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Energy transport can be influenced by the presence of other conserved quantities. We 
consider here diffusive systems where energy and the other conserved quantities evolve 
macroscopically on the same diffusive space–time scale. In these situations, the Fourier law 
depends also on the gradient of the other conserved quantities. The rotor chain is a clas-
sical example of such systems, where energy and angular momentum are conserved. We 
review here some recent mathematical results about the diffusive transport of energy and 
other conserved quantities, in particular for systems where the bulk Hamiltonian dynam-
ics is perturbed by conservative stochastic terms. The presence of the stochastic dynamics 
allows us to define the transport coefficients (thermal conductivity) and in some cases 
to prove the local equilibrium and the linear response argument necessary to obtain the 
diffusive equations governing the macroscopic evolution of the conserved quantities. Tem-
perature profiles and other conserved quantities profiles in the non-equilibrium stationary 
states can be then understood from the non-stationary diffusive behavior. We also review 
some results and open problems on the two step approach (by weak coupling or kinetic 
limits) to the heat equation, starting from mechanical models with only energy conserved.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Le transport d’énergie peut être influencé par la présence d’autres quantités conservées. 
Nous considérons ici des systèmes diffusifs dans lesquels l’énergie et les autres quanti-
tés conservées évoluent macroscopiquement à la même échelle diffusive spatio-temporelle. 
Dans ces situations, la loi de Fourier dépend aussi du gradient des autres quantités conser-
vées. La chaîne du rotor est un exemple classique de ces systèmes, où l’énergie et le 
moment angulaire sont conservés. Nous passons en revue ici quelques résultats mathé-
matiques récents sur le transport diffusif de l’énergie et d’autres quantités conservées, en 
particulier relatifs à des systèmes dans lesquels la dynamique hamiltonienne est perturbée 
par des termes stochastiques conservateurs. La dynamique stochastique permet de défi-
nir les coefficients de transport (conductivité thermique) et, dans certains cas, de prouver 
l’équilibre local et la réponse linéaire nécessaire pour obtenir les équations diffusives qui 
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régissent l’évolution macroscopique des quantités conservées. Les profils de température 
et les autres profils des quantités conservées dans les états stationnaires hors équilibre 
peuvent alors être compris à partir du comportement diffusif non stationnaire. Nous pas-
sons également en revue certains résultats et problèmes ouverts concernant l’approche en 
deux étapes (par couplage faible ou limites cinétiques) de l’équation de la chaleur à partir 
de modèles mécaniques dans lesquels seule l’énergie est conservée.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fourier’s law claims that the local energy current is proportional to the local gradient of temperature and the ratio of 
these quantities, which is a function of the local temperature, is called thermal conductivity. However, in many realistic 
systems, energy is not the only conserved quantity and the interplay between extra conserved quantities and energy has a 
deep impact on the thermal properties of the system, for example generating uphill diffusion.

Dynamics that have more conserved quantities, either than energy, often present different time scales for the macro-
scopic evolution of these. In the present review, we are interested in systems where conserved quantities evolve macro-
scopically in the same diffusive time scale, and their macroscopic evolution is governed by a system of coupled diffusive 
equations. One example is given by the chain of coupled rotors, whose dynamics conserves energy and angular momen-
tum. In Sections 2 and 3, we show that, as a consequence of a linear response argument and certain symmetries in the 
corresponding Onsager matrix, the macroscopic evolution of these two quantities follows a diffusive system of PDE (14) or 
equivalently (16). In terms of the evolution of the temperature profile, the usual heat diffusion can be counterbalanced by a 
local increase of temperature due to the gradient of the momentum profile (see (17)). It seems that there is some universal-
ity about equations (17) on the role of the gradients of the other conserved quantities. We give some examples where the 
deterministic Hamiltonian dynamics is perturbed by a stochastic term conservative of energy and other quantities. In some 
of these stochastic models, the hydrodynamic limit can be proven mathematically.

This macroscopic coupled evolution generates interesting stationary profiles of temperatures in the non-equilibrium sta-
tionary states with thermal and mechanical forces acting on the boundaries of the system, as explained in section 4.

In the last section, we will report on some results concerning the two-step approach for the Fourier law, for dynamics 
that conserves only energy.

2. Linear response and Onsager matrix

For simplicity, let us consider first a spatially homogeneous dynamics on a lattice Z such that there are two conserved 
quantities: momentum and energy. A typical and commonly studied example is given by the rotor chain, where the config-
urations are given by {qi(t) ∈ S1, pi(t) ∈R, i ∈Z}, where S1 is the unit circle. Nearest-neighbor rotators interact through a 
periodic potential V (qi+1 − qi). For example V (r) = 1 − cos(2πr), but the considerations below are valid for more general 
interactions. The Hamiltonian dynamics is given by

q̇i(t) = pi(t), ṗi(t) = V ′(qi+1(t) − qi(t)) − V ′(qi(t) − qi−1(t)) (1)

In the following, we will denote ri = qi − qi−1. There are two locally conserved (or balanced) quantities: the momentum pi

and the total energy ei = p2
i

2 + V (ri). In fact, we have

d

dt
pi(t) = jp

i−1,i(t) − jp
i,i+1(t), jp

i,i+1(t) = −V ′(ri+1(t))

d

dt
ei(t) = je

i−1,i(t) − je
i,i+1(t), je

i,i+1(t) = −pi(t)V ′(ri+1(t))

(2)

where jαi,i+1(t), α = p, e, are the corresponding instantaneous currents. Notice that ri is not a balanced quantity.
One of the main conditions needed in order to have a macroscopic autonomous diffusive evolution of these conserved 

quantities is that there are no other translation invariant conserved quantities for the dynamics of the infinite system. This 
ergodic property is very hard to prove for the deterministic dynamics. We may consider also some stochastic perturbation 
of the dynamics (1) that have the same conserved quantities. The purpose of such perturbations is in fact to guarantee 
that there are no other balanced quantities [1]. One example is to add a random flip of the signs of ri : for each particle i, 
at exponential times with rate γ , ri changes to −ri , independently from the other particles j �= i. This operation does not 
change either the momentum or the energy if V is assumed symmetric.

