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We discuss in a statistical physics framework the idea that “the whole is less than the 
parts”, as sometimes advocated by sociologists in view of the intrinsic complexity of 
humans, and try to reconcile this idea with the statistical physicists wisdom according 
to which “the whole is more than the sum of its parts” due to collective phenomena. We 
consider a simple mean-field model of interacting agents having an intrinsic complexity 
modeled by a large number of internal configurations. We show, by analytically solving 
the model, that interactions between agents lead, in some parameter range, to a 
‘standardization’ of agents in the sense that all agents collapse in the same internal 
state, thereby drastically suppressing their complexity. Slightly generalizing the model, we 
find that agents standardization may lead to a global order if appropriate interactions 
are included. Hence, in this simple model, both agents standardization and collective 
organization may be viewed as two sides of the same coin.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous discutons dans un cadre de physique statistique de l’idée selon laquelle « le tout 
est moins que les parties », comme le préconisent parfois les sociologues en raison de 
la complexité intrinsèque de l’être humain, et nous essayons de concilier cette idée avec 
le point de vue de la physique statistique, selon lequel « le tout est plus que la somme 
des parties » en raison des phénomènes collectifs. Nous considérons un modèle simple de 
champ moyen d’agents en interaction ayant une complexité intrinsèque modélisée par un 
grand nombre de configurations internes. Nous montrons, en résolvant analytiquement 
le modèle, que les interactions entre agents conduisent, dans une certaine gamme de 
paramètres, à une « standardisation » des agents, dans le sens où tous les agents se 
retrouvent dans le même état interne, ce qui supprime radicalement leur complexité. 
En généralisant légèrement le modèle, nous constatons que la normalisation des agents 
peut conduire à un ordre global si des interactions appropriées sont incluses. Ainsi, dans 
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ce modèle simple, la normalisation et l’organisation collective des agents peuvent être 
considérées comme les deux faces d’une même médaille.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

While the polysemy of the word “complex” makes any definition of a “complex system” somewhat ambiguous, there is 
general agreement among physicists to define it in the following way [1]: it is a system composed of a large number of 
elements interacting without central coordination and spontaneously leading to the emergence of “complex structures,” i.e. 
stable structures with patterns that may occur on several spatial or temporal scales. This definition is often summarized by 
the dictum: “the whole is more than the sum of the parts,” as these stable structures cannot be deduced from parts in a 
simple way: the viscosity of water is not the average or sum of a hypothetical “molecular viscosity”.

It should be noted that this standard definition does not take into account any potential specificity of social systems, 
beyond some trivial specification of the “parts” as humans. However, as recognized in the influential review by Castellano 
et al. [2], there seems to be a radical difference. In the usual applications of statistical physics, “the macroscopic phenomena 
are not due to a complex behavior of single entities, but rather to nontrivial collective effects resulting from the interaction 
of a large number of ‘simple’ elements”. However, “humans are exactly the opposite of such simple entities: the detailed 
behavior of each of them is already the complex outcome of many physiological and psychological processes, still largely 
unknown.” Castellano et al. justify why physicists crave for finding general models for complex systems, spanning the 
social/natural realms, using the idea of “universality”: “In most situations, qualitative and even some quantitative properties 
of large-scale phenomena do not depend on the microscopic details of the process [...]. With this concept of universality in 
mind, one can approach the modelization of social systems, trying to include only the simplest and most important properties of 
single individuals and looking for qualitative features exhibited by models.” [2]

