
C. R. Physique 20 (2019) 228–239
Contents lists available at ScienceDirect

Comptes Rendus Physique

www.sciencedirect.com

URSI-France 2018 Workshop: Geolocation and navigation / Journées URSI-France 2018 : Géolocalisation et navigation

A novel nonlinear least-squares approach to highly

maneuvering target tracking

Une nouvelle méthode de moindres carrés non linéaires pour le pistage de

cibles hyper-manœuvrantes

Marion Pilté a,b,∗, Silvère Bonnabel a, Frédéric Livernet c

a MinesParisTech, PSL University, 60, bd Saint-Michel, 75005 Paris, France
b Thales Land and Air Systems, voie Pierre-Gilles-de-Gennes, 91470 Limours, France
c Direction générale de l’armement (DGA), 83000 Toulon, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 11 June 2019

Keywords:
Mono-target tracking
Radar
Nonlinear smoothing
Nonlinear state estimation
Probabilistic approach

Mots-clés :
Pistage mono-cible
Radar
Lissage non linéaire
Estimation d’état non linéaire
Approche probabiliste

Trajectories of aerial and marine vehicles are typically made of a succession of smooth
trajectories, linked by abrupt changes, i.e. maneuvers. Notably, modern highly maneuvering
targets are capable of very brutal changes in the heading, with accelerations of up to
15 g. As a result, we model the target behavior using piecewise deterministic Markov
models, driven by parameters that jump at unknown times. Over the past years, real-
time (or incremental) optimization-based smoothing methods have become a popular
alternative to nonlinear filters, such as the Extended Kálmán Filter (EKF), owing to the
successive relinearizations that mitigate the linearization errors that inherently affect the
EKF estimates. In the present paper, we propose to combine such methods for tracking
the target during non-jumping phases with a probabilistic approach to detect jumps. Our
algorithm is shown to compare favorably to the state-of-the-art Interacting Multiple Model
(IMM) algorithm, especially in terms of target’s velocity estimation, on a set of meaningful
and challenging trajectories.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Les trajectoires de véhicules aériens ou marins sont en général formées d’une succession
de trajectoires lisses, séparées par des manœuvres brusques. En particulier, les cibles
hyper-manœuvrantes modernes peuvent changer de cap de façon très abrupte, avec des
accélérations pouvant aller jusqu’à 15g. Le comportement de la cible est donc modélisé
par des modèles de Markov déterministes par morceaux, grâce à des paramètres à sauts.
Depuis quelques années, les méthodes de lissage en temps réel sont devenues une
alternative aux habituels algorithmes de filtrage, tels que le filtre de Kalman étendu (EKF).
Dans cet article, de telles méthodes de lissage sont utilisées pour les phases sans sauts
et sont combinées à une approche probabiliste pour déterminer les instants de sauts.
L’algorithme ainsi proposé est comparé à un algorithme multi-modèles, l’IMM (Interactirng

* Corresponding author.
E-mail address: marion.pilte@thalesgroup.com (M. Pilté).
https://doi.org/10.1016/j.crhy.2019.05.019
1631-0705/© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.crhy.2019.05.019
http://www.ScienceDirect.com/
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:marion.pilte@thalesgroup.com
https://doi.org/10.1016/j.crhy.2019.05.019
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crhy.2019.05.019&domain=pdf

M. Pilté et al. / C. R. Physique 20 (2019) 228–239 229
Multiple Model), en particulier pour l’estimation de la vitesse de la cible, sur un ensemble
de trajectoires représentatif et difficile.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Considerable research has been devoted to the optimal estimation problem in the field of mono-target tracking. Appli-
cations span civilian airborne and marine surveillance and military tracking of highly maneuvering missiles. Although the
formal equations of the optimal filter are easy to derive and have been known for decades, its implementation in real time
is still a challenge. There are essentially two sources of difficulty. First, the use of models to accurately describe the target’s
motion, which are nonlinear, and then the use of multi-hypotheses regarding the unknown possible behavior of the target,
which results in excessive combinatorics. Particle filters (PF), see, e.g., [1], have been a popular attempt over the past two
decades to handle those two sources of difficulty.

Based on the idea that motion of manned and unmanned vehicles consists of a succession of smooth trajectories, with
potentially abrupt changes from one type of trajectory (such as straight line) to the next (such as coordinated turn), S.
Godsill and co-authors have advocated over the past decade the use of nonlinear piecewise deterministic Markov models
(PDMM) to model the target’s behavior, see, e.g., [2–4]. Between jumps, trajectories are modeled by ordinary differential
equations driven by constant inputs. This kind of trajectories have long been a key model in tracking: see, for example,
the constant velocity model in [5], the coordinated turn model [6], and our recent work [7]. Adapting PF techniques to
the continuous-time setting of PDMM, S. Godsill and co-authors proposed the variable rate particle filter (VRPF). However,
such filters are computationally demanding, as many particles are needed to fully cover the space of possible jumps and
parameters.

In this paper, we consider PDMM that are akin to those considered in the VRPF literature. Instead of using a PF approach,
we opt for a smoothing optimization-based approach. The use of such techniques for filtering and tracking have long been
known, but only recent advances in computers have allowed them to be fully implementable. In robotics, and especially in
the vast literature related to the problem of simultaneous localization and mapping (SLAM), optimization-based smoothing
approaches, see [8–11], have virtually wholly replaced the once extremely popular PF-based approach [12]. Those methods
currently enjoy much popularity because of the successive relinearizations they use until convergence, that mitigate the
problem or linearization errors in nonlinear filtering.