A precise way to state this ergodic property of the infinite dynamics is the characterization of the stationary and trans-
lation invariant probability measures, i.e. the fact that the Gibbs measures

http://creativecommons.org/licenses/by-nc-nd/4.0/
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dνβ,p =
∏
i∈Z

e−βei+βppi

Zβ,βp
dpi dri, β > 0, p ∈R, Zβ,βp =

√
2πβ−1eβp2/2

∫
e−βV (r)dr, (3)

are the only stationary and translation invariant probability measures for the dynamics (within a certain class of regular
distributions). We will denote by < · >β,p the expectation with respect to νβ,p , as well as the expectation of a function 
of the path of the dynamics under νβ,p . These Gibbs measures are called equilibrium and they have the following time-
reversible property: if {(r(t),p(t)) = (

ri(t), pi(t), i ∈Z
)
, t ∈ [−t0, t0]} are stationary distributed with marginal νβ,p , then 

{r̃i(t) = ri(−t), p̃i(t) = −pi(−t)} follow the same dynamics, but with marginal νβ,−p , i.e. for any function of the path F (r, p), 
we have < F (r̃(·), ̃p(·)) >β,p=< F (r(·), p(·)) >β,−p .

In the specific case of the rotators, there is also a rotational symmetry of the equilibrium dynamics, i.e. under the equi-
librium (β, p), the distribution of the path of r̃i(t) = ri(t), p̃i(t) = pi(t) − p is the same as the one at equilibrium (β, 0), i.e. 
with zero average velocity.

One way to define the transport diffusion coefficients is through linear response. Notice that for any equilibrium state, we 
have that < jp

i,i+1 >β,p= 0 =< je
i,i+1 >β,p for any values of β > 0 and p ∈ R; consequently, we do not expect any ballistic 

evolution in these systems. We have to understand how these expectations behave if we impose a gradient of temperature 
or of momentum, at the first order for small gradients. Given ε1, ε2, consider the inhomogeneous Gibbs measure

dμε1,ε2 =
∏
i∈Z

e−(β+ε1i)ei+(βp+ε2i)pi

Zβ+ε1i,βp+ε2i
dpi dri (4)

Starting at time t = 0 with this inhomogeneous measure, we expect that, at the first order in (ε1, ε2),

< jp
0,1(t) >με1,ε2

= K p,p
t ε2 + K p,β

t ε1 + o(ε1, ε2)

< je
0,1(t) >με1,ε2

= K β,p
t ε2 + K β,β

t ε1 + o(ε1, ε2)
(5)

and then we are interested in the limit as t → ∞ for the coefficients K u,v
t . Defining e = 〈ei〉β,p , a straightforward develop-

ment at the first order gives

K p,p
t =

∑
i

i
〈

jp
0,1(t)(pi(0) − p)

〉
β,p

, K p,β
t = −

∑
i

i
〈

jp
0,1(t)(ei(0) − e)

〉
β,p

K β,p
t =

∑
i

i
〈
je
0,1(t)(pi(0) − p)

〉
β,p

, K β,β
t = −

∑
i

i
〈
je
0,1(t)(ei(0) − e)

〉
β,p

(6)

assuming that the sums in (6) converge. By using the symmetries of the dynamics (rotational, time stationarity, time re-

versibility), and recalling that 
〈

jp
0,1(0)pi(0)

〉
β,0

= 0, we have

K p,p
t (β, p) =

∑
i

i
〈

jp
0,1(t)pi(0)

〉
β,0

= −
∑

i

i
〈

jp
0,1(0)pi(t)

〉
β,0

= −
t∫

0

ds
∑

i

i
〈

jp
0,1(0)

(
jp
i−1,i(s) − jp

i,i+1(s)
)〉

β,0
= −

t∫
0

ds
∑

i

〈
jp
0,1(0) jp

i,i+1(s)
〉
β,0

(7)

So, we define the limit as t → ∞, assuming that it exists, as

K p,p(β, p) = −
∞∫

0

ds
∑

i

〈
jp
0,1(0) jp

i,i+1(s)
〉
β,0

= K p,p(β,0) := K p,p(β) (8)

Notice that K p,p is only a function of β and does not depend on p. This is a consequence of the rotational symmetry of the 
dynamics. We define similarly K p,β (β, p), K β,p(β, p), K β,β(β, p).
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Similar calculations give, recalling that 
〈

jp
0,1(0)ei(0)

〉
β,p

= 0 for any p and β ,

K p,β
t = −

∑
i

i
〈

jp
0,1(t)(ei(0) − e)

〉
β,p

= −
∑

i

i
〈

jp
0,1(0)(ei(t) − e)

