logarithmic returns rτ = log �τ . As 
follows from the central limit theorem, for a broad class of probability distributions of returns that do not have too heavy 
tails [40], the total return log Wτ /W0 behaves in the limit of large time τ → ∞, like a normal random variable with the 
mean proportional to τ and the standard deviation proportional to 

√
τ . Moreover, when the returns rτ themselves are 

normal variables with the mean proportional to the time interval �t; i.e. μ = μ0�t and the standard deviation propor-
tional to the square root of the time interval; i.e. σ = σ0

√
�t , then one can take the continuous time limit of Eq. (1), 

�t → 0. At this limit, Eq. (1) transforms into a stochastic differential equation, which in Itô calculus [41,42] has the form 
dW = W

(
(μ0 + σ 2

0 /2)dt + σ0 dB(t)
)
, where B(t) is the Wiener process. The letter B refers to Brownian motion, being the 

most prominent physical realisation of the Wiener process. The distribution of wealth Wτ /W0 evolves as a log-normal 
distribution logN (μτ , σ 2τ ) (or equivalently in physical time units as logN (μ0t, σ 2

0 t)). The mean value grows (or falls off) 
exponentially E(Wτ ) = W0 eτ�t(μ+σ 2/2) . The average wealth per capita

W τ = 1

N

N∑
i=1

W iτ (2)

for a system of N individuals, whose wealth follows the rule of proportionate growth (1), can be approximated for large N
values by W τ ≈ E(Wτ ) = W0 eτ�t(μ+σ 2/2) . Expressing the wealth in units of the average wealth per capita
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wiτ = W iτ

W τ

(3)

one gets a normalised wealth that has the mean wτ = 1. The evolution of the normalised wealth can be approximated by 
wτ = Wτ /E(Wτ ), which by construction has a log-normal distribution logN (−σ 2τ/2, σ 2τ ) and the mean E(wτ ) = 1. The 
dependence on μ disappears as it is cancelled by the normalisation. The standard deviation of the normalised variable wτ

grows exponentially 
√

e2τσ 2 − 1 ∼ eτσ 2
for large τ . This means that the distribution gets quickly very broad and very skew. 

The median, e−σ 2τ/2, exponentially drops to zero as τ increases, meaning that the distribution rapidly gets concentrated 
at zero. This effect is even more clearly seen in the time dependence of quantiles of the distribution. For any p < 1, the 
quantile is equal q(p) = eκpσ

√
τ−σ 2τ/2, where κp is the corresponding quantile for standardised normal distribution. For 

large τ , the second term in the exponent is dominant and it makes the quantile q(p) exponentially tend to zero as τ tends 
to infinity. In effect, for large τ , almost one hundred percent of the distribution is concentrated at zero. At the same time, 
the mean is equal to one; this means that the distribution must develop a long tail towards infinity. Enormous inequalities 
arise in the system. Indeed, the Gini coefficient quickly approaches one: G = erf(σ

√
τ/2) ≈ 1 − 2√

πσ
√

τ
e−σ 2τ/4 as τ grows. 

For large times, τ � σ−2, this extreme situation is realised by a highly uneven distribution of wealth with a single individual 
being tremendously rich and all remaining ones being extremely poor. The rich one amasses almost the entire wealth of 
the whole system. Some regulatory mechanisms are needed to stabilise the system.

Let us make a few remarks. The stochastic process, Eq. (1), describing the evolution of wealth, can be modified in many 
ways. One can, for example, explicitly include the earned income Eτ , the consumption Cτ , the inheritance (donations, gifts 
and bequests) Iτ , etc. into the evolution equation: Wτ = �τ Wτ−1 + Eτ − Cτ + Iτ + . . ., etc. (see [6,7] for review). One can 
also add taxes, interest rates for savings, etc. This would, however, make the modelling more complex and it would require 
additional assumptions about micro-foundations to simulate the behaviour of individuals and to describe mutual relations 
between all the stochastic processes Wτ , Eτ , Cτ , Iτ , etc. This would also drive the analysis towards a multi-parametric 
scenario. From the macroeconomic perspective, however, such additive stochastic fluctuations in the macroeconomic scale 
play a secondary role as compared to the multiplicative ones. They can of course enhance (or reduce) the rate of wealth 
inequality growth if they are positively (or negatively) correlated with the primary process of wealth growth. For example, 
if the income Eτ is positively correlated with the wealth Wτ , then rich ones get quicker richer and the wealth inequality 
grows faster. When it comes to modelling, however, the same effect can be achieved by correlating the multiplicative 
factors �τ with the wealth Wτ in Eq. (1). So, in order to concentrate on dominant effects, one can neglect secondary 
contributions and stay within the framework of purely multiplicative evolution, which plays the primary role in shaping 
wealth distribution in the macroeconomic scale.

2.2. Kesten stochastic processes

As mentioned, the law of proportionate effect in the form of Eq. (1) leads to non-stationary evolution. A simple modifi-
cation of the multiplicative rule can, however, stabilise the system and make it evolve towards a stationary state. Assume, as 
before, that wealth is generated according to the law of proportionate effect, Eq. (1), but if its value drops below a certain 
predefined threshold, Wmin, the new value is rejected and Wτ stays on the previous level Wτ−1

Wτ =
{

�τ Wτ−1 if �τ Wτ−1 > Wmin
Wτ−1 otherwise

(4)

The second element of the construction is to assume that the random factors �τ are contractive, i.e. E(�τ ) < 1. Such 
stochastic processes are called Kesten processes [43]. They are known to have a stationary state described by a probability 
distribution with a power-law tail for asymptotically large values. What makes Kesten processes attractive in this context 
is that, on the one hand, they generate power-law tails that are observed in many empirical studies on wealth and income 
distributions. On the other hand, the presence of the lower bound can be interpreted as a sort of existence limit. The 
contractive nature of multiplicative fluctuations is less obvious in the economic context but, as we shall see below, the effect 
can be naturally introduced by taxation, or more generally by regulatory measures and economic interventionism. It is worth 
mentioning that Kesten processes were formulated in the mathematical literature without any reference to economy. In 
economy, there are many specific models that, in one way or another, implement the contractive multiplicative fluctuations 
and the lower barrier, as for example Champernowne’s model of wealth accumulation [44] or a model of inter-generation 
wealth transfer proposed by Wold and Whittle [45]. Kesten processes have been also independently rediscovered in the 
econophysics literature [31]. We want to stress that one can expect a broad class of multiplicative stochastic processes with 
contractive random factors and a lower barrier to have a stationary state represented by a distribution with a power-law tail 
for large asymptotic values. This is a quite general, robust, and universal explanation of the presence of power-law tails in 
many empirical distributions for statistical systems. In contrast to preferential attachment, which explains power-law tails 
in growing systems [17–19], Kesten processes explain their presence in systems that do not grow.
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2.3. Agent-based modelling