In the present paper, inspired by, on the one hand, from the VRPD literature for target motion modeling, and, on the
other one, by recent smoothing techniques from the robotics literature, we use smoothers to track the state of a PDMM
driven by unknown constant inputs, and we use a probabilistic approach for jump detection. In the stationary phase, the
state is very well tracked as our deterministic-based model provides smooth trajectories that are not fluctuating due to
the assumption of process noise, and in turn the accuracy of the state estimates helps to rapidly detect jumps. It seems
to us that our approach to estimate the target’s state and possibly predict the motion of the target in the future is very
similar to the way the eye of a human expert would proceed. The proposed estimator is shown to favorably compare to a
state-of-the-art IMM for meaningful target motions, especially in terms of estimation of the velocity of the target.

2. Smoothing as an estimation procedure for target tracking

2.1. Classical smoothing approach

Consider a target that one must track. Assume a discrete time model and let the target’s state at time i be denoted by
Xi ∈ Rp . The state typically consists of the position and velocity (and some additional quantities) of the target. Consider a
nonlinear evolution model for the target of the form (1), with noisy measurements of the form (2).

Xi = f i(Xi−1) + wi, (1)

yi = h(Xi) + vi (2)

The goal of any filter, such as extended Kálmán filter (EKF) or interacting multiple models (IMM) filter, is to compute the
distribution p(Xn | y0:n) of the present state Xn conditionally on past and present measurements y0:n := {y1, . . . , yn}. In
contrast, a smoother (sometimes referred to as Kálmán smoothing) computes the distribution p(X0:n | y0:n) of the entire
past trajectory X0:n := {X0, . . . , Xn}, conditionally on past measurements y0:n := {y1, . . . , yn}. Both a filter and a smoother
allow us to find the best estimate of the state, that is, the most likely state Xn in the light of the information y0:n we
have collected so far, which is referred to as the maximum a posteriori (MAP) estimate. The MAP estimate of the entire past
trajectory X0:n is thus defined as argmaxX ,...,X P (X0:n|y0:n), i.e.
0 n

http://creativecommons.org/licenses/by-nc-nd/4.0/

230 M. Pilté et al. / C. R. Physique 20 (2019) 228–239
X∗
0:n = argmin

X0:n
− log P (X0:n|y0:n) (3)

Besides, under standard assumptions of independence of noises (wi , vi)i∈N , we get

P (X0:n|y0:n) = P (X0)

n∏
i=1

P (Xi |Xi−1)

n∏
k=1

P (yk|Xk)

In this equation, P (X0) is a prior knowledge that we have on the initial state. Under the assumption of Gaussian noises
wi � N (0, Q i) and vi � N (0, Ni) to represent respectively model and measurement uncertainties, and the Gaussian
prior X0 ∼ N (X̄0, P0), we have from (1) that P (Xi |Xi−1) = C̃ exp

(
|| f i(Xi−1) − Xi ||2Q i

)
and from (2), we have P (yk|Xk) =

C̄ exp
(
||h(Xtk) − yk||2Nk

)
. Thus we end up with the following nonlinear least-squares problem

X∗
0:n = argmin

X0:n

{
||X0 − X̄0||2P0

+
n∑

i=1

|| f i(Xi−1) − Xi||2Q i
+

n∑
k=1

||h(Xk) − yk||2Nk

}
(4)

where the norm is the Mahalanobis distance defined by ||e||� = eᵀ�−1e for � a covariance matrix.
If the dynamical model f i and the measurement function h are nonlinear, and a linearization point is not available,

one must resort to non-linear optimization methods such as the Gauss–Newton or the Levenberg–Marquardt algorithm. The
algorithm is based on successive linear approximations to (4), which iteratively improve the estimate X0:n . Indeed, at each
iteration, by denoting X̂0:n = { X̂0, · · · , X̂n} the current estimate, the problem may be linearized around X̂0:n as follows. We
let:

Fi = ∂ f i(X)

∂ X

∣∣∣∣
X̂i−1

, Hk = ∂h(X)

∂ X

∣∣∣∣
X̂k

Letting ai = X̂i − f i(X̂i−1), ck = yk − h(X̂k), and p0 = X̂0 − X̄0, the optimization problem can be approximated as

δX∗ = argmin
δX

{
||p0||2P0

+
n∑

i=1

||FiδXi−1 − δXi − ai ||2Q i
+

n∑
k=1

||HkδXk − ck||2Nk

}
(5)

yielding at each iteration a linear least-squares problem to solve. Noting that we can re-write norms as follows:

||e||2� = eᵀ�−1e = (�−T /2e)ᵀ(�−T /2e) = ||�−T /2e||2

stacking the matrices Fi , Hk in a large matrix A and the vectors p0, ai, ck in a large vector b, (5) may be re-written as

δX∗ = argmin
δX

||AδX − b||2 (6)

The solution to this linear least-squares problem is then notoriously obtained by equating the gradient of ||AδX − b||2 to 0,
which yields

δX∗ = (AᵀA)−1 Aᵀb (7)

A is a large but sparse matrix, and linear algebra methods can be used to compute efficiently this solution: as explained in,
e.g., [10], the Cholesky decomposition or the QR matrix factorization allows us to efficiently compute (Aᵀ A)−1. The obtained
solution δX∗ to (7) depends on a particular realization of random noises wi, vi , and varies due to fluctuations in the data yi ,
which are stacked in vector b. Its variability over a large number of noise realizations is encoded in the covariance matrix
Cov(δX∗ , which can be shown to be equal to (Aᵀ A)−1.