〉
β,−p

= −
t∫

0

ds
∑

i

〈
jp
0,1(0) je

i,i+1(s)
〉
β,−p

= −
t∫

0

ds
∑

i

〈
jp
0,1(0)pi(s) jp

i+1,i+2(s)
〉
β,−p

=
t∫

0

ds
∑

i

〈
jp
0,1(s)pi(0) jp

i+1,i+2(0)
〉
β,p

= −pK pp
t +

t∫
0

ds
∑

i

〈
jp
0,1(s)(pi(0) − p) jp

i+1,i+2(0)
〉
β,p

= −pK pp
t +

t∫
0

ds
∑

i

〈
jp
0,1(s)pi(0) jp

i+1,i+2(0)
〉
β,0

(9)

The second term on the right-hand side is equal to 0, since 
∫ t

0 ds 
∑

i jp
0,1(s) is symmetric by time reversal s → t − s while 

pi(0) jp
i+1,i+2(0) is antisymmetric. This implies that K p,β = −pK pp . A similar argument gives

K β,p(β, p) = K p,β(β,−p) = pK pp(β) (10)

Similarly,

K β,β
t = −

∑
i

i
〈
je
0,1(t)(ei(0) − e)

〉
β,p

=
∑

i

i
〈
je
0,1(0)(ei(t) − ei(0))

〉
β,−p

=
t∫

0

ds
∑

i

〈
je
0,1(0) je

i,i+1(s)
〉
β,−p

=
t∫

0

ds
∑

i

〈
je
0,1(0) je

i,i+1(s)
〉
β,p

(11)

Using again the symmetries and recalling that je
i,i+1 = pi jp

i+1,i+2, we obtain also that

K β,β(β, p) = K β,β(β,0) − p2 K p,p(β) (12)

Finally thanks to the symmetries of the system, all the coefficients can be calculated from K p,p(β) and K β,β(β) :=
K β,β(β, 0), computed at zero average velocity. Relations (10) and (12) were already noted in [2].

One of the main mathematical problems in dealing with the deterministic infinite dynamics is in proving that the limits 
defining K p,p(β) and K β,β(β) exist and are finite. If this is an open problem for the deterministic dynamics, where stochastic 
perturbations can help. In fact, adding random independent flips of the ri ’s, one can prove that K p,p(β) and K β,β(β) are 
well defined and finite, by adapting the argument used in [3].

3. The diffusive macroscopic equations

3.1. Macroscopic diffusive equations for the rotors model

The linear response analysis of the previous section gives a heuristic argument for the macroscopic equations governing 
the evolution in the diffusive space–time scale. In order to state the macroscopic equations, we need some thermodynamic 
functions. The internal energy (or thermal energy) as a function of β is given by u(β) = −∂β log Zβ,0, where Zβ,0 is the 
partition function appearing in (3). The temperature is given by T = β−1, and the heat capacity is defined as cv (T ) = du

dT =
β2Varβ,0(ei). The thermodynamic entropy is S(u) = infβ>0

{
βu + log Zβ,0

}
, and β(u) = S ′(u) provides the inverse function 

of u(β).
The linear response argument (5) suggests the following macroscopic equations for the evolution of the profiles p(t, x), 

e(t, x) of the conserved quantities:

∂t p = −∂x
(

K p,p(β)∂x(βp) + K p,β(β, p)∂xβ
)

∂te = −∂x
(

K β,p(β, p)∂x(βp) + K β,β(β, p)∂xβ
) (13)

with the profiles β(t, x) := β(u(t, x)), and u(t, x) = e(t, x) − 1
2 p2(t, x). By using the relations (10) and (12), the only coefficient 

involved are K p,p(β) and K β,β(β) = K β,β(β, 0). Expressing the equations in terms of the temperature profile T (t, x) =
β−1(t, y), (13) are equivalent to

∂t p = ∂x
(

D p(T )∂x p
)

∂te = ∂x

(
D p(T )∂x

(
p2 )

+ κ(T )∂xT

) (14)
2
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where

D p(T ) := −T −1 K p,p(T −1) momentum diffusivity,

κ(T ) := T −2 K β,β(T −1) thermal conductivity.
(15)

Alternatively, rewriting (14) as closed equations in p(t, x) and e(t, x):

∂t p = ∂x
(

D p∂x p
)

∂te = ∂x

(
(D p − De)∂x

(
p2

2

)
+ De∂xe

) (16)

with the energy diffusivity defined by De = κ(T )
cv (T )

.
It is more interesting to close the equations in the temperature profile T (t, x) obtaining

∂t p = ∂x
(

D p(T )∂x p
)

cv(T )∂t T = ∂x (κ(T )∂xT ) + D p(T )(∂x p)2
(17)

There are two remarkable consequences from the equations (17):

– the gradient in the temperature does not contribute to the diffusion of the momentum, but the momentum diffusivity 
depends only on the temperature;

– the gradient of the momentum increases locally the temperature. The time evolution of the temperature is composed 
by the usual heat diffusion term ∂x (κ(T )∂x T ) plus an increase due to inhomogeneities in the momentum distribution.