So far we have discussed the evolution of the wealth of a single individual. A qualitatively new picture is obtained by ex-
tending the description to the multi-agent framework, where one explicitly takes into account mutual interactions of agents 
(individuals) [15,16,20]. A single evolution equation (Eq. (1)) is replaced by a set of equations that can be schematically 
written as

W iτ = �iτ W iτ−1 +
∑

j

T i j,τ (5)

where indices i, j run over the set of individuals 1, . . . , N . The first term in Eq. (5) follows Gibrat’s law as before. What is 
new is the sum of interaction terms Tij,τ that represent direct wealth transfers between agents i, j in the period τ . The 
interaction terms are antisymmetric T ji,τ = −Tij,τ , so they do not change the total wealth, but only generate a wealth flow 
in the system. The interactions can be chosen to be linear in wealth Tij,τ = J i j W jτ−1 − J ji W iτ−1 with some wealth reallo-
cation coefficients J i j controlling the intensity of wealth transfer. In this case, the model is often called Bouchaud–Mézard 
model. The original model was formulated in the continuous-time limit [20]. If J i j = J ji , then the transfer is proportional 
to the wealth gradient Tij,τ = J i j

(
W jτ−1 − W iτ−1

)
. If reallocation constants are positive, J i j > 0, the wealth gap between i

and j decreases as a result of agent interactions, while for J i j < 0 it increases. Bouchaud, Mézard, and followers considered 
interactions reducing wealth inequality. In this case, the effective equations for wealth are contractive and the evolution 
equations belong to the class of Kesten processes, so one can expect the wealth distribution to have a power-law tail. In-
deed, one can show that, in this case, mean-field calculations lead to an inverse-gamma distribution in the statistical limit 
that has a power-law tail [20]. The power-law exponent depends on the ratio of the reallocation coefficient and the volatility 
of fluctuations in the Gibrat’s growth factor. For sparse networks, the limiting distribution is given by a generalised-inverse-
gamma distribution [36]. The system displays a highly non-trivial pattern of relaxation to the limiting distribution [37,28,
38]. For finite size, the system does not reach a stationary state. The non-stationarity is reflected in fluctuations of the scale 
parameter of the inverse-gamma distribution [39].

The regime of the model that corresponds to aggressive economy, J i j < 0, favouring the rich-get-richer (and poor-get-
poorer) interactions has not been studied yet. In this case, the system is unstable [28,38] unless some regulatory, stabilising 
mechanism is introduced.

2.4. State interventionism

Regulatory mechanisms are an important factor that determines the distribution of wealth. Policy makers can influence 
wealth distribution by changing legal regulations, taxes, investments, welfare, etc. The problem is multidimensional, very 
complex, and difficult to quantify, so we again use Ocamm’s razor to make it as simple as possible to focus on the most 
dominant impact of the public sector on wealth distribution of individuals. We assume that each individual pays a linear 
wealth tax to the public sector and that public money is then uniformly distributed among all individuals

W iτ = (1 − β)W ′
iτ + β

N

N∑
j=1

W ′
jτ (6)

where W ′
iτ = �iτ W iτ−1; i.e. individual changes follow the rule of proportionate growth, Eq. (1). As we shall see, already 

this simple version of regulatory mechanism generates a non-trivial solution with a Pareto tail in wealth distribution. We 
have intentionally skipped direct interactions between agents in Eq. (6) to focus on the effect of taxation and redistribution. 
The interactions, Tij,τ , will be restored later in the full model. The first term on the right-hand side of Eq. (6) is contractive. 
The second term, in turn, makes that the minimal wealth will never be smaller than β times the current average per capita, 
so, in a sense, it introduces a lower bound on wealth. In other words, the stochastic process, Eq. (6), belongs to a broadly 
understood class of Kesten processes and thus one can expect it to have a stationary distribution with a Pareto tail. We 
show below that this is indeed the case by solving analytically the model, Eq. (6), for large N in the continuous time limit. 
In this limit, it is convenient to replace the tax rate β by the corresponding continuously compounded tax rate β0, which 
is related to β as 1 − β = e−β0�t , where �t is the duration of the fiscal period. Clearly, β ≈ β0�t for β0�t 
 1. Under 
the assumption that the multiplicative fluctuations �iτ are i.i.d. lognormal factors, logN (μ0�t, σ 2

0 �t), the set of Eqs. (6)
reduces to a set of N independent stochastic differential equations (for N → ∞) for the normalised wealth defined in Eq. (3)

dwi(t) = β0(1 − wi(t))dt + σ0 wi(t)dBi(t) (7)

Here we replaced wiτ by the corresponding function wi(t) of a continuous time t = τ�t . The equations are independent of 
each other and they are identical for each i, so one can skip the index i. The corresponding Fokker–Planck equation reads 
(see for instance [42])
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∂t p(w, t) = β0
∂

∂ w
((w − 1)p(w, t)) + σ 2

0

2

∂2

∂ w2

(
w2 p(w, t)

)
(8)

This equation describes the evolution of the probability density function p(w, t) of wealth distribution at time t . Clearly, 
the evolution preserves the mean 

∫
dw wp(w, t) = 1, since by construction the normalised wealth wi(t) = W i(t)/W (t) is 

expressed in terms of the average wealth W (t) at given t , and thus w(t) = 1. For any positive value of the tax rate β0 > 0, 
Eq. (8) has a stationary state ∂t p∗ = 0. Any solution p(w, t) of Eq. (8) tends to p∗(w) in the limit t → ∞. One can find 
an explicit form of the probability density function for the stationary distribution by solving Eq. (8) with the left-hand side 
replaced by zero. The solution reads

p∗(w) = c

w1+α
e− α−1

w (9)

where α = 1 + 2β0/σ
2
0 = 1 + 2β/σ 2 and c = (α − 1)α/
(α). This is an inverse-gamma distribution. As expected, for large 

w , the distribution has a power-law tail. For any non-zero (positive) tax rate, the exponent α is larger than one. One can 
check by inspection that the mean of the distribution (9) is equal to one. We see that the combination of taxation and 
redistribution generates power-law tails in the distribution of wealth. The effect is quite universal and has the same origin 
as in Kesten processes: taxation makes the process contractive while redistribution generates a lower bound. When the tax 
rate goes to zero (β → 0+), then α → 1+ . For α = 1, the function on the right-hand side of Eq. (9) is not integrable and 
the formula breaks down [20]. In this case, the system is described by the stochastic process (1), which never reaches a 
stationary state, as discussed.