As already mentioned, the goal of a filter is to output the state that maximizes the posterior distribution P (Xn|y0:n),
whereas a smoother outputs the argmax of P (X0:n|y0:n). As time passes, n grows boundlessly and re-estimating the entire
trajectory at each n may become intractable. Typically, the matrix A that appears in (6) at each iteration is of dimension
O (n2), yielding a O (n3) complexity to evaluate (7). As a result, there have been various attempts to compute incrementally
the MAP estimate for the smoothing problem. Notably, in robotics, the well-studied problem of SLAM has a structure that
lends itself to such incremental methods, as proved in [10].

Another popular solution is to use a fixed-lag smoother, which aims to approximate P (Xn−k:n|y0:n) for some fixed lag
k ∈N . Such smoothers are obtained by marginalizing the old states X0:n−k−1 out, see, e.g., [13], see also [14].

M. Pilté et al. / C. R. Physique 20 (2019) 228–239 231
2.2. Restriction to a deterministic evolution model over a sliding window as a tuning strategy

The actual motion of objects such as aircrafts and marine vehicles typically consist of a succession of distinct maneuvers
commanded by an operator. As a result, the trajectories of those objects look like a succession of smooth trajectories that
are well described by continuous time ordinary differential equations (ODE). In Section 3.1, we will take into account the
possibility of abrupt changes in the trajectory, but for now let us consider only the phase in between maneuvers where the
trajectory is governed by deterministic equations. Prosaically, this means that the covariance matrix Q i of process noise wi

in (1) is null. Thus, (4) becomes:

minimize
X0:n

{
||X0 − X̄0||2P0

+
n∑

k=1

||h(Xk) − yk||2Nk

}

subject to Xi = f i(Xi−1), i = 1, . . . ,n

(8)

Of course, such a model is too rigid in practice, as there are always fluctuations in the target behavior with respect to a
model specified in advance. A boat or a plane may deviate slightly from its planned trajectory due to perturbations, or to
slight motion adaptations from the pilot. This is why, in the target tracking literature, the covariance Q i of noise wi is
always positive, and serves as a tuning parameter.

Let us temporarily assume that we are dealing with problem (8), though. To simplify the exposure, assume f i, hi are
linear and let Fi, Hi denote the corresponding matrices. This means that Xk = Fk · · · F1 X0, and thus h(Xk) = Hk Fk · · · F1 X0.
As a result, solving problem (8) is equivalent to minimizing ||X0 − X̄0||2P0

+∑n
k=1 ||Hk Fk · · · F1 X0 − yk||2Nk

with respect to X0.
Let H̃0 = Id, H̃1 = H1 F1, · · · H̃k = Hk Fk · · · F1. We see, by applying the results of Section 2.1, that Cov(X∗

0) = (
∑n

i=0 H̃ᵀ
i H̃ i)

−1,
and as X∗

n is obtained deterministically from X∗
0 , it has similar covariance. As a result, when there is no process noise,

the confidence about the current state X∗
n obtained by solving problem (8) grows as 1/n, where n is the number of mea-

surements. However, as the model cannot be completely accurate due to the unpredictability of the target’s behavior, new
observations need to constantly impact the estimate for accurate tracking and it is not sensible to assume the confidence in
the estimate to tend to 0 as 1/n.

On the other hand, if process noise is considered, the covariance of X∗
n obtained by solving problem (4) is lower bounded

by some matrix C∗ that depends on the magnitude of the Q i ’s. Matrix C∗ is known as the Cramér–Rao bound. As a result,
we see there are two different routes for the practitioner to tune its estimator. Either, one can attempt to solve (4) and tune
process noise Q i , leading to an asymptotic confidence C∗ about the estimate. Or we can consider the estimation problem
with no process noise Q i = 0, leading to (8), but only on a sliding window of size k̄, that is,

minimize
Xn−k̄:n

⎧⎨
⎩

n∑
j=n−k̄

||h(X j) − y j||2N j

⎫⎬
⎭

subject to Xi = f i(Xi−1), i = n − k̄ + 1, . . . ,n

(9)

Of course, those two routes are not strictly equivalent mathematically, but they may be viewed as alternative ways to tune
the estimator. The second route that consists in solving (9) at each time step n is the one that we advocate in the present
paper. In this case, the depth of the window k̄ is the tuning parameter that appears as an alternative to process noise Q i :
one should bear in mind that the resulting uncertainty about the current state Xn is of magnitude 1/k̄, and this should be
tuned in accordance with the fit between the evolution model Xi = f i(Xi−1) and the actual motion of the target (in the
extreme case where the motion of the target is exactly modeled by this deterministic approach, one may set k = n; on the
other hand, if the fit of the model to actual motion is approximative, k̄ should be kept at a moderate value).

In the literature devoted to system identification [15], the use of recursive least squares is pivotal. For real-time imple-
mentation, where one must track a parameter that varies (slowly) over time, it is common to use a “forgetting factor” that
gives less weight to old observations. Our approach may be related to this practice, by setting a forgetting factor as 1 for
the k̄ latest observations and 0 for the preceding ones.