The total energy e(t, x) is the sum of the mechanical energy p2(t, x)/2 and an internal energy u(t, x). Notice that ∂t u =
cv(T )∂t T , i.e. the momentum diffusion decreases the mechanical energy, which dissipates into internal energy, and the term 
D p(T )(∂x p)2 is the rate of dissipation of the mechanical energy in internal energy. We can also read this in the increase of 
the total entropy of the system:

d

dt

∫
S(u(t, x))dx =

∫ [
D p(T )

T
(∂x p)2 + κ(T )

T 2
(∂xT )2

]
dx (18)

3.2. Mathematical problems

We have obtained the equations (17) heuristically from the linear response argument and some symmetries of the 
dynamics. In fact, they are quite general, the details of the microscopic dynamics are contained in the macroscopic transport 
coefficients D p(T ) and κ(T ). A rigorous mathematical statement would be given by a hydrodynamic limit: consider the 
empirical profile distributions

p̂ε(t, x) = ε
∑

i

pi(ε
−2t)δεi(x), êε(t, x) = ε

∑
i

ei(ε
−2t)δεi(x) (19)

These are random variables valued on distributions on R. We would like to prove that, as ε → 0, they converge in prob-
ability to the solution p(t, x), e(t, x) of (16). We have already mentioned that, for the deterministic dynamics, even the 
existence of D p(T ) and κ(T ) is an open problem. Adding stochastic conservative terms to the dynamics can help to prove 
the existence of the transport coefficient [3], but still the proof of the hydrodynamic limit is a difficult task. The main prob-
lem is the following. In the hydrodynamic limit, on the microscopic scale, gradients have order ε , but one has to look at a 
time scale ε−2. In the linear response argument, we have first made an expansion in the first order of the gradients (cf. (5)) 
because of a large space scale, and subsequently we took the large time limit. In the hydrodynamic limit, we have to take 
the limit in space and time together, with the diffusive scaling.

It should be mentioned here that this possible mathematical statement about the diffusive limit does not explain the 
superdiffusive behavior that the rotor chain may have at low temperatures in certain space–time scales. This is due to a 
kind of metastable low-temperature states, where rotors have mostly an oscillatory behavior, like an FPU chain of anharmonic 
springs, and the ri behave like an almost conserved quantity (see discussion and simulations in [4,5] and for a related model 
in [6]).

A technique to approach this hydrodynamic limit problem in stochastic dynamics was developed by Varadhan [7] (see 
also chapter 7 in [8]). It consists in decomposing, by approximations, the microscopic currents in a gradient term (dissipa-
tion) plus a term in the range of the generator L of the dynamics (fluctuation). In the present context, this would mean

jp ∼ −D p(T )(p1 − p0) + L F p, je ∼ −De(T )(e1 − e0) − p(D p(T ) − De(T ))(p1 − p0) + L F e (20)
0,1 0,1
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where the approximation symbol means that there exist sequences of local functions F p , F e in the domain of the generator 
L such that the space–time variance of the difference, calculated for the dynamics in the equilibrium with average mo-
mentum p and temperature T , vanishes. Such fluctuation–dissipation decompositions allow us to substitute, locally, currents
with gradients and eventually close the equations after the hydrodynamic limit. In [7] Varadhan used first this approach 
to prove the hydrodynamic limit for a non-gradient reversible stochastic Ginzburg–Landau dynamics (one conserved quan-
tity). Reversibility here is intended for a dynamics that has a self-adjoint generator with respect to the stationary Gibbs 
measures. Then Quastel, in his PhD thesis [9], proved by this technique the diffusion of colors in the symmetric simple 
exclusion process (still reversible but with two conserved quantities). There have been many other results extending this 
method to non-reversible dynamics. In the context of a chain of anharmonic oscillators with a stochastic perturbation con-
serving only the energy, the fluctuation–dissipation decomposition has been proved in [10]. One of the limitations of this 
non-gradient approach is that it requires that the generator of the dynamics L has a very ‘large’ symmetric part S , whose 
finite-dimensional version has a spectral gap uniformly bounded with respect to the dimension; furthermore L should sat-
isfy a spectral sector condition with respect to S . This requires to consider only stochastic perturbations that act on both 
positions and velocities (S locally elliptic).

3.3. Macroscopic diffusive equations for the harmonic chain with bulk noise

In the case when κ and De are constant independent of the temperature T , there are examples of dynamics where 
the hydrodynamic limit can be proven rigorously. This is the case of a chain of harmonic oscillators whose Hamiltonian 
dynamics is perturbed by a random sign change of the interparticle distance. The dynamics is defined as in (1), but now 
ri ∈ R and V (r) = r2

2 . Furthermore, any particle i has an independent Poisson process with intensity γ , when it rings ri

changes sign. Momentum and energy are conserved and it can be proven that the empirical distribution defined by (19)
converges to the solution to (16), with explicit κ and De depending only on γ . Of course, these coefficients diverge for 
γ → 0 as the deterministic harmonic chain does not have a diffusive behavior.

A rigorous mathematical proof of such hydrodynamic limit for a different dynamics of springs, with random perturbations 
that do not conserve momentum but conserve ri can be found in [11,12]. In [12] is considered a harmonic chain, but with 
a random flip of the velocities sign. In this case, the two conserved quantities are the volume stretch ri (with currents 
jr
i,i+1 = −pi ) and the energy. In [12], it is proven that the empirical distributions

r̂ε(t, x) = ε
∑

i

ri(ε
−2t)δεi(x), T̂ε(t, x) = ε

∑
i

1

2
p2

i (ε
−2t)δεi(x) (21)

converge to the solution r(t, x), T (t, x) to

∂tr = 1

2γ
∂2

x r

∂t T = 1

2γ
(∂xr)2 + 1

4γ
∂2

x T
(22)

that have the same structure as (17). Similar results with a different stochastic perturbation are contained in [11]. In these 
models, where the transport coefficients are constant, the fluctuation–dissipation relations (20) are exact for explicit local 
functions F . Still, the equations (22) are non linear and the proof in [12] demands the application of Wigner distributions 
techniques in order to control the separate evolution of the thermal and mechanical energy.