It is worth mentioning that equations (7), (8) and (9) are identical as equations for the mean-field version of the 
Bouchaud–Mézard model [20,28,31] with the reallocation constant J replaced by the tax rate β0. The equations have a 
different origin, though. In the original Bouchaud–Mézard model [20], wealth inequality was reduced by agent interactions, 
whereas in the present version of the model (6), it is reduced by taxes and redistribution, which provide a stabilising factor 
for the system. Now we are going to define our model where we confront aggressive interactions between agents with 
macroeconomic actions undertaken by policy makers to reduce wealth inequality in the global scale.

3. The model

3.1. Wealth dynamics

The main assumption behind the model is that the wealth distribution in a macroeconomic system is driven by three 
processes: stochastic growth, described by the law of proportionate effect – Eq. (10) –, the flow of wealth between individ-
uals – Eq. (11) –, and a global mechanism representing the economic interventionism of the public sector – Eq. (12):

W ′
iτ = �iτ W iτ−1 , (10)

W ′′
iτ = W ′

iτ +
Q i∑

j=1

Tij,τ , (11)

W iτ = (1 − β)W ′′
iτ + β

N

N∑
j=1

W ′′
jτ (12)

The equations form an iterative system that describes a discrete-time evolution of wealth {W1τ , . . . , W N,τ } of N individuals. 
The proportionate growth is encoded in the statistic of growth factors �iτ . In the simplest version of the model, one can 
assume that the �iτ ’s are independent identically distributed (i.i.d.) random numbers. The growth rates riτ ≡ log �iτ are 
i.i.d. random numbers as well. For sake of simplicity, it is also convenient to assume that the growth rates are Gaussian 
random variables N (μ, σ 2), or equivalently that the �iτ ’s are i.i.d. lognormal random variables logN (μ, σ 2). The statistical 
properties of growth rates are controlled by the expected growth rate μ = E(riτ ) and the volatility σ 2 = E((riτ − μ)2), 
which is a measure of the magnitude of statistical fluctuations of growth rates around the trend μ.

Economic interactions between individuals can be represented as a network of interactions with nodes corresponding to 
individuals i = 1, . . . , N and edges i j to direct interactions. The node degree Q i is equal to the number of individuals with 
whom an individual i directly interacts. The interaction terms are antisymmetric Tij,τ = −T ji,τ , because the wealth flow 
from i and j is opposite to that from j to i. The flow preserves the total wealth in the system as one can see summing 
both sides in Eq. (11) over i: 

∑N
i=1 W ′′

iτ = ∑N
i=1 W ′

iτ . The total wealth is preserved also in Eq. (12). Wealth is generated only 
by the growth factors in Eq. (10). In the large N limit, the expected average wealth per capita increases exponentially as 
E(Wτ ) = eτ�t(μ+σ 2/2)W0. This follows from the independence of the �’s and W ’s, which for large N allows one to factorise 
the expected value in Eq. (10): E(W τ ) = E(�τ )E(W τ−1) = e�t(μ+σ 2/2)E(W τ−1).

It is convenient to assume the wealth transfers Tij,τ to be linear in wealth in the sense that they rescale as Tij,τ → sTi j,τ
under rescaling of the wealths W iτ → sW iτ by the same factor s for all i. Under this assumption, all three Eqs. (10)–(12) are 
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invariant under the change of scale. This means, in particular, that they are invariant with respect to the choice of monetary 
units (currency) the wealth is expressed in. It is convenient to use the current average wealth per capita Eq. (2) as a unit 
of wealth. Expressed in these units, the wealth values at time τ correspond to the normalised values wiτ , Eq. (3), so the 
average wealth per capita is wτ = 1. The normalised values (are dimensionless) and can be easily compared to one another. 
One has to remember, however, that the average wealth per capita, which serves as a unit of wealth, varies in time. Its 
expected value changes exponentially as E(W τ ) = eτ�t(μ+σ 2/2)W 0.

The simplest linear formula for the wealth transfer is Tij,τ = J i j W ′
jτ − J ji W ′

iτ with some constant parameters J i j [20]. 
These parameters control the intensity and the direction of the wealth flow between individuals. The total wealth outflow 
from agent i at time τ is proportional to his current wealth W ′

iτ and to an outflow coefficient, J i , being a sum of intensity 
factors J i = ∑

j J ji . The complement to the outflow coefficient, Si = 1 − J i , is a fraction of the wealth kept by agent 
i as a sort of inactive capital, e.g., real estate or savings. In the symmetric case J i j = J ji the flow equation (11) takes 
the form W ′′

iτ = W ′
iτ + ∑Q i

j=1 J i j(W ′
jτ − W ′

iτ ) where the primed values denote the wealth of i before the wealth transfer 
and the double primed ones after it. As follows from this equation, the capital is transferred from the richer individual 
to the poorer one if J i j > 0 and in the opposite direction if J i j < 0. This means that the wealth gap between i and j
gets smaller for positive J i j ’s, and larger for negative J i j ’s. Negative J i j ’s provide a microscopic implementation of the 
Mathew effect realising the rich-gets-richer (and poor-get-poorer) scenario. In this version, the modelled wealth is not 
bounded from below and can become negative. Once it becomes negative, it gets later even more negative as a result 
of the poor-get-poorer feedback. One can eliminate this effect by introducing a limit on the maximal loss of wealth in 
a single fiscal period. We assume that the maximal wealth flow from i to j is proportional to the current wealth of i. 
We denote the proportionality coefficient by γi . This leads to the following expression for the wealth transfer Tij,τ =
min