3. Smoothing applied to deterministic systems with random jumps

3.1. Considered systems and simplifying assumptions

As already explained, actual motions of objects such as aircrafts and marine vehicles typically consist of a succession
of distinct maneuvers commanded by an operator. As a result, the trajectories of objects are in fact smooth and well
described by continuous time ordinary differential equations (ODE) driven by constant inputs between change points. This
was advocated in particular by S. Godsill with various co-authors who proposed the variable rate particle filter [2–4],
a sequential Monte Carlo (SMC) method, well suited to piecewise deterministic models. Following [2], we consider the
following piecewise deterministic Markov model:

232 M. Pilté et al. / C. R. Physique 20 (2019) 228–239
d

dt
xt = f (xt, uK (t)) (10)

where xt ∈ Rp is the continuous time target’s state, K (t) ∈ N is a stochastic point process that counts the number of
random jumps up to time t , and u0, u1, · · · is a sequence of random inputs that drive the ODE (10). Moreover, at discrete
time instants t0, t1, · · · , we get (range and bearing) measurements of the form:

yn = h(xtn) + vn (11)

The goal is to estimate the most likely state value, that is argmax p(xt | y0:n) for tn ≤ t < tn+1. To simplify the estimation
task, we will assume that jumps can only occur at pre-specified discrete times. This may look like a harmful approximation,
but we will see in Section 4 that it is actually easy to modify the least-squares problem to mitigate its impact on the
estimation. Furthermore, to keep the notation simple, we will assume that jump times coincide with observation times
t1, t2, · · · . We let rk be the random variable indicating jump at time k (rk = 1 if there is a jump). K (t) is the number of
jumps between times 0 and t . We also let K̃n be the number of jumps between 0 and tn . We obviously have K (tn) = K̃n .
Note that K̃n is a function of r0:n . Finally, we let θn = (r0:n, u0:K̃n

, x0) be the parameters that we seek to estimate. To recover
xt , we only need to integrate (10) based on the knowledge of θn for t < tn+1.

3.2. Corresponding smoothing problem

For the problem described at the preceding paragraph, our goal is to find the most likely state xt at present time. As just
explained, for tn ≤ t < tn+1 this amounts to finding the parameter θn . First, note that we have

log p(y0:n | θn) = log p(y0:n | r0:n, u0:K̃n
, x0) = −

n∑
k=1

||yk − h(xtk)||2Nk
+ C ste (12)

where Nk is the covariance matrix of the Gaussian measurement noise vk , and the xtk are obtained by integrating (10).
Trying to estimate θn by maximizing the likelihood (12) is not suitable. Indeed, the optimal solution will jump at all times
to stick to at most to the observations. Obviously, we need a prior on the average time between successive maneuvers.
Letting 0 < p < 1 be the probability of a jump at each time ti , we have the following prior

p(K̃n = j) = p({r0:n contains j ones and n − j zeros}) = P (bin(n, p) = j) =
(

n

j

)
p j(1 − p)n− j (13)

Let us assume as prior on the initial state x0 ∼ N (x̄0, P0). Estimating the most likely state for the piecewise deterministic
model of Section 3.1 boils down to the following optimization problem:

θ∗
n = (r0:n, u0:K̃n

, x0)
∗ = argmin

r0:n,u0:K̃n
,x0

− log p(r0:n, u0:K̃n
, x0 | y0:n)

= argmin
r0:n,u0:K̃n

,x0

[− log p(y0:n | r0:n, u0:K̃n
, x0) − log p(u0:K̃n

| r0:n) − log p(r0:n) − log p(x0)]

= argmin
r0:n,u0:K̃n

,x0

(n∑
k=1

||yk − h(xtk)||2Nk
− log[

(
n

K̃n

)
pK̃n (1 − p)n−K̃n] − ||x0 − x̄0||2P0

)
(14)

with the values of xtk obtained by integrating (10) with parameters r0:n, u0:K̃n,x0
. The justification for removing log p(u0:K̃n

|
r0:n) from the optimization problem is that we assume a flat prior on the parameters u0, u1, · · · , as we assume that each
jump may correspond to a complete shift. Of course, alternative priors might be considered depending on the application.

4. Proposed algorithm

The optimization problem (14) is not tractable, owing to the combinatorics in the jump times. Unfortunately, this remains
true even if the optimization is restricted to a sliding window along the lines of Section 2.2. Over a window of size k̄, there
are 2k̄ possibilities for the discrete variable rn−k̄:n , each leading to a continuous optimization problem with respect to
uK̃n−k̄ :K̃n

. To efficiently approximate the optimization problem, we propose the following tractable strategy.

Setting a horizon. We first choose a size k̄ for a sliding window for the reasons explained in Section 2.2, corresponding to
the forgetting horizon of the smoother in the absence of jumps: even if there are no jumps, this allows the state to deviate
over time from the deterministic model (10) while continuing to be efficiently tracked.

Continuity assumption of xt at jumps. In our model described in Section 3.1, we made the simplifying assumptions that jumps
only occurred at discrete time instants t0, t1, · · · , while they actually can occur at any time. We also said there was a way

M. Pilté et al. / C. R. Physique 20 (2019) 228–239 233
Fig. 1. Trajectory with velocity u jumping strictly between the observations at times tn−1 and tn . Under the assumption that a jump may only occur at tn

and the trajectory xt is continuous, we obtain the dotted line, which is a poor trajectory estimate. However, if we assume u jumps at time tn but we relax
the assumption that the trajectory xt must be continuous and allow it to jump – see (15) –, we obtain a much better estimate (dashed line).

around the harmfulness of this approximation. Indeed, the “true” considered model (10) implies continuity in xt , since ẋt

is bounded. If a jump actually occurs between tn−1 and tn , for instance at time (tn−1 + tn)/2, assuming it has occurred at
time tn and the trajectory is continuous may result in degraded accuracy, see Fig. 1 for a graphical illustration. However,
by relaxing the continuity assumption and assuming small jumps in the state xt may also occur at jumping times, may
compensate for the assumption that jumps may only occur at pre-specified instants.