For the anharmonic chain with velocity flip, the corresponding macroscopic equations are given by [13,14]

∂tr = 1

2γ
∂2

x τ (r, T )

cv(r, T )∂t T = ∂x (κ(r, T )∂xT ) + 1

2γ
(∂xτ (r, T ))2

(23)

where τ (r, T ) is the thermodynamic tension at temperature T and volume r, cv (r, T ) being the corresponding heat capacity. 
The thermal conductivity κ(r, T ) may depend on r in a non-explicit way, as we do not have the same symmetries as in the 
rotor model. Notice that in this case, thanks to the noise in the dynamics, the current of the volume strain is jr

0,1 = −p1

and it has an explicit fluctuation–dissipation decomposition of the type (20):

jr
0,1 = −p1 = 1

2γ
Lp1 − 1

2γ

(
V ′(r1) − V ′(r0)

)
(24)

that explains the first of the equations (23).
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3.4. Dynamics with three conserved quantities

There are dynamics with three conserved quantities that evolve macroscopically in the diffusive space–time scaling. In 
[15], we study a harmonic chain where the potential energy does not depend on the volume strain or the tension of the 
system, but on its bending or curvature. This implies that we add springs between next nearest neighbor particles with 
negative potential, such that the total potential energy is given by

1

2

∑
i

(qi+1 − qi−1 − 2qi)
2 (25)

To the Hamiltonian dynamics, we add a random exchange, with intensity γ , of velocities between nearest neighbor particles. 
It results that there are three conserved quantities:

ki = qi+1 − qi−1 − 2qi, pi, ei = p2
i

2
+ k2

i

2
(26)

We call ki the curvature or bending. In [15], we prove that the corresponding empirical distributions converge to k(t, x), 
p(t, x), e(t, x) solutions to the diffusive system

∂tk = −∂2
x p

∂t p = ∂2
x k + γ ∂2

x p

∂t T = 1

γ
∂2

x T + γ (∂x p)2

(27)

where the temperature profile is defined as T (t, x) = e(t, x) − p2(t,x)
2 . We can see this as a diffusive perturbation of Bernoulli’s 

beam wave equation ∂2
t k = −∂4

x k. Notice the similar structure as in equations (17) and (22), with a heating term γ (∂x p)2.
It is an open question if similar macroscopic equations will hold for a non-linear dynamics with potential V (ki), without 

any stochastic term. Numerical dynamical simulations have been inconclusive about this possible diffusive behavior.

4. Non-equilibrium stationary states

4.1. Stationary temperature profiles and up-hill diffusion in rotor model

In this section we review some results concerning the non-equilibrium stationary states for the rotors model contained in 
[16], more details can be found there. Let us consider the finite dynamics on N + 1-rotors as in (1), where we add boundary 
forces or heath baths such that gradients are imposed on the conserved quantities in the corresponding stationary state. In 
order to establish a gradient in the temperature profile, we apply at the boundaries two Langevin heat baths at different 
temperatures TL, TR, while constant forces τL, τR act respectively on the first rotor on the LHS and last rotor on the RHS. 
The equations of motion read as:

ṙi(t) = pi(t) − pi−1(t), 1, . . . , N

ṗi(t) = V ′(ri+1(t)) − V ′(ri(t)), i = 2, . . . , N − 1

dp0(t) = (
τL + V ′(r1(t)) − γ p0(t)

)
dt + √

2γ TL dwL(t)

dpN(t) = (
τR − V ′(rN(t)) − γ pN(t)

)
dt + √

2γ TR dwR(t)

(28)

where wL(t), wR(t) are two independent Wiener processes.
We expect here that an hydrodynamic limit holds for the empirical profile distribution (20) scaling with ε = N−1, with 

the equation (17) in x ∈ [0, 1] provided with the boundary conditions

p(t,0) = τL

γ
, T (t,0) = TL, p(t,1) = τR

γ
, T (t,1) = TR.

As t → ∞, the system, at fixed size N , should approach a stationary state μN
ss depending in principle on TL, TR, τL, τR

and γ . This probability distribution is called non-equilibrium stationary state (NESS) and only in the case TL = TR = β−1

and τL = τR = τ it coincides with the equilibrium measure νβ,p with p = γ −1τ .
From the mathematical side, the study of the NESS and its asymptotic properties as N → ∞ is harder than the non-

stationary behavior. This is because in the NESS the time scales are hidden. For the rotors model, even the existence of the 
NESS is an open problem, and only recently there have been some progress for N = 2 and 3 [17,18].