(
−γi W ′

iτ ,max
(
γ j W ′

jτ , J i j W ′
jτ − J ji W ′

iτ

))
. The kernel of this expression, J i j W ′

jτ − J ji W ′
iτ , is exactly the same as in 

the Bouchaud–Mézard model [20] but here it is bounded by the maximal loss limit, −γi W ′
iτ , and the maximal gain limit, 

γ j W ′
jτ . The two limits are related to each other since what is a gain of i is a loss of j and vice versa. The expression is 

antisymmetric, Tij,τ = −T ji,τ , as it should be. Because agent i interacts with Q i agents, agent i may in the worst case loose 
Q iγi W ′

iτ . The coefficient gi = Q iγi in this expression is the fraction of the capital of agent i, which may be maximally lost 
in one fiscal period. If gi < 1, the individual i may loose a part of his or her wealth, if gi = 1 he may loose everything, and 
if gi > 1 he may loose more than he has and in effect he may end up in debts. The parameter gi reflects the risk attitude 
of agent i. For a risk-avoiding individual: gi < 1, for a risk-seeking one: gi > 1, and for a risk-neutral one: gi = 1. Replacing 
γi ’s by the risk attitude coefficients gi ’s in Tij,τ , we get

Tij,τ = min

(
− gi

Q i
W ′

iτ ,max

(
g j

Q j
W ′

jτ , J i j W
′
jτ − J ji W

′
iτ

))
(13)

This expression is used in Eq. (11) to model the wealth flow in the system.
Eq. (12) models the influence of the public sector on the evolution of the wealth distribution. This equation can be 

modified in many ways. For example, one can replace the linear tax by a progressive tax by making the coefficient β depend 
on wealth. One can introduce other taxes, as for instance the income tax, which is based on the income W iτ − W iτ−1 rather 
than on the wealth W iτ itself. One can also replace the uniform redistribution by a targeted redistribution depending on 
the wealth level of individuals. The model has a flexible structure, which can be adapted to study various effects.

3.2. Mean-field approximation

In this section, we consider a mean-field approximation of the model. The idea is to assume that all individuals are 
sort of typical. They interact with each other (Q i = N − 1) with the same average intensity J i j = J/(N − 1). They have 
the same risk attitude gi = g . All wealth-outflow coefficients are identical J i = J . It is natural to assume that J < 1. The 
wealth-transfer expression, Eq. (13), simplifies to

Tij,τ = 1

N − 1
min

(
−gW ′

iτ ,max
(

gW ′
jτ , J (W ′

jτ − W ′
iτ )

))
(14)

For 0 < J < 1 and for risk-neutral attitude, g = 1, one can further simplify the last equation by skipping the min–max 
bounds, which are automatically fulfilled in this case. This gives Tij,τ = J

N−1 (W ′
jτ − W ′

iτ ). In effect, Eq. (11) takes a simple 

form W ′′
i,τ = (1 − J ′)W ′

i,τ + J ′
N

∑N
j=1 W ′

j,τ where J ′ = J N
N−1 . For large N: J ′ ≈ J . This equation is identical to Eq. (12) with 

β replaced by J ′ . Moreover, inserting W ′′
iτ from the last equation into Eq. (12), one can reduce Eq. (11) and Eq. (12) to a 

single equation

W iτ = (1 − β∗)W ′
iτ + β∗

N

N∑
W ′

jτ (15)

j=1
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Fig. 1. Comparison of the distribution of wealth for the stationary state obtained in Monte Carlo simulations of the model with the theoretical prediction, 
Eq. (9), for α = 4.6. The parameters used in the simulations are N = 1000, J ′ = −0.1, β = 0.095, σ = 0.05, and g = 1. This yields β∗ = β + J ′ −β J ′ = 0.0045
and α = 1 + 2β∗/σ 2 = 4.6, Eq. (9). The histogram was collected from one hundred samples.

Fig. 2. Time evolution of the Gini index obtained in Monte Carlo simulations of the model for different parameters (see the in-
let) that correspond to β∗ = {0.091, 0.021, 0.01, 0.0045, −0.089} (from bottom to top). The other parameters used in the simulations are 
N = 1000, σ = 0.05, and g = 1. The horizontal lines show the theoretically predicted limiting values of the Gini index G = 
(2α −
1)/
(α) {2 F1(α − 1,2α − 1;α;−1)/
(α) + (1 − α)2 F1(α,2α − 1;α + 1;−1)/
(α + 1)} for the stationary distribution, Eq. (9), with α = 1 + 2β∗/σ 2 for 
β∗ > 0. The prediction breaks down for negative β∗ (the uppermost curve in the figure). In this case, the corresponding wealth distribution has a multi-
modal structure, as discussed in the next section. The symbol 2 F1(a, b; c; z) stands for the hypergeometric function [46].

which is again of the same form as Eq. (12) with

β∗ = β + J ′ − β J ′ (16)

Eq. (15) is identical to Eq. (6) with β replaced by β∗ and thus it has the same solution. In particular, in the continuous 
time limit and for large N , the probability density function of the stationary state is given by Eq. (9), with α = 1 + 2β∗/σ 2. 
This solution holds as long as J > 0. We have checked numerically that the limiting distribution given by Eq. (9) is also 
a very good approximation for large but finite systems, for N in the order of a hundred or larger, and for discrete time 
evolution (10)–(12), as long as the parameters σ and β∗ are significantly smaller than one. This is illustrated in Fig. 1 and 
Fig. 2 where we compare the results of Monte Carlo simulations with theoretical predictions following Eq. (9). The role of 
the parameter β∗ can be easily understood when one rewrites Eq. (15) in the following way: �W ′

iτ = −β∗
(

W ′
iτ − W ′

τ

)
where W ′

τ = 1
N

∑N
j=1 W ′

jτ is the average wealth per capita and �W ′
iτ = W iτ − W ′

iτ is a change of wealth of agent i
caused by the effective wealth flow in the system. For β∗ > 0 the right-hand side of this equation describes an attractive 
force which tries to keep the wealth values close to the mean value and to reduce wealth inequality in the system. This 
force results from macroeconomic interactions, taxation, and redistribution. It counteracts the wealth differentiation coming 
from multiplicative fluctuations generated by the law of proportionate effect, Eq. (10). The situation changes for β∗ < 0, in 
which case the wealth values are repelled from the mean value. In this case, wealth inequality is strengthened and the 
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Fig. 3. Dependence of wealth distribution on σ . The left chart shows histograms of wealth distribution for the simulations of the system with σ =
{0.01, 0.05, 0.1, 0.5} and N = 1000, β = 0.001, g = 1, J = −0.3 after τ = 1000 steps of evolution. Each histogram was collected from one hundred samples. 
For σ = 0.01 the histogram consists of peaks which are narrow and separated from each other. They get broader when σ is increased. They overlap and 
form a single broad distribution for σ = 0.5. The right chart shows corresponding data (for one sample) represented as a plot of logarithm of wealth vs. 
normalised rank. The normalised rank n/N is ordered from the poorest individual, n = 1, to the richest one, n = N . For intermediate values of σ (e.g. 
σ = 0.1) one can see a smeared staircase structure indicating a tendency of the population to decay into economic classes.