Assuming that a jump has occurred at time strictly between tl−1 and tl , and given that no other jump has occurred until
current time n, to find the most likely state xtn we relax the continuity assumption and solve the optimization problem

argmin
u,xtl

[||xtl − x̄tl ||2P jump
+

n∑
j=l

||y j − h(xt j)||2N j
] (15)

where x̄tl is the value obtained at instant index l by integrating (10) until time tl based on the former value of u (i.e. value
obtained by continuity), and where P jump is a covariance matrix that must be tuned as representative of the typical squared
distance that xt may achieve between successive observations.

Jump detection. Assume n denotes the current time step, and the last jump occurred at time l > n − k̄. This means that rl:n
contains one 1 followed by zeros. Using (12), we may solve the problem

argmin
u,xtl

− log p(u, xtl | yl:n, rl:n) = argmin
u,xtl

[||xtl − x̄tl ||2P jump
+

n∑
k=l

||yk − h(xtk)||2Nk
] (16)

where the xtk are obtained by integrating ẋt = f (xt , u) with initial condition xtl , and x̄tl corresponds to the estimate obtained
by continuity with the model before the jump. As explained in Section 2.1, it is classically possible to assess a covariance
matrix P̃ to the couple (u, xtl). As in the absence of jumps xtn = φ(u, xtl) is a deterministic function of the parameters
(u, xtl), with φ the flow of (10), covariance matrix of xtn is Pn = Dφ P̃ Dφᵀ where Dφ denotes the differential of φ at the
optimal values (u∗, x∗

tl
). This allows us to compute the associated Mahalanobis distance:

� =
√

(yk − h(x∗
tn

))ᵀ(DhᵀPnDh)−1(yk − h(x∗
tn

)) (17)

where Dh denotes the differential of h at x∗
tn

. We may then apply the χ2-test to determine if there is a jump, i.e. as soon
as � goes above a certain value corresponding to a, say 95% quantile of χ2, a potential jump is suspected.

Proposed strategy. We approximate the solution to the true optimization problem (14) by first restricting it to a sliding
window of horizon k̄. Then, we assume jumps are scarce (that is, the jump probability p is small) and we let Tn ∈N denote
the time index at which the last jump before the current (observation) time tn occurs. At each jump time Tn , the window
is re-initialized, since u jumps to an unknown arbitrary value. As a result, at time tn , the current optimal parameter u∗

K̃n

is obtained as a solution to problem (16) with l = max(n − k̄, Tn). Assume that, according to the χ2 test, a possible jump
is detected at time index n, as (17) goes above some predefined quantile q. As this does not mean a jump has necessarily
occurred, we initialize a second smoother based on jump at time n. The first smoother assumes “no jump” has occurred at
n, it then solves:

argmin
u,xtl

(||xtl − x̄tl ||2P jump
+

n+k∑
j=l

||y j − h(xt j)||2N j

)

where the xt j ’s are obtained by integrating ẋt = f (xt , u). Keeping in mind (14), the associated posterior log-likelihood writes:

234 M. Pilté et al. / C. R. Physique 20 (2019) 228–239
Fig. 2. Smoothing with jumps and underlying non-jumping smoother.

Lno jump(n + k) = log p(yl:n+k | u∗, x∗
tl
) + (n + k − l) log(1 − p) + log p(x∗

tl
) (18)

On the other hand, the candidate “jumping” smoother that assumes that one jump occurred at time index n solves:

argmin
u,xtn

(||xtn − x̄tn ||2P jump
+

n+k∑
j=n

||y j − h(xt j)||2N j

)
(19)

where the xt j are again obtained by integrating ẋt = f (xt , u). The associated posterior log likelihood writes:

Ljump(n + k) = log p(yn:n+k | u∗, x∗
tn

) + log
(
kp(1 − p)k−1) + log p(x∗

tn
) (20)

We clearly see the benefit of having a prior on jumps: as the size of the window for the jumping smoother is smaller,
the residual of the least squares will be smaller, as it is easier to find a u∗ that fits better a lesser number of data. But
its likelihood will be penalized as soon as kp < 1 − p, and in our strategy p must be assumed small. Thus, the binomial
term acts as a regularization term that will favor the non-jumping smoother, and prevent the estimation from constantly
jumping, which may end up in meaningless estimates. As p is assumed very small, the likelihood of two or more jumps is
considered as negligible. After a possible jump detection at n, we let k increase until either Ljump(n + k) > Lno jump(n + k)

and then the jump at n is validated, leading to Tn = Tn+k = n, or until k = k̄, in which case both smoothers coincide and
the jumping smoother is suppressed. This strategy is illustrated by Fig. 2.

Note that there must be a minimum time elapsed after the candidate jump at n for comparing the smoothers. We
will denote it by index k. Indeed, the problem (19) might be solved with 0 residual as long as dim(u) > kdim(y). Jump
penalization may not suffice to have Ljump(n + k) > Ljump(n + k), and the jumping smoother is artificially favored.

Algorithm. The pseudo code is displayed in Algorithm 1. During the phases where the jumping and the non-jumping
smoothers are running in parallel, the user can choose whether to output the estimation of one or the other smoother.