Assuming the existence of the NESS, by stationarity the expectation of the currents of the conserved quantities have to 
be homogeneous along the chain, i.e. denoting with < · >ss the expectation with respect to μN

ss, we have
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J p
N :=< jp

i,i+1 >ss, J e
N :=< je

i,i+1 >ss, i = 1, . . . , N − 1 (29)

are constant in i. Taking into account also the boundary currents, we have

J p
N = −τR + γ < pN >ss= τL − γ < p0 >ss

J e
N = γ

(
TL− < p2

0 >ss

)
− τL < p0 >ss= γ

(
< p2

N >ss −TR

)
+ τR < pN >ss

(30)

The diffusive behavior implies that J p
N , J e

N ∼ O  
( 1

N

)
, and we expect that

lim
N→∞ N J p

N = J p = −D p(Tss(x))∂x pss(x)

lim
N→∞ N J e

N = J e = −D p(Tss(x))∂x

(
pss(x)2

2

)
− κ(Tss(x))∂xTss(x)

(31)

where pss(x), Tss(x) are the stationary solutions to equations (14) with boundary conditions

pss(0) = τL

γ
, Tss(0) = TL, pss(1) = τR

γ
, Tss(1) = TR

Notice that the energy current is the sum of the heat current J Q (x) = −κ(Tss(x))∂xTss(x), and the mechanical energy 
current −D p(Tss)∂x

(
p2

ss
2

)
. They can be of opposite signs, giving rise to the phenomenon of uphill diffusion ( J e of the same 

sign as the gradient of temperature, cf. [19]).
Some other relations can be obtained from (31). By multiplying the first equation by pss(x) and subtracting the second, 

we have

pss(x) J p − J e = κ(Tss(x))∂xTss(x) = − J Q (x) (32)

while the second derivative of Tss(x) must satisfy

J p∂x pss(x) = κ(Tss(x))∂xxTss(x) + κ ′(Tss(x)) (∂xTss(x))2 (33)

Equations (31) predict a maximum for the temperature profile Tss(x) inside the interval (0, 1) higher than the boundary 
temperatures TL, TR. In fact, without losing generality, assume τR = τ > 0 and τL = 0, then pss(x) ≥ 0, J p < 0 and pss(x)
is strictly increasing from pss(0) = 0 to pss(1) = τ/γ . Consequently, from (32), we can have only one stationary point for 
Tss, and by (33) it must be a maximum, which we denote by xmax, that must satisfy pss(xmax) J p = J e . This implies that J p

and J e are of the same sign and, if J e �= 0, the strict increase property of pss implies that xmax must be inside the interval 
(0, 1). Since there are no other stationary points, the maximal temperature Tss(xmax) must be higher than the temperatures 
at the boundaries.

From (33), a flex point xflex of Tss(x) must satisfy the relation

−D p(Tss(xflex)) (∂x pss(xflex))
2 = J p∂x pss(xflex) = κ ′(Tss(xflex)) (∂xTss(xflex))

2

It follows that such flex points can exist only around values where κ(T ) is a strictly decreasing function of T .
Another qualitative property of the solution can be seen from the first equation of (31), i.e. we have that ∂x pss(x) =
− J p

D p(Tss(x)) . There is a numerical evidence that D p(T ) is a decreasing function of T , so we have that ∂x pss(x) is proportional 
to Tss(x)α for some α. It follows that

∂2
x pss(x) = J p(D p)′(Tss(x))

D p(Tss(x))2
∂xTss(x) (34)

that implies a flex point for pss(x) at the point of maximum temperature.
The energy current J e can present a negative linear response with respect to TR − TL, due to the decrease of D p(T ) as 

a function of the temperature. In fact, in the case τR > 0, τL = 0 and TR ≥ TL, we have that ∂x

(
p2

ss(x)
2

)
> 0, increasing TR

will increase the whole profile Tss(x). This may create a positive increase to −D p(Tss(x))∂x

(
p2

ss(x)
2

)
larger that the negative 

increase of J q = −κ(Tss(x))∂x Tss(x).
From the stationary equation, we can compute the entropy production of the stationary state, that we can define as

� =
(

T −1
R − T −1

L

)
J e − γ −1

(
T −1

R τR − T −1
L τL

)
J p (35)

It turns out that � > 0 and that it is equal to
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Fig. 1. Stationary temperature profiles in rotors dynamics, with τR = τ , τL = 0 and different values of temperatures for the Langevin heat bath. Reprinted 
from [20].

Fig. 2. Stationary momentum profiles in rotors dynamics, with τR = τ , τL = 0 and different values of temperatures for the Langevin heat bath. Reprinted 
from [20].

� =
1∫

−1

[
κ(Tss(x))

T 2
ss(x)

(∂xTss(x))2 + D p(Tss(x))

Tss(x)
(∂x pss(x))2

]
dx (36)

Notice that this expression coincide with the time derivative of Clausius’s entropy S given in (18).
Dynamical simulations of the rotors chain in the stationary state under an exterior torque τ were first performed in 

[20]. The resulting stationary profiles of Tss(·) and pss(·) are reported in Figs. 1 and 2, respectively, for different choices of 
boundary temperatures, and τL = 0 and τR = τ .

The profiles of temperatures in Fig. 1 present a maximum inside the interval with temperatures much higher than at the 
boundaries. Two flex points are present, which get closer as the temperature at the border decreases.

In Fig. 2 are displayed the corresponding profiles of pss(x). The maximum of the temperature corresponds to the flex 
point of pss, in agreement with (34). Fig. 3 shows the energy current J e as function of τR = τ (with τL = 0) for different 
sizes of the system N . In black is the case of same temperature, while in red the curve when TR is risen. Notice in Fig. 3 that 
for τ large enough the curves cross, which implies a negative response to the temperature gradient. This is in agreement 
with the remark made above, as consequence of the decrease of D p(T ) with T .

The plots in Figs. 1, 2, and 3 are obtained by direct dynamical simulations of the NESS. In [16], we attempt to solve 
numerically equations (31) after having estimated D p(T ) and κ(T ) with dynamical simulations of the system in equilibrium. 
Agreement of the corresponding plots will confirm the correctness of the heuristic coming from the linear response theory.