system undergoes a non-stationary evolution. Empirical data suggest that the world macroeconomy has entered a period of 
increasing wealth inequality in the global scale [1–3]. We study this regime in detail in the next section.

3.3. Rich-get-richer macroeconomy

The Matthew effect of accumulated advantage is modelled by negative J i j ’s imitating the macroeconomic forces that 
increase wealth inequality. The process can be slowed down by the risk-avoiding behaviour of individuals and/or regulatory 
measures including taxation, social security, welfare, etc. The evolution of the system is shaped by all these factors. In the 
mean-field approximation for J < 0, the wealth flux, Eq. (14), is negative: Tij,τ < 0 if individual i is poorer than j. This 
means that wealth flows from i to j and thus i gets poorer and j richer. The wealth gap between i and j increases. In 
the worst case, individual i who owns wealth W ′

iτ may loose in total gW ′
iτ in one fiscal period and thus his wealth may 

drop to (1 − g)W ′
iτ as a result of interactions with other agents. For the risk neutral attitude, g = 1, the wealth, W ′

iτ , may 
maximally drop to zero. In effect, in this case, there are no individuals with a negative wealth in the system. This would 
not be the case if there were risk-seeking individuals, g > 1.

Before presenting the results of simulations of the model for J < 0, let us collect in one place all significant parameters 
and describe their role in the underlying macroeconomic system. The dynamics of wealth distribution is mainly governed 
by the parameter | J |, which reflects the strength of the positive feedback coupling in the rich-gets-richer mechanism. The 
larger | J |, the larger is the growth rate of the wealth gap. The parameter β imitates the strength of regulatory mechanisms 
applied by policy makers to prevent wealth inequality from growing. In this version of the model, the system is regulated 
by a linear capital tax combined with the uniform redistribution of tax revenue, and β is just the tax rate. The volatility σ is 
a measure of fluctuations of the multiplicative factors in the law of proportionate effect. It reflects the scale of fluctuations 
of return rates on the capital around the main trend. Larger σ ’s correspond to better conditions for risky enterprises and to 
larger fluctuations of wealth. If σ is large, poor individuals have a large chance to become rich and vice versa. We assume 
in our considerations the risk attitude of individuals to be either risk-avoiding, g < 1, or risk-neutral, g = 1. This ensures 
that the values W iτ are non-negative for all individuals during the whole evolution.

We have simulated systems of size N ranging from one hundred to ten thousand. We have noted, however, that already 
for N in the order of a hundred, the behaviour of the system is qualitatively the same as for larger N . All figures in this 
paper are for N = 1000. The simulations are performed by iterating Eqs. (10)–(12) with Q i = N − 1 and Tij,τ ’s given by 
Eq. (14). The stochastic component of the model is encoded in the multiplicative factors �iτ in Gibrat’s law, Eq. (10), 
which are generated as i.i.d. log-normal random numbers logN (μ, σ 2). All measurements are done on normalised values of 
wealth, Eq. (3), which are by construction independent of μ. In order to improve the numerical stability of the simulations 
and to reduce exponential effects, we set μ = −σ 2/2 and additionally substitute wealth values W iτ by the normalised 
values, Eq. (3), after each iteration of Eqs. (10)–(12) for all agents.

For negative reallocation coefficients such that β∗ ≤ 0 (16), interactions increase wealth inequality. If there were no 
regulatory mechanisms, the wealth distribution would never reach a stationary state. A stationary state is reached thanks to 
taxation and redistribution, Eq. (12), which play the role of a stabilising factor in the macroeconomic scale. The stationary 
wealth distribution is however highly non-trivial. It depends on many factors, mostly on the economic volatility σ . In 
Fig. 3, we show histograms representing wealth distributions of stationary states reached in Monte Carlo simulations of the 
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system with different values of σ . We see that, for large σ , the histogram is unimodal. When σ gets smaller, the histogram 
becomes multimodal. A quantitative analysis of this effect is presented in Appendix. Here we describe it in a qualitative 
way. Imagine that one takes a snapshot of the population at some moment and orders individuals according to their wealth, 
w1 < w2 < . . . < w N . If there were no stochastic component in the model (σ = 0), the wealth order (rank) would be 
preserved during the evolution. An agent i that is poorer than j at the beginning, wi < w j , would remain poorer during the 
whole evolution. Wealth inequality would increase. The situation is very similar to a Coulomb gas of repelling particles in 
one dimension. If the gas is left to itself, particles repel and move away from each other to infinity. The gas never reaches a 
stationary state. The system can be stabilised, however, by external forces or external mechanisms. For example, an external 
confining potential or a boundary may keep particles in a confined region. In this case, particles cannot escape to infinity 
and the system can equilibrate after some time. The equilibrium state results from the competition of repulsion between 
particles and the confinement coming from the external potential or boundary. The evolution preserves the order of particle 
positions x1 < x2 < . . . < xN . Assume that we add a stochastic component to the evolution, which makes particles randomly 
change their positions from time to time: xi → xi + �xi , �xi being a random number of mean zero and variance σ 2. If 
σ is much smaller than the spacing between particles |xi − xi−1|, the evolution will preserve the order x1 < x2 < . . . < xN . 
However, if σ is comparable to the spacing, the order of the particles will be reshuffled every now and then. Finally, if σ is 
much larger than the spacing, the evolution will be dominated by the stochastic component. Particle trajectories will form a 
laminar pattern for small σ and a turbulent one for large σ (see Appendix for details). The evolution of wealth in our model 
is very similar to that described above for the Coulomb gas in one dimension. There are of course some differences: wealth 
changes are multiplicative rather than additive and the stabilising factor comes from economic regulations and not from a 
confining potential. The way tax and wealth redistribution is implemented has some consequences on wealth evolution. For 
small σ , the population bifurcates into a group of poorest individuals and the rest. The poorest group is driven towards the 
minimal wealth limit. The wealth level of this class gets separated from that of the rest of the population by a wealth gap. If 
volatility is smaller than the wealth gap, individuals from the poorest class are not able to migrate to higher wealth classes 
and the poorest economic class stays separated for the rest of the evolution. Then the scenario may repeat in the remaining 
part of the population, which may split again into a poorer class and the rest, etc. During the evolution, there is a sequence 
of bifurcation points where new wealth gaps between economic classes arise, so the population decays into wealth classes. 
The detailed mechanism of wealth gap formation is given in Appendix. In effect, the distribution is multimodal. Modes of 
the distribution correspond to the most probable wealth values in economic classes. If the volatility is comparable to the 
wealth gaps the individuals may migrate between classes. The multimodal structures get smeared in this case. This effect is 
clearly seen in Fig. 3.