Algorithm 1 Smoothing algorithm with jumps
Input: Initial prior (x̄0, P0); Observations y1, y2, · · · ,

1: Set P jump = P0, T0 = 0, n = 0
2: Solve (u∗, x∗

tl
) = argminu,xtl

[||xtl − x̄tl ||2P jump
+ ∑n

j=l ||y j − h(xt j)||2N j
] with l = max(0, n − k̄) and where x̄tl is either x̄0 or obtained by continuity through

model (10) if l > 0.
3: while �2 < q with � defined by (17) and q the user specified quantile for the χ2-test do
4: Set Tn = Tn−1

5: n = n + 1
6: if �2 > q, a candidate jump is detected at time index n then
7: for j = n : n + k̄ do
8: Compute estimations for a smoother with jump and with no jump
9: end for

10: if for some j we have Ljump(j) > Lno jump(j) then
11: Set T j = n and select the jumping smoother by selecting (u∗, x∗

tl
) = argminu,xtn

[||xtn − x̄tn ||2P jump
+ ∑n

j=n ||y j − h(xt j)||2N j
] where x̄tn is obtained

by continuity through model (10) with previous optimal u∗
12: end if
13: Set n = j
14: end if
15: end while

Output: xt is obtained for tl ≤ t < tn+1 with l = min(Tn, n − k̄) by integrating (10) with parameters (u∗, x∗
tl
).

M. Pilté et al. / C. R. Physique 20 (2019) 228–239 235
Fig. 3. Example of position and velocity estimates using our approach. The real trajectory has two jumps. The smoothing algorithm detects the two jumps.

5. Application to a simple 2D target model

A simple and meaningful deterministic model for a target in 2D consists of a succession of straight lines and arcs of a
circle (at constant speed). In other words, this is a piecewise constant speed and curvature assumption. This also coincides
with the Frenet–Serret model that we introduced in [7], with noise turned off. The model is as follows:

d

dt
θt = ωt,

d

dt
xt = ut

(
cos θt

sin θt

)
,

d

dt
ωt = 0,

d

dt
ut = 0 (21)

where xt ∈R2 is the position of the target, θt ∈S1 denotes the orientation of the velocity vector, ut its norm, and ωt := d
dt θt

is related to the curvature of the trajectory. The observations are supposed to be of the form yn = xtn + vn , with vn a
Gaussian noise. Here again, we assume the parameters ut , ωt to be piecewise constant, and we assume that jumping times
coincide with observation times.

5.1. Solving the smoothing problem without jumps

Let us first consider the problem without jumps, to explain how the corresponding optimization problem is solved. It
is convenient to discretize the problem as exact discretization is possible. Consider indeed the discrete-time state (22). The
state can be expressed as (23), and yk = h(Xk) + vk where h(Xk) = xtk .

Xk = (
θtk xtk ωtk utk

)ᵀ (22)

xn = x0 + u0�t
n−1∑
k=0

(
cos(θ0 + kω0�t) sin(ω0�t)

ω0
− sin(θ0 + kω0�t) 1−cos(ω0�t)

ω0

sin(θ0 + kω0�t) sin(ω0�t)
ω0

+ cos(θ0 + kω0�t) 1−cos(ω0�t)
ω0

)
(23)

The corresponding least-squares problem is ||X0 − X̂0||2P0
+ ∑N

k=0 ||yk − h(Xk)||2N , and is amenable to a problem involving
only X0 through exact discretization (23). Then, we can solve the problem through successive linear approximations as
explained in Section 2.1. Calculations are elementary, but all the developments take much space. Due to space limitations,
they are not reproduced herein.

5.2. Accounting for jumps

For the 2D Frenet–Serret target model, with Cartesian observations, Algorithm 1 may be directly applied. In the present
application, the piecewise constant (jumping) parameters are ω and u, the angular velocity and the norm of the velocity. An
example is provided in Fig. 3. The trajectory presented has been created with a 2D Frenet–Serret target model, with random
jumps for the angular velocity ω and the norm of the velocity u. The first jump, when the turn occurs, is shown in Fig. 4.
The algorithm applied for the estimation is Algorithm 1, with the non-linear Frenet–Serret model (21).

236 M. Pilté et al. / C. R. Physique 20 (2019) 228–239
Fig. 4. Zoom on the first jump, between a straight line and a turn. The estimation of the velocity adapts smoothly to this turn.

6. Comparison with state-of-the-art IMM

In this section, we compare our smoothing Algorithm 1 with the IMM algorithm. The IMM was introduced in [16] for
systems with Markovian switching. Owing to its computational efficiency, its versatility, and its accuracy in terms of tracking
performances, it has become prevalent in the field, where it is considered as the (industrial) state-of-the-art filter for
mono-target tracking. Moreover, good performances on the type of problems we consider in Section 3.1 may be anticipated,
as the IMM filter is inherently based upon randomly switching models.

M. Pilté et al. / C. R. Physique 20 (2019) 228–239 237
Table 1
RMSE for the smoothing algorithm and the IMM on trajectories simulated with 100 Monte Carlo simulations of random
jumps of heading, angular velocity, and norm of velocity.

Parameter Smothing: smoothed Smoothing: real time IMM

Position (m) 40 60 43
Norm of velocity (m/s) 15 32 75
Orientation (rad) 0.12 0.24 0.26

Table 2
RMSE for the smoothing algorithm and the IMM for the trajectory of Fig. 5.

Parameter Smothing: smoothed Smoothing: real time IMM

Position (m) 33 49 46
Norm of velocity (m/s) 13 35 81
Orientation (rad) 0.18 0.45 0.67

6.1. Results

We compare an IMM with three models (constant velocity, constant turn, and constant acceleration) with our smoothing
Algorithm 1. The smoothing algorithm is tuned as follows: the sliding window horizon is taken to be the entire trajectories,
and we tune the number of observations we need to wait after a candidate jump to accept or reject as k = 5. The jump
probability is tuned very low: the average jump probability by unit step p is tuned such that the average number of
jumps over the whole trajectory is 0.02, whereas the actual number of jumps in the trajectory is around 2. The transition

probability matrix for the IMM is

⎛
⎝0.4 0.3 0.3

0.3 0.4 0.3
0.3 0.3 0.4

⎞
⎠.