A first criticism of this homogenization of natural and social systems is political, as it rules out the specifically human 
capacity to think about and build “the whole,” instead of letting it emerge “spontaneously” [3–6]. A second criticism draws 
conclusions from the relative lack of usefulness, in practice, of the idea of universality for analyzing complex social systems. 
With sociologists, one of us (PJ), has provided another angle for building “wholes” from complex social agents, possessing 
too many internal degrees of freedom to be described as particles with a handful of characteristics. In this case, what 
emerges is not larger but “smaller than the parts,” a kind of “intersection of individuals” by standardization of one of 
their characteristics [7,8]. This viewpoint is supported by the analysis of digital databases [7]. Yet, the type of information 
one gets from database analysis cannot be easily rephrased in the language of statistical physics, which mostly deals with 
the analysis of collective phenomena through simple models of interacting agents. It is thus a priori hard to reconcile the 
physicist’s viewpoint according to which “the whole is more than the sum of its parts,” and the sociologist’s viewpoint 
supporting the idea that “the whole is less than its parts” because humans need to simplify their intrinsic complexity to 
form a coherent whole in certain circumstances.

In this note, we try to take a first step to reconcile these seemingly opposite viewpoints and discuss a possible meaning 
of the idea that “the whole is less than the parts” in a statistical physics framework. We first introduce a simple model 
that can be solved analytically and that provides an illustration of a possible mechanism of standardization of agents driven 
by their interaction. In a second step, we slightly generalize the model to allow for the possibility of global order, and find 
that the simplification of agents is a prerequisite for global order to appear. Hence, at least in the present toy model, agents 
standardization and collective organization are intricate phenomena that may be viewed as the two sides of the same coin. 
Following the above metaphors, the whole is therefore at the same time more and less than (the sum of) its parts.

2. Standardization of agents induced by interactions: a toy model

To implement in a minimal way the complexity of agents and the role of interactions, we introduce a simple model 
composed of N interacting agents with internal states described by a configuration C ∈ {1, ..., H + 1}. In what follows, we 
consider that H is a large, but fixed number—say, e.g., H = 104. Each agent has a characteristic encoded by a variable 
Si(C) ∈ {0, 1} (sometimes loosely referred to as a “spin” variable in the following, by analogy with statistical physics). 
We assume that this characteristic is absent (i.e. Si = 0) in most configurations. For the sake of simplicity, we make the 
hypothesis that the characteristic is present only for a single configuration, say C = 1, so that Si(1) = 1 and Si(C) = 0 for 
C > 1. If internal configurations were equiprobable, the value Si = 1 would be a rare value unobserved in practice, and one 
would see only a set of spins Si = 0. Here, we wish to show that interactions between agents can “standardize” the agents 
and make the value Si = 1 practically observable.

As for the dynamics, we assume that each agent randomly changes configuration according to a utility function ui (C)

that accounts for interactions with other agents. In other words, agents tend to randomly select configurations that allow 
them to have more profitable interactions with the other agents. Inspired by standard models of social interactions (see, 
e.g., [9]), we choose the following simple form for ui :

http://creativecommons.org/licenses/by-nc-nd/4.0/


É. Bertin, P. Jensen / C. R. Physique 20 (2019) 329–335 331
ui = K

N

∑
j( �=i)

Si S j (1)

Starting from a configuration C , a new configuration C′ is picked up with a probability rate

W (C′|C) = 1

1 + e−�ui/T
(2)

where �ui = ui(C′) − ui(C), the configuration of the other agents being kept fixed. The parameter T characterizes the 
degree of stochasticity in the choice of the new configuration, and is analogous to the temperature in statistical physics. For 
convenience, we call T a temperature in the following, and use the notation β = T −1.

It is straightforward to show that the variation �ui of individual utility can be reexpressed as the variation of a global 
quantity E (the analogue of the global energy in physics, up to a change of sign), �ui = �E , where

E = K

2N

∑
i, j(i �= j)

Si S j (3)

In view of the form (3) of the pseudo-energy E , the present model shares similarities with both the Ising [10] and Potts 
models [11], but it actually differs in a significant way from both of these models.