Small fluctuations (small σ) are characteristic for over-regulated macroeconomic systems. In a macroeconomic system 
that favours innovations, ideas, risky enterprises, and economic freedom, the scale of fluctuations is large. Risky ideas and 
risky investments may lead to a profitable business that can easily multiply wealth. On the other hand, they may lead 
to a complete failure and to a financial disaster. Economic freedom is modelled by large fluctuations (large σ ) of the 
multiplicative factors in the Gibrat law of proportionate effect, Eq. (10).

To summarise, the model predicts an economic stratification that manifests itself as a decay of the population into eco-
nomic classes of different wealth levels. The wealth levels are separated by orders of magnitude (see Appendix). If the 
macroeconomic system is over-regulated, wealth segregation may be very strong. When economic freedom increases, eco-
nomic volatility increases too, the segregation fades away, and the division into separated classes disappears. For large 
fluctuations, stratification disappears completely. This phase is also characterised by fluctuations on the wealth rank list: 
someone being at the bottom may end up after some time on the top of the list and vice versa. Most of empirical data 
exhibit no clear division into separated wealth levels. But there are examples where one can see signs of economic stratifi-
cation. An example is shown in Fig. 4, which shows empirical data on the distribution of wealth for urban areas of China. 
The pattern fits the picture predicted by the model, compare Fig. 3.

So far we have discussed the dynamics of wealth distribution in the presence of a wealth tax. As a final remark, we want 
to mention that the behaviour of the system dramatically changes if one replaces the wealth tax by an income tax. Wealth 
classes are not formed in this case anymore. Moreover, whatever the level of the income tax rate, the system drifts towards 
the state of maximal inequality, with a single individual being much richer than the whole remaining population. The Gini 
index approaches one, as one can see in Fig. 5. What depends on the tax rate is the rate at which the state of maximal 
inequality is being approached. This situation differs significantly from that of a wealth tax, where one can reduce the value 
of the Gini index by increasing the tax rate, see Fig. 2.

4. Conclusions

We have studied large-scale emergent phenomena in a macroeconomic system using agent-based modelling, population 
dynamics, and stochastic evolution equations. Depending on whether macroeconomic forces decrease or increase, the wealth 
gap between individuals in the system undergoes distinct types of evolution. In the former case, the forces equilibrate the 
system and make wealth distribution reach a stationary state described by the Pareto law. The exponent of the power-law 
(see Eq. (9)) depends on how strong are the stabilising forces in comparison to macroeconomic volatility. Generically, if 
these forces are strong, the wealth distribution is concentrated and there is no significant wealth inequality in the system. 
Only if they become weak as compared to the volatility of return rates, the system may develop a heavy tail with the Pareto 
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Fig. 4. The average wealth over a given percentile for the population in urban areas of China. The scale on the horizontal axis is linear up to p = 99, while 
it is stretched in the last percentile in a nonlinear way to bring the fine structure within the richest part of the population into sharper focus. One can see 
characteristic steps that are predicted by the theory for systems with a small volatility (compare Fig. 3). The vertical axis shows the net personal wealth 
calculated as a sum of personal non-financial assets and personal financial assets minus personal debts in Chinese Yuan. Data source: http://wid .world /data
[47].

Fig. 5. Evolution of the Gini index for the system with different income tax rates θ . Capital tax is switched-off; i.e. β = 0. Other parameters used in the 
simulations are N = 1000, J = −0.3, σ = 0.05. For all θ the Gini index G tends to one as τ increases. The system evolves towards the state of maximal 
inequality even if a large income tax rate is applied. Increasing income tax slows down the process of inequality growth but not the final inequality level 
which is given by G = 1.

exponent close to one, which signals the occurrence of rich outliers in the population. When the stabilising forces completely 
disappear, the system is not able to equilibrate. The system may be stabilised only by applying regulatory mechanisms and 
making an economic intervention. The system becomes even more unstable if macroeconomic conditions favour aggressive 
capitalistic relations dominated by the rich-get-richer and poor-get-poorer feedbacks that disequilibrate the system. Left 
to itself, the system will quickly develop the state of maximal inequality with a Gini index equal to one. One can try to 
reduce this effect by applying regulatory measures, taxation and redistribution. The effect of introducing an income tax and 
a wealth tax have however different impacts on the system. An income tax slows down the process of rising inequalities, 
but does not inhibit it. The system sooner or later reaches the state of maximal inequality with the Gini index equal one. 
The situation changes when a wealth tax is imposed on individuals. The Gini coefficient of the final state can be decreased 
when the tax level is increased. Increasing the wealth tax can apparently reduce the wealth inequality in the system.