6.1.1. Monte Carlo simulations results
We provide RMSE values computed for a set of 100 randomly generated trajectories with random jumps in heading θ ,

norm of velocity u, and angular velocity ω. The results are displayed in Table 1. Smoothing “real-time” is an implemen-
tation of Algorithm 1, whereas smoothing “smoothed” returns the trajectory estimated by the smoother at the end of the
experiment. The difference is that if a candidate jump at time n is actually validated at time n + k, the real-time smoother
estimates the state with the “no-jump” smoother between n and n + k (while expecting the jump to be validated) whereas
the smoothed one provides the estimates of the jumping smoother during transition. As a result, our smoothed estimates
may be viewed as nearly optimal.

For the comparison to be fair, we must compare the real-time smoother to the IMM. We see that our smoothing-based
estimator outperforms the IMM in terms of velocity estimation (norm and orientation of velocity vector). However, for the
position precision, we observe that the estimations provided in real time of the smoothing algorithm are less precise than
the ones of the IMM. Indeed, the IMM has a quite large process noise, so the position tends to stick more to the observations,
whereas the smoothing position estimation can deviate a little. The IMM is tuned so that the convergence after the jumps
is fairly fast. This implies high-process noise, so it introduces less accuracy (for the velocity especially) during constant
motions. Moreover, the transition probabilities of the IMM have also to be tuned. Note that velocity estimation may be
considered as more important that position, since modern radars measure very accurately the position. However, velocity is
not measured and an accurate estimate may be pivotal for, e.g., beam repointing during active tracking.

6.1.2. Results for a challenging trajectory
We also run the filters on a trajectory generated as follows: first, a constant velocity linear motion, then an abrupt

90-degree turn that occurs between two observations, followed by another straight-line motion, and a slow turn, containing
several observations. The results are displayed in Fig. 5. There again, we see that our smoothing approach is better suited
to this type of trajectories than an IMM, especially after a jump in the trajectory. The error values averaged over the entire
trajectory are collected in Table 2. Note that this kind of challenging trajectory is used by the French Department of Defense
(DGA) as a key trajectory to benchmark tracking algorithms.

6.2. Discussion about IMM

During model changes, the sampling of the observations (which might be over one second, for rotating antenna radars)
is a source of erroneous estimates. Indeed, during these transition phases, there exist an infinite number of likely solutions,
when the exact time of the transition is not known. During these transition phases, recursive Kálmán filters estimate a
unique solution, which has a high probability to be erroneous. To overcome this problem, and avoid the divergence of the
Kálmán filters during transitions, multiple models filters (IMM) are commonly used. A well-known caveat to practitioners
of IMM is that at least one of the models must be tuned with a high-process noise (and usually a constant acceleration

238 M. Pilté et al. / C. R. Physique 20 (2019) 228–239
Fig. 5. Velocity vector along the trajectory for the IMM (Fig. 5a), for the smoothing algorithm, with the results output in real time (Fig. 5b), and for the
smoothing algorithm with the final result (Fig. 5b). The results are more precise for the smoothing algorithm, even when considering the real time output,
and not the final smoothed estimation. The smoothing algorithm is able to manage the jumps, and to be accurate during straight lines, whereas the IMM
algorithm, while managing the jumps has troubles during straight lines, because of the high process noise.

model), to ensure that at least one of the filters in the IMM never diverges. Engineers sometimes compare it to a “garbage
collector” model, which saves the day when none of the other models is properly fitting the measurements. The problem
is that this model generates uncertainty on the estimate and usually delays the convergence of the filter after a transition
during phases with constant kinematic model.

The jumping smoother with the Frenet–Serret model allows one to optimize these transition phases. The conception of
the algorithm is designed to be optimal during constant input phases, and to handle jumps gracefully. We see indeed the
smoothing algorithm with jumps works very well in the presence of very abrupt jumps.

6.3. Discussion about tuning

Another advantage of the smoothing algorithm proposed in this chapter for practitioners is that there are very few
parameters to tune, a feature in sharp contrast with other methods that involve process noise covariance matrices. The
three scalar parameters to tune are the number of observations we expect after a possible jump to accept the jump or to
reject it, called k in Algorithm 1, the size of the sliding window k̄ and the probability p of a jump, which is used in (13) to
compare the smoother that has just jumped with the one that has not jumped. Moreover, our experience is that the filter is
robust to small variations in the parameters. In contrast, the IMM has to be tuned carefully, and must match the amplitude
of the jumps. Indeed, if the process noise is too low, then the filter cannot accommodate the jumps, whereas if it is too
high, the accuracy elsewhere is degraded.

7. Conclusion

In this paper, a novel estimation method has been applied to the mono-target tracking problem, using nonlinear least-
squares and a target dynamic model based on piecewise deterministic Markov models. As no process noise is assumed
during the non-jumping phases, the estimation is quite smooth and accurate in the absence of jumps (stationary phases),
and allows us to accurately detect jumps in the trajectory (transition phases). Some types of targets, such as modern missiles,
may exhibit very abrupt changes in heading between two observations (while changes in the linear velocity/acceleration are
necessarily much more limited). Our estimation algorithm should prove especially useful for this type of targets, as illus-
trated by the displayed comparisons to the IMM.

This smoothing algorithm has only been derived for a 2D target model, in a vector space. Perspectives include extension
to 3D, using the general Lie group setting introduced in [7].

References

[1] A. Doucet, N. De Freitas, K. Murphy, S. Russell, Rao-blackwellised particle filtering for dynamic Bayesian networks, in: Proceedings of the Sixteenth
Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., 2000, pp. 176–183.