The property �ui = �E together with Eq. (2) implies that the dynamics satisfies a detailed balance property with respect 
to the equilibrium distribution

P (C1, . . . ,CN ) ∝ eE/T (4)

To study the behavior of the model, it is convenient to define an order parameter q as

q = 1

N

N∑
i=1

Si (5)

For large N , the quantity E can be rewritten in terms of q as

E = Nε(q) = 1

2
N Kq2 (6)

Note that E is not equal to the total utility U = ∑
i ui ; instead, one has E = 1

2 U .
We are now interested in the probability distribution P (q), obtained by summing P (C1, . . . , CN ) over all sets of configu-

rations (C1, . . . , CN ) sharing the same value of q. Formally, one has

P (q) =
∑

C1,...,CN

P (C1, . . . ,CN ) δ
(

q(C1, . . . ,CN) − q
)

(7)

(where δ stands for a Kronecker delta), leading to

P (q) ∝ eN[S(q)+βε(q)] (8)

The entropy S(q) is given by

S(q) = 1

N
ln �(q) (9)

where �(q) is the number of configurations having a given value of q:

�(q) = N!
N0!N1! H N0 (10)

N0 and N1 being the numbers of agents with Si = 0 and 1, respectively. We thus see that P (q) takes a large deviation form 
P (q) ∝ exp[N f (q)], where the large deviation function f (q) = S(q) + βε(q) is independent of N , and plays a role similar to 
the notion of free energy in physics. Using q = N1/N , one can compute S(q) from Eq. (10), leading for f (q) to

f (q) = −q ln q − (1 − q) ln(1 − q) + 1

2
βKq2 + (1 − q) ln H (11)

Fig. 1 illustrates the behavior of the function f (q) for different values of the temperature, for a given large value of H . At a 
high enough temperature T , f (q) has a global maximum at q ≈ 0. Lowering T , the global maximum is suddenly shifted to 
q ≈ 1 when crossing a characteristic temperature TS.

This behavior is confirmed by a simple analytical calculation, assuming that H is large but finite. We look for the local 
maxima of f (q) by computing the derivative f ′(q):
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Fig. 1. Plot of the large deviation function f (q) for T > TS, T = TS, and T < TS (bottom to top), showing a discontinuous transition in terms of the order 
parameter q. The maximum of f (q) is found at q ≈ 0 for T > TS and at q ≈ 1 for T < TS . Inset: zoom on the curve T < TS , showing the local maximum of 
f (q) for q very close to 1. Parameters: H = 104, K = 10, T = 0.6, 0.5429, 0.5.

f ′(q) = − ln q + ln(1 − q) + βKq − ln H = 0 (12)

Looking first for a solution q1 � 1, we find q1 ≈ 1/H . At a low enough temperature T , another solution q2 ≈ 1 − H e−K/T

also exists. It can be checked that q1 and q2 are local maxima. Note that a local minimum also exists between q1 and q2. 
To check the relative stability of q1 and q2, we compute f (q1) and f (q2). Defining TS as

TS = K

2 ln H
(13)

we find that f (q1) > f (q2) for T > TS, and f (q1) < f (q2) for T < TS (see Fig. 1). Thus q1 ≈ 0 is the globally stable state for 
T > TS and q2 ≈ 1 is the globally stable state for T < TS. The transition between these two states is therefore discontinuous 
in terms of the order parameter q, which essentially jumps from 0 to 1.

This means that for strong enough coupling, or for a low enough temperature T , agents become “standardized” and 
have a non-zero value of their spin Si , in the sense that they spend most of their time in the state Si = 1. In other words, 
thanks to their interaction, the complexity of agents has been suppressed in the low temperature regime, and agents could 
be modeled in this context as simple and stable “social atoms” [8] that have the permanent characteristic corresponding to 
Si = 1.

Clearly, the complexity of agents remains minimal in this toy model, as it is encoded only in the fact that agents 
have many internal configurations. One may guess, though, that the above standardization transition could still be present 
if for instance all configurations with Si = 0 were not equivalent, and had a more complicated dynamics, provided that 
the interaction term present in the utility (1) remains the dominant one. Further work would be needed to confirm this 
expectation.