Depending on the scale of the volatility, the theory predicts different types of evolution of wealth distribution in the 
rich-get-richer (poor-get-poorer) macroeconomy. The volatility reflects the scale of fluctuations of return rates and the de-
gree of economic freedom in the system. In an over-regulated macroeconomy, the volatility is small, there is no room for 
risky investments. In a liberal macroeconomy it is large. In a system with very small volatility, the evolution of wealth 
distribution exhibits a laminar pattern and leads to the formation of economic classes consisting of individuals on a similar 
wealth level. The classes are separated from each other by wealth gaps. After the structure of the class gets crystallised, it is 
difficult for an individual to change the wealth level. The positions on the wealth rank list are frozen: rich individuals stay 
rich, poor ones stay poor. A wealth rank reshuffling is possible only within a wealth class. On the contrary, in a system with 
a very large volatility, the evolution exhibits a turbulent pattern, which means that a poor individual may quickly become 
rich, and a rich one poor. In this case, the positions on the wealth rank list are continuously reshuffled. For intermediate 

http://wid.world/data
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Fig. 6. Evolution of the distribution of wealth in a system with small growth-rate fluctuations, σ = 0.001. The remaining parameters used in the simulation 
are N = 1000, β = 0.001, J = −0.3, and g = 1. Each line in the plot represents the evolution of the wealth of a single agent in logarithmic scale. The 
population decays into wealth classes in a series of bifurcations. The bifurcations have a characteristic pattern: the lower envelope of the upper wealth 
class descents to a local minimum and then ascents in a process of relaxation to its final asymptotic level, while the upper envelope of the lower class 
descents. The bifurcation points are marked by red circles. The wealth gaps between consecutive wealth classes are minimal at the bifurcation points 
and they increase afterwards. The position of the blue square marks a theoretically calculated level of the absolute minimum, Eq. (19). It agrees with the 
absolute minimum reached in the simulation. The dashed line shows the theoretically determined value of the asymptotic wealth level for the poorest 
class. The value depends on the number N1 of individuals in this class. For the simulation in the figure, N1 = 660, which gives wmin = 0.0029, Eq. (21)
Again we see a good agreement between the simulation and the prediction.

values of volatility, the two effects may coexist in different proportions reflecting the degree of economic freedom. One can 
expect to observe traces of the class structure in empirical data for macroeconomic systems which have recently undergone 
a period of limited economic freedom (see Fig. 4).

The main idea behind the theoretical approach developed in this work was to implement the principle of accumulated 
advantage into the population dynamics describing the interactions of individuals in a macroeconomic system and to study 
its implications and structural consequences for the macroeconomic system, wealth inequality, or more generally, for wealth 
distribution. The focus of the study was on new emergent phenomena that can occur in the evolution of macroeconomic 
systems in the presence of disequilibrating effects that increase inequalities. We concentrated on the most dominant effects 
like economic stratification or the impact of taxation and redistribution on inequality dynamics. In the future, one can 
extend the study and concentrate on specific issues. In particular, one can go beyond the mean-field regime by considering 
a distribution of the wealth flow parameters, J i j , some of which can be chosen positive and some negative. Similarly, one 
considers a distribution of risk attitudes coefficients, gi ’s, to include risk-seeking individuals in the system. In this case, there 
will be households with negative wealth, that is, with debts exceeding the total value of their assets. The spectrum of open 
problems is broad: one can also model collective phenomena [14], the dynamics of the public sector and its interactions 
with the private sector. One can address the issue of optimal taxation and optimal economic growth [9], or investigate the 
effect of changing the macroeconomic constraints on wealth distribution and the stability of the system [48,49].

5. Appendix

In the appendix, we discuss main features of the rich-gets-richer mean-field dynamics for the evolution given by 
Eqs. (10)–(12). We begin by discussing the evolution in a macroeconomic system with small fluctuations, i.e. with a small 
volatility σ . First, we choose a very small value of σ to imitate an extreme situation. It will later provide us with a ref-
erence point for the discussion of evolution for larger σ ’s – for more realistic situations. A typical pattern of evolution in 
the regime of very small volatility is shown in Fig. 6. Each curve in the figure represents the evolution of the wealth of a 
single individual. The curves form a bundle whose shape reflects the process of wealth differentiation in the system. For 
t = 0, all individuals have the same wealth wi0 = 1 and the bundle is pinned to a single point. In the course of time, the 
bundle decays into smaller bundles. The lower envelope of the bundle has a characteristic shape. It dives down to a point 
where it reaches the lowest level and then it bounces and lifts up to an asymptotic level. The wealth at the minimum can 
be determined as follows. Denote the normalised wealth of the poorest individual at time τ by wmin,τ . If wmin,τ is much 
smaller than the wealth of other individuals, then the effect of applying three equations, Eq. (10)–(12), reduces to

wmin,τ = (1 − β)(1 − g)λτ wmin,τ−1 + β (17)
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where 1 −β is the fraction of the wealth left after taxation, 1 − g is the maximal loss factor coming from the flow equation, 
and λτ is a lognormal factor logN (−σ 2/2, σ 2) with μ = −σ 2/2 that ensures the normalisation E(λτ ) = 1. The additive 
term β comes from the uniform redistribution, Eq. (12). For small σ , fluctuations can be neglected and the λτ ’s can be 
substituted by the mean E(λτ ) = 1. In this approximation, the absolute minimum of the envelope can be estimated from 
the equation

wmin = (1 − β)(1 − g)wmin + β (18)

which gives

wmin = β

β + g(1 − β)
(19)

In particular, for the case of neutral risk, g = 1, the last equation yields wmin = β . This is the absolute minimum since, even 
if wealth drops to zero as a result of interactions with other individuals within one fiscal cycle, Eq. (11), it is restored by the 
welfare system, which in this version of the model increases the wealth of everybody by the same amount equal to β times 
the average wealth per capita, Eq. (12). The estimation of the minimum works well if the difference 1 − wmin is significantly 
larger than the standard deviation of the distribution of the λ’s, since then one can safely replace the random factors λτ by 
the mean, as we did in Eq. (18). The standard deviation is approximately equal to σ : 

√
eσ 2 − 1 ≈ σ and 1 − wmin ≈ 1−β

β
g

as follows from (19). Thus the estimation of the lowest level, Eq. (19), is valid if σ 
 1−β
β

g . The system does not stay 
long at the absolute minimum, given by Eq. (19). While calculating the minimum, we have assumed the maximal loss of 
wealth by the poorest individual, which in one fiscal period is g wmin. As follows from Eq. (14), such a situation takes place 
only if there is a large wealth gap between the wealth of the poorest individual and that the next-to-poorest one, that 
is if | J |(wi − wmin) > g wmin. Otherwise, the wealth loss is smaller and the loss depends on the number of individuals 
belonging to the poorest class, i.e. having a similar wealth as the poorest one. An individual i belongs to this class if 
| J |(wi − wmin) ≤ g wmin. The average gap for this group is estimated to be proportional to the standard deviation of the λ’s, 
that is, wi − wmin ≈ σ wmin. Denoting the number of inviduals in the poorest class by N1, one can estimate that the loss 
of wealth of the poorest individual is in the order of (1 − n1)g wmin + n1σ wmin| J |, where n1 = (N1 − 1)/(N − 1) ≈ N1/N is 
the fraction of all individuals in the poorest class. The first term estimates the outflow of wealth of the poorest individual 
to individuals from richer classes, and the second one to individuals from the poorest class. The fixed-point equation takes 
the form

wmin = (1 − β) {1 − (1 − n1)g − n1σ | J |} wmin + β (20)