[2] S. Godsill, J. Vermaak, Variable rate particle filters for tracking applications, in: Proc. IEEE/SP 13th Workshop on Statistical Signal Processing, 2005,
IEEE, 2005, pp. 1280–1285.

http://refhub.elsevier.com/S1631-0705(19)30072-6/bib646F756365743230303072616Fs1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib646F756365743230303072616Fs1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib676F6473696C6C323030357661726961626C65s1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib676F6473696C6C323030357661726961626C65s1

M. Pilté et al. / C. R. Physique 20 (2019) 228–239 239
[3] P. Bunch, S. Godsill, Dynamical models for tracking with the variable rate particle filter, in: Proc. 15th International Conference on Information Fusion
(FUSION), IEEE, 2012, pp. 1769–1775.

[4] P. Bunch, S. Godsill, Particle smoothing algorithms for variable rate models, IEEE Trans. Signal Process. 61 (7) (2013) 1663–1675.
[5] Y. Bar-Shalom, X. Li, T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, Wiley, 2004, https://

books .google .fr /books ?id =xz9nQ4wdXG4C.
[6] M.R. Morelande, N.J. Gordon, Target tracking through a coordinated turn, in: Proc. ICASSP ’05, IEEE International Conference on Acoustics, Speech, and

Signal Processing, 2005, vol. 4, 2005, pp. 21–24.
[7] M. Pilté, S. Bonnabel, F. Barbaresco, An innovative nonlinear filter for radar kinematic estimation of maneuvering targets in 2d, in: Proc. 18th Interna-

tional Radar Symposium (IRS), IEEE, 2017, pp. 1–10.
[8] S. Thrun, M. Montemerlo, The graph slam algorithm with applications to large-scale mapping of urban structures, Int. J. Robot. Res. 25 (5–6) (2006)

403–429.
[9] F. Dellaert, M. Kaess, Square root sam: simultaneous localization and mapping via square root information smoothing, Int. J. Robot. Res. 25 (12) (2006)

1181–1203.
[10] M. Kaess, A. Ranganathan, F. Dellaert, iSAM: incremental smoothing and mapping, IEEE Trans. Robot. 24 (6) (2008) 1365–1378, https://doi .org /10 .1109 /

TRO .2008 .2006706.
[11] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard, F. Dellaert, iSAM2: incremental smoothing and mapping using the Bayes tree, Int. J. Robot. Res.

31 (2) (2012) 216–235, https://doi .org /10 .1177 /0278364911430419.
[12] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., FastSLAM: a factored solution to the simultaneous localization and mapping problem, in:

AAAI/IAAI, 2002, pp. 593–598.
[13] T.-C. Dong-Si, A.I. Mourikis, Motion tracking with fixed-lag smoothing: algorithm and consistency analysis, in: Proc. IEEE International Conference on

Robotics and Automation (ICRA), IEEE, 2011, pp. 5655–5662.
[14] G. Sibley, L. Matthies, G. Sukhatme, Sliding window filter with application to planetary landing, J. Field Robot. 27 (5) (2010) 587–608.
[15] L. Ljung, System Identification: Theory for the User, Prentice-Hall, 1987.
[16] H.A. Blom, Y. Bar-Shalom, The interacting multiple model algorithm for systems with Markovian switching coefficients, IEEE Trans. Autom. Control

33 (8) (1988) 780–783.

http://refhub.elsevier.com/S1631-0705(19)30072-6/bib62756E63683230313264796E616D6963616Cs1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib62756E63683230313264796E616D6963616Cs1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib62756E6368323031337061727469636C65s1
https://books.google.fr/books?id=xz9nQ4wdXG4C
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib31343135393335s1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib31343135393335s1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib70696C74655F495253s1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib70696C74655F495253s1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib746872756E323030366772617068s1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib746872756E323030366772617068s1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib64656C6C6165727432303036737175617265s1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib64656C6C6165727432303036737175617265s1
https://doi.org/10.1109/TRO.2008.2006706
https://doi.org/10.1177/0278364911430419
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib6D6F6E74656D65726C6F3230303266617374736C616Ds1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib6D6F6E74656D65726C6F3230303266617374736C616Ds1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib646F6E67323031316D6F74696F6Es1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib646F6E67323031316D6F74696F6Es1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib7369626C657932303130736C6964696E67s1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib6C6A756E673139383773797374656Ds1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib626C6F6D31393838696E746572616374696E67s1
http://refhub.elsevier.com/S1631-0705(19)30072-6/bib626C6F6D31393838696E746572616374696E67s1
https://books.google.fr/books?id=xz9nQ4wdXG4C
https://doi.org/10.1109/TRO.2008.2006706

	A novel nonlinear least-squares approach to highly maneuvering target tracking
	1 Introduction
	2 Smoothing as an estimation procedure for target tracking
	2.1 Classical smoothing approach
	2.2 Restriction to a deterministic evolution model over a sliding window as a tuning strategy

	3 Smoothing applied to deterministic systems with random jumps
	3.1 Considered systems and simplifying assumptions
	3.2 Corresponding smoothing problem

	4 Proposed algorithm
	5 Application to a simple 2D target model
	5.1 Solving the smoothing problem without jumps
	5.2 Accounting for jumps

	6 Comparison with state-of-the-art IMM
	6.1 Results
	6.1.1 Monte Carlo simulations results
	6.1.2 Results for a challenging trajectory

	6.2 Discussion about IMM
	6.3 Discussion about tuning

	7 Conclusion
	References