3. Emergence of global order out of agents standardization

Having seen how an agent characteristic (or “spin”) could emerge from interactions between agents, it is tempting to 
slightly generalize the model in order to introduce the potentiality of a symmetry breaking, which would mimic in a 
minimal way the emergence of some form of organization (“order”) in a social group. With this goal in mind, we now 
consider a variant of the above model, where the variables Si now take three values, Si(C) ∈ {−1, 0, 1}, where now C ∈
{1, . . . , H + 2}. We assume for simplicity that Si(1) = 1, Si(2) = −1 and Si(C) = 0 for C > 2. The emergence of a specific 
characteristic at the agent level would now result from the interactions of the variables |Si | between agents, while the 
emergence of a global order would result from the interactions of the (nonzero) Si variables. We thus choose as a simple 
form of the utility function

ui = K

N

∑
j( �=i)

|Si | |S j| + J

N

∑
j( �=i)

Si S j (14)

The dynamics of internal configurations of agents is still defined by the transition rate given in Eq. (2), with the utility 
ui now given by Eq. (14). The stochastic dynamics satisfies a detailed balance with respect to the equilibrium distribution 
P (C) ∝ eE/T , where E is given by

E = K

2N

∑
|Si| |S j| + J

2N

∑
Si S j (15)
i, j(i �= j) i, j(i �= j)
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To characterize both the possible standardization of agents and the possible onset of order, we introduce two order param-
eters q and m, defined as

q = 1

N

N∑
i=1

|Si |, m = 1

N

N∑
i=1

Si (16)

The order parameter q is the same as the one of the model studied in Sect. 2, and m plays the same role as the magneti-
zation in the Ising model for instance (see, e.g., [10]). The pseudo-energy E satisfying �ui = �E can then be rewritten for 
large N as

E = Nε(q,m) = 1

2
N Kq2 + 1

2
N Jm2 (17)

From this point of view, the present model may thus be considered as a generalization of the spin-1 model introduced by 
Blume, Emery, and Griffiths [12]. Note that m and q satisfy the constraint |m| ≤ q. In the same way as above, we determine 
the joint distribution P (q, m) of the two order parameters:

P (q,m) ∝ eN[S(q,m)+βε(q,m)] (18)

with S(q, m) the entropy. To evaluate the latter, we first determine the number �(q, m) of configurations having a given 
value of q and m

�(q,m) = N!
N−1!N0!N1! H N0 (19)

where N−1, N0 and N1 are the numbers of spins Si = −1, 0 and 1 respectively. Using q = 1 − N0/N and m = (N1 − N−1)/N , 
one can compute the entropy

S(q,m) = 1

N
ln �(q,m) (20)

as well as the large deviation function f (q, m) = S(q, m) + βε(q, m), defined from Eq. (18). One finds the explicit result

f (q,m) = −(1 − q) ln(1 − q) − 1

2
(q − m) ln(q − m) − 1

2
(q + m) ln(q + m)

+1

2
βKq2 + 1

2
β Jm2 + (1 − q) ln H + q ln 2 (21)

The local maxima are determined by solving the equations ∂ f /∂q = ∂ f /∂m = 0, with |m| ≤ q. The analysis is slightly more 
involved than in the previous case, but results can be summarized as follows. To make the main message clearer, we first 
leave aside one technical subtlety, and come back to it afterwards. Let us define the two characteristic temperatures

TS = K

2 ln H
2

, TM = J (22)

The expression of TS is the same as the expression of TS found in Eq. (13), except that H has been replaced by H
2 (to be 

interpreted as the ratio of the number of configurations with Si = 0 over the number of configurations with |Si | = 1). For 
T > TS, the state (m1 = 0, q1 ≈ 0) is globally stable (we recall that H is assumed to be large). For T < TS, the stable state 
corresponds to q1 ≈ 1, and the value of m depends on the respective values of TS and TM.