It yields

wmin(n1) = β

β + g(1 − β)(1 − n1) + σ | J |n1
≈ β

β + g(1 − β)(1 − n1)
(21)

The last approximation applies when σ | J | 
 g . Eq. (19) is a special case of Eq. (21) for n1 = 0. The value of the lowest 
wealth level that is eventually reached during evolution depends on the fraction n1 of individuals in the poorest class. For 
the evolution shown in Fig. 6, there are N1 = 660 individuals in the poorest class, so n1 ≈ 0.660. The asymptotic wealth 
level estimated using Eq. (21) is shown in Fig. 6. As one can see in the figure, the asymptotic level reached in the simulation 
conforms with the theoretical value. The size of the poorest class settles down when the poorest class gets separated from 
the remaining part of the population. Once the wealth gap between the poorest class and the next class is formed, it 
grows and becomes large as compared to the scale of the statistical fluctuations. The class structure crystallises. Actually, 
the system may split into many wealth classes. This effect is illustrated in Fig. 6. Each group evolves towards its own final 
wealth level. The wealth levels of different classes are clearly separated from each other. The formation of classes can be 
seen also in Fig. 7, which shows snapshots of sorted wealth data at different times.

The plot of sorted wealth has a characteristic step-like structure reflecting a division of the population into economic 
classes on different wealth levels wl . The y-axis is in logarithmic scale. The separation between consecutive wealth levels 
log wl+1 − log wl is larger than the wealth dispersion within classes. The dispersion is of order σ . The height of steps 
between consecutive levels log wl+1 and log wl can be estimated by the analysis of the flow term Tij,τ , Eq. (14). The wealth 
flow between agents belonging to two neighbouring wealth classes l and l + 1 is | J |(wl+1 − wl) but not larger than g wl . 
The classes become separated when | J |(wl+1 − wl) = g wl . This gives an estimation of the step height:

log wl+1 − log wl = log
g + | J |

| J | (22)

Again this estimation works as long as the scale of fluctuations is small. The last formula tells us that each step (in 
logarithmic scale) has roughly the same height. The consecutive wealth levels grow geometrically wl+1 ∼ awl , where 
a = (g + | J |)/| J |. The wealth dispersion within each class is of order σ . One can use Eq. (22) to estimate the number 
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Fig. 7. Snapshots of the distribution of wealth at different times for the simulation shown in Fig. 6. Each plot shows wealth versus the normalised rank. The 
normalised rank n/N is on the horizontal axis. It is ordered from the poorest individual, n = 1, to the richest one, n = N . Wealth is on the vertical axis, and 
it is in logarithmic scale. The dashed line in the plot is the equality line, which corresponds to the uniform distribution; i.e. with all agents having the same 
wealth. We used this configuration as an initial state in the simulations. The first snapshot (pink line) is taken after τ = 50 steps of evolution. One can see 
that the lowest level of the poorest class is below the asymptotic value (compare with Fig. 6). The second snapshot (blue line) is taken after τ = 100 steps 
of evolution. One can see that the lowest level has reached the asymptotic value. The second poorest class has already formed, which is seen as a step in 
the plot. The wealth level of this class is still below its asymptotic value. The third snapshot (green line) is taken after τ = 1000 steps of evolution. One 
can see a characteristic staircase structure that reflects the division of the population into wealth classes with almost flat distributions within classes and 
large wealth gaps between them. The length of each step is equal to the fraction of agents in the given class.

Fig. 8. Evolution of the system with varying σ . The σ -profile is shown at the bottom. For small values of σ , the evolution is laminar. It becomes turbulent 
when σ gets large. The red, green, and blue lines in the figure represent the evolution of the wealth of three selected individuals: the blue curve represents 
an individuals who was in the poorest class at the beginning and jumped to a middle class during the turbulent period (when σ was large); the red line 
represents an individual who was rich at the beginning but ended up in the lowest class. As long as σ is small, the evolution is laminar and the individuals 
stay within their economic classes. The situation changes as soon as σ gets larger. Wealth starts to fluctuate and the curves cross each other: poorer gets 
richer and vice versa. When σ drops again, the structure of the class crystallises.

of different wealth classes (log wmax − log wmin)/ log a where the minimal wealth is given by Eq. (21) and the maximal one 
by

wmax = β + g(1 − β)

β + 1
N−1 g(1 − β)

≈ 1 + g
1 − β

β
(23)

The last equation can be derived using a similar line of arguments as the one that led us to Eq. (19). The approximation in 
the last formula is valid when the tax level is not too small β � 1/N . We see that in this case the wealth of the richest 
individual is a finite multiple of the average per capita. The situation changes when β is close to zero in which case the 
upper limit wmax grows with the system size N . As we mentioned for small values of σ , the evolution is laminar and the 
system is driven to a state consisting of separated wealth classes representing groups of individuals on a comparable wealth 
level (Fig. 6). The histogram of the logarithm of wealth consists of separated peaks corresponding to different classes. The 



Z. Burda et al. / C. R. Physique 20 (2019) 349–363 363
width of each peak is roughly proportional to σ . When the scale of fluctuations, σ , is increased, the dispersion of each 
wealth class increases and the corresponding peaks get broader. When σ gets even larger, the peaks of the neighbouring 
classes begin to overlap. Eventually, they start to form a single broad distribution, see Fig. 3.

Growing fluctuations smear the class structure. For large values of σ , individuals may move from one class to another. 
Moreover, the wealth classes are not sharply defined anymore. As the scale of fluctuations gets larger, the evolution ceases 
to be laminar and becomes turbulent, with many flips between classes. This is illustrated in Fig. 8, where we show how the 
character of the evolution changes when σ changes.
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