For a general review about up-hill diffusion, see [19]. This phenomenon can also appear in models with phase transitions, 
even if there is only one conserved quantity [21].



438 S. Olla / C. R. Physique 20 (2019) 429–441
Fig. 3. Energy current J e as function of τR = τ , for τL = 0. Reprinted from [20].

Fig. 4. Chain of harmonic oscillators with random flip of velocities sign, heat bath, and tension applied on the right-hand side. Reprinted from [22].

4.2. Stationary states for harmonic chains with random dynamics

Mathematical rigorous results can be obtained for the NESS of the harmonic oscillators dynamics with random flip of 
velocities, such that kinetic energy is conserved. The conserved quantities are the volume and the total energy, and the 
non-stationary evolution is governed in the diffusive scaling by (22). In [22], we study this dynamics when the system has 
N harmonic oscillators connecting N + 1 particles, with Langevin heat baths attached to the first left particle and the last 
right particle, and a constant force τ is attached to the last right particle (see Fig. 4). The system is driven out of equilibrium 
by the presence of the external force τ , and the stochastic part of the dynamics has only equilibrium states with 0 average 
velocities. Thanks to the stochastic dynamics in the bulk, the NESS exists. For τ = 0 this NESS was studied in [31].

In [22], we prove the hydrodynamic limit in the NESS, and the stationary profiles of volume stretch rss(x) and tempera-
ture Tss(x) satisfy the equations

∂2
x rss(x) = 0, ∂2

x Tss(x) = −2 (∂xrss(x))2 , rss(0) = 0, Tss(0) = TL, rss(1) = τ , Tss(1) = TR (37)

These can be explicitly solved obtaining rss(x) = τ x and

Tss(x) = τ 2x(1 − x) + (TR − TL)x + TL, x ∈ [0,1]
that shows again an heating phenomena at the center of the system. The stationary energy current can also be calculated 
and gives

J e = − 1

4γ
(TR − TL) − τ 2

2γ
(38)

So if uphill diffusion is possible, no negative response to temperature gradient can happen in this system, as these were due 
to the non-linearities in the temperature of the diffusivities in the rotor chain. Also there are no flex points in these profiles 
of temperature, as also these were due to the temperature dependence of thermal conductivity.

5. The two-step approach: weak coupling limits, kinetic limits, and hydrodynamic limits

As we mentioned in Section 3, one of the major difficulties in order to obtain the diffusive equations in the hydrodynamic 
limit is that it involves a simultaneous scaling of space and time. One way to simplify the problem is to introduce a small 
parameter in the dynamics that makes the interaction weak (weak coupling) or the collisions rarefied (kinetic limit), in order 
to break the procedure in two steps:
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– a weak coupling or kinetic limit where it is obtained an autonomous mesoscopic stochastic dynamics,
– a subsequent hydrodynamic limit for these stochastic dynamics.

5.1. Weak coupling limit

In the case of dynamics that conserve macroscopically only energy, some progress have been obtained in the past years 
in the weak coupling limit, even though the full program is not yet complete.

Consider the generic Hamiltonian dynamics

q̇i(t) = pi(t), ṗi(t) = δV ′(qi+1(t) − qi(t)) − δV ′(qi(t) − qi−1(t)) + U ′(qi(t)) (39)

where δ > 0 is a small parameter, qi ∈ M where M is some d-dimensional manifold, and U is a potential defined on M . 
With qi+1 − qi is intended some distance defined on M . When δ = 0, there will be no interaction between the particles and 
no exchange of energy. When δ > 0, there will be an instantaneous energy current between the particles given by

δ je
i,i+1(t) = −δpi(t) · V ′(qi+1(t) − qi(t)) (40)

Notice that in any equilibrium the average of je is null. In order to see a energy diffusion in the limit as δ → 0, we have to 
look at a time scale δ−2t . In fact,

ei(δ
−2t) = δ

δ−2t∫
0

( je
i−1,i(s) − je

i,i+1(s))ds (41)

Let us assume that a central limit theorem is valid for the uncoupled dynamics (δ = 0), and somehow stable for small δ > 0. 
The first step consists in proving that ei(δ

−2t) converges in law to an autonomous stochastic dynamics of energies:

ei(δ
−2t) −→

δ→0
Ei(t) (42)

where the Ei(t) satisfy the stochastic differential equations

dEi(t) = d J i−1,i(t) − d J i,i+1(t)

d J i,i+1(t) = α(Ei(t),Ei+1(t)) dt + √
2σ 2(Ei(t),Ei+1(t)) dBi(t)

(43)

where Bi(t) are independent standard Wiener processes, and σ 2 are the variances of the energy currents je
i,i+1(t) in the 

CLT of the uncoupled dynamics:

σ 2(E1,E2) =
∞∫

0

〈
je
1,2(t) je

1,2(0)
〉
E1,E2

dt (44)

Here 〈·〉E1,E2
denotes the expectation with respect to the uncoupled dynamics of two particles in the microcanonical equi-

librium at fixed energies E1 and E2. The functions α(E1, E2) are antisymmetric and are defined by

α(E1,E2) = (
∂E1 − ∂E2

)
σ 2(E1,E2) + σ 2(E1,E2)

(
Z ′(E1)

Z(E1)
− Z ′(E2)

Z(E2)

)
(45)

where Z(E) is the volume on the microcanonical manifold of energy E of the single uncoupled particle. The equations (44)
define a stochastic dynamics reversible with respect to the stationary measures:

dν̃β =
∏

i

Z(Ei)e−βEi

Z̃β

dEi, β > 0. (46)

A proof of this first step, i.e. the limit (42), would require that the uncoupled dynamics be chaotic enough for the CLT 
theorem to be valid and stable for small perturbations.