If TM < TS, a non-zero magnetization appears only when T < TM, and the onset of order is continuous. One thus has, 
for TM < T < TS, that q ≈ 1 (agents are standardized), but m = 0 (no spontaneous symmetry breaking). When T < TM, the 
magnetization takes a non-zero value m = ±m0, with m0 given for T close to TM by

m0 ≈
√

3

(
TM − T

T

)
(23)

Instead, if TS < TM, the “magnetization” m jumps to a finite value ±mS when lowering T below TS, as soon as q jumps 
to 1. There is no direct signature of TM in the behavior of the order parameters. The value of mS can be approximated in 
two limits. If TM 	 TS, mS ≈ 1, while if TM − TS � TS, one has

mS ≈
√

3

(
TM − TS

TS

)
(24)

The schematic phase diagrams of the model in the two cases TM < TS and TS < TM are displayed in Fig. 2.
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Fig. 2. Schematic phase diagram showing the behavior of the two order parameters q and m as a function of the temperature T . Top: case TM < TS; 
when lowering temperature, agents first ‘standardize’ at T = TS (q jumps from 0 to 1), and then global order appears at the lower temperature TM (|m|
continuously increases from 0). Bottom: case TS < TM; nothing happens at TM, both order parameters q and |m| jump to a nonzero value at the lower 
temperature TS. Hence both agent standardization and onset of order appear in a discontinuous way, at the same temperature TS.

We now come back to the technical subtlety alluded to above. When TS < TM according to the definitions (22), a careful 
look at the calculation actually shows that the emergence of a non-zero magnetization slightly shifts the value of TS to 
larger values, so that TS should actually read (still in the limit of large H)

TS = K + Jm2
S

2 ln H
2

(25)

where mS is self-consistently determined by Eq. (24). When TS and TM are close, one has J ≈ K/[2 ln(H/2)] � K as well 
as m2

S � 1, so that the correction to TS is actually small with respect to the value given in Eq. (22). But if TS � TM, mS ≈ 1
and J is not necessarily small with respect to K , so that the correction to TS may be significant. In any case, this shift in 
the value of TS does not change the picture presented in Fig. 2.

To sum up, when TM < TS, the emergence of order below TM is simply the usual transition of the Ising model, so that 
simplifying the agents to simple Ising spins Si = ±1 turns out to be legitimate in this case, if one is interested only in 
modeling the onset of global order associated with a symmetry breaking. In contrast, when TS < TM, this simplification is 
no longer legitimate, and the emergence of order appears only below TS, once agents are “standardized.”

Coming back to the case TM < TS, one may intuitively describe the standardization occurring at TS as “the whole is 
less than its parts” because agents leave apart their complexity, while the transition at TM corresponds to the more usual 
(in physics) transition to order interpreted as “the whole is more than the sum of its parts,” because of the emergence of 
collective order.

4. Discussion

We have seen in the above toy models how the point of view that complex agents need to reduce their complexity to 
form a coherent group can to some extent be reconciled with the idea that simple agents may form collective patterns 
through their interactions. To go beyond the above toy models and try to better grasp the complexity of agents, one may 
consider several types of variables S(k)

i (C) characterizing different characteristics of the same agent. Interactions between 
agents could then favor the emergence of one characteristic or another, in turn allowing for the onset of some type of 
collective organization if enough agents have standardized with the same characteristic. Some type of disorder could also 
be included so that all the internal configurations of agents have different properties.

In addition, it would of course be of interest to study the effect of connectivity of the social network. We have here 
considered the simplest, fully-connected geometry where all agents interact in the same way with all other agents. Such 
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a connectivity might be relevant in the case of a small group (for instance a music band [8]), but surely cannot account 
for the intricate connectivity of larger societies, where people are connected through different, and sometimes entangled, 
communities. Further work would be needed to investigate the impact of a lower connectivity on the transitions reported 
here, especially on the “standardization transition” of individual agents—the symmetry breaking transition being of course 
known to depend on connectivity (see, e.g., [10,13]).
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