In [23], this is proven for particles moving (deterministically) as geodesic flow in a manifold M with strictly negative 
curvature, with dynamical system techniques. For anharmonic oscillators with a stochastic noise acting on the velocities and 
conserving energy, the first step has been proven in [24], using hypocoercive estimates. One particular case of [24] is the 
harmonic case (V and U quadratic), where σ 2(E1, E2) = γ −2E1E2, and α(E1, E2) = γ −2(E1 − E2), where γ is the intensity 
of the noise in the dynamics.

The second step consists in obtaining the hydrodynamic limit for the energy evolution of the stochastic dynamics given 
by (43), i.e. the convergence of the empirical distributions
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ε
∑

i

δεi(dx)Ei(ε
−2t) −→

ε→0
E(t, x)dx (47)

where

∂tE = ∂x

(
D̃(E)∂xE

)
(48)

with the energy diffusivity of the stochastic dynamics given by D̃ = C̃−1
v κ̃ , where C̃ v is the variance of the energies Ei under 

dν̃β and the conductivity κ̃ is given by the corresponding Green–Kubo formula

κ̃(β−1) = β2
∑

i

∞∫
0

〈α(Ei(t),Ei+1(t)),α(E0(0),E1(0))〉β dt (49)

The relation between κ̃(T ) and the thermal conductivity of the original dynamics with δ > 0, i.e. κδ(T ) defined as in (15), 
is studied in [25], and it turns out that

κδ(T ) = κ̃(T )δ + o(δ) (50)

The reversible stochastic dynamics (43) is a version of the conservative Ginzburg–Landau dynamics considered by Varad-
han in [7]. With respect to [7], this dynamics is restricted on RZ+ , and we call the energy Ginzburg–Landau dynamics. In order 
to apply the method of [7], we need a lower bound on the spectral gap for the generator on the corresponding finite dimen-
sional dynamics, i.e. it should be bounded below by C N−2, where N is the dimension of the system, for some constant C
that may depend on the energy but not on the dimension. When this spectral gap bound can be proven, the second step can 
be performed [26]. This is the case for the (43) arising from the weak coupling limit in the anharmonic chain with noise (cf. 
[24]) with some conditions on the pinning potential U . In fact, if Hess U (0) > 0, it follows that σ 2(E1, E2) = E1E2G(E1, E2), 
with G ≥ c > 0. This implies that the generator of (43) has a spectral gap bound (this can be proven following the argument 
in [10]). For the energy Ginzburg–Landau dynamics emerging from the deterministic dynamics of the geodesic flows [23], 
we have that

σ 2(E1,E2) ∼ E1E2

E3/2
1 + E3/2

2

(51)

Unfortunately, in the case of a behavior like (51), it is not clear whether a spectral gap bound will hold, it certainly de-
pends on the energy. At this time step 2 remains an open problem when starting from a purely Hamiltonian deterministic 
dynamics.

5.2. Kinetic limit

A different two-step approach consists in studying models where energy is exchanged between particles through colli-
sions that are rarefied because of constraints in the geometry of the system. Time is scaled in such a way that on a unit time 
there is, in average, a finite number of collisions per unit time. In this sense, the first step is similar to the Boltzmann–Grad 
limit.

A typical model considered in this approach (cf. [27] [28]) is given by a chain of Sinai’s billiards, where each particle 
is confined in one billiard, but it can collide with a particle in a neighbor billiard through a small window. The size δ of 
this window is the small parameter of the limit. The energy is the only conserved quantity, and it is exchanged through 
these collision. Because of the chaoticity of the billiard, after time rescaling as δ → 0, the differences in the collision times, 
conditioned on the energy of each billiard, become independent. Consequently, it is expected that the energies per particle 
ei(δ

−1t) converge to a Markov jump process Ei(t) whose generator is given by

L F ({E j}) =
∑

i

1∫
0

dα �(Ei,Ei+1,α)
[

F (Ti,i+1,α{E j}) − F ({E j})
]

(Ti,i+1,α{E j})k = α(Ei + Ei+1)δ(k=i) + (1 − α)(Ei + Ei+1)δ(k=i+1) + Ekδ(k �=i,i+1)

(52)

This means that at random times, exponentially distributed with intensity �(Ei, Ei+1, α), the total energy of the sites i and 
i + 1 is redistributed in the two sites with proportions α and 1 − α. The precise form of the rate function � can be found 
in [28] and [29], but what matters is that �(Ei, Ei+1, α) ∼ (Ei + Ei+1)

1/2.
Unlike the weak coupling limit, no rigorous results about this first step exist at the moment starting from the determin-

istic dynamics. Some partial attempts and a detailed discussion of the problem can be found in [30].
The second step will be the hydrodynamic limit on the stochastic dynamics generated by (52) in order to obtain the 

diffusive equation for energy. This is a non-gradient dynamics where in principle could be applied Varadhan’s approach [7]. 
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With respect to the stochastic dynamics emerging in the weak coupling case from a purely mechanical model, there exists 
a proof of the spectral gap bound (cf. [29]), necessary in order to apply Varadhan’s method. Still there are other intrinsic 
difficulties that do not allow yet to prove the hydrodynamic limit.
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