
C. R. Physique 20 (2019) 402–418
Contents lists available at ScienceDirect

Comptes Rendus Physique

www.sciencedirect.com

Fourier and the science of today / Fourier et la science d’aujourd’hui

A microscopic view of the Fourier law

Une vision microscopique de la loi de Fourier

Thierry Bodineau a, Isabelle Gallagher b, Laure Saint-Raymond c,∗
a CMAP, École polytechnique, France
b DMA, École normale supérieure, France
c UMPA, École normale supérieure de Lyon, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 19 September 2019

Keywords:
Boltzmann equation
Fourier law
Diffusion equation
Hard-sphere gas
Low-density limit
Relative entropy method

Mots-clés :
Équation de Boltzmann
Loi de Fourier
Équation de diffusion
Gaz de sphères dures
Limite de basse densité
Méthode de l’entropie relative

The Fourier law of heat conduction describes heat diffusion in macroscopic systems. This 
physical law has been experimentally tested for a large class of physical systems. A natural 
question is to know whether it can be derived from the microscopic models using the 
fundamental laws of mechanics.
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r é s u m é

La loi de Fourier permet de décrire la diffusion de la chaleur dans des systèmes physiques à 
l’échelle macroscopique. Cette loi est très bien vérifiée expérimentalement, et une question 
naturelle est de la justifier à partir de modèles microscopiques en utilisant les principes 
fondamentaux de la mécanique.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. The Fourier law: a phenomenological model?

The Fourier law is a physical law that relates the local thermal flux J to the small variations of temperature ∇T in a 
domain �

J = −κ(T )∇T (1)

where κ(T ) is a non negative 3 ×3 matrix, referred to as the thermal conductivity of the material. This relation is empirical, 
but is satisfied approximately in most physical systems. From the Fourier law (1), one can then deduce a diffusion equation 
for the temperature

c(T )∂t T = ∇ · (κ(T )∇T )
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where c(T ) is the specific heat of the system. This is the famous heat equation for which Fourier developed a number of 
mathematical tools.

All along the nineteenth century, similar laws have been discovered such as Ohm’s law for electric currents or Fick’s 
law for particle currents. One challenge in physics, also addressed to mathematicians by Hilbert in his sixth problem, is 
to understand these macroscopic phenomenological laws starting from the first principles, i.e. from microscopic models of 
interacting atoms.

At the microscopic scale, matter is made of elementary particles, the evolution of which is governed by the classical laws 
of mechanics. In this framework, the goal of statistical physics to model heat conduction is twofold:

– to give a thermodynamic definition of macroscopic quantities (internal energy, temperature, pressure...) as statistical 
parameters of the microscopic system;

– to deduce a rigorous derivation of the constitutive laws such as the Fourier law.

The main difficulty is that thermodynamic quantities as temperature are well defined at equilibrium, whereas the Fourier 
law describes a non-equilibrium phenomenon. Thus one has to derive an appropriate notion of local equilibrium that allows 
one to decouple the fast and slow modes of the system and to define a local version of temperature. Such a property of the 
system is related to ergodicity and mixing phenomena. From the mathematical point of view, establishing such a property 
for purely deterministic evolutions is a mathematical challenge, as pointed out in [1].

In this note, we try to investigate this question for models of gases very close to equilibrium, namely first for per-
fect gases that correspond already to an idealization of dilute gases (Section 2) and then for hard-sphere gases in the 
Boltzmann–Grad limit (Section 3).

2. The case of perfect gases

2.1. Diffusive limits of the Boltzmann equation

Out of thermodynamic equilibrium, perfect monatomic gases in a smooth domain � of the d-dimensional space Rd

can be described by their distribution f ≡ f (t, x, v), which is the probability of finding a particle with position x ∈ � and 
velocity v ∈Rd at time t ∈R. The evolution of this probability density is governed by the Boltzmann equation [2]:

∂t f + v · ∇x f = Q ( f , f )

where the left-hand side expresses the free transport of particles, while the right-hand side encodes the statistical effect of 
pointwise elastic collisions:

Q ( f , f )(v) :=
∫

Rd×Sd−1

(
f (v ′∗) f (v ′) − f (v∗) f (v)

)
b(v − v∗,ω)dv∗ dω .

The pre-collisional velocities v ′ , v ′∗ appearing in the “gain term” are defined in terms of the post-collisional velocities and 
of the deflection parameter ω ∈ Sd−1:

v ′ = v − (v − v∗) · ω ω , v ′∗ = v∗ + (v − v∗) · ω ω

so that the momentum and kinetic energy are preserved: v ′ + v ′∗ = v + v∗ and |v ′|2 + |v ′∗|2 = |v|2 + |v∗|2.
The collision cross-section b gives the statistical law of this (velocity) jump process. The exchangeability of particles and 

the micro-reversibility of the collision process imply that b depends only on |v − v∗| and on |(v − v∗) · ω|. The hard-sphere 
interaction corresponds to b(v − v∗, ω) = (

(v − v∗) · ω
)
+ . The Boltzmann equation describes the typical behavior of a gas 

evolving according to Newtonian dynamics. We shall discuss this “perfect gas” approximation in the next section.
In the case when the domain � has boundaries, the Boltzmann equation must be supplemented with boundary condi-

tions that will be specified below, see (3).
Thermodynamic variables, such as the temperature T or the mass density R , are defined as averages of f with respect 

to the variable v . More precisely, T is related to the variance of f since it measures the thermal agitation, or equivalently 
the dispersion of particle velocities around the bulk velocity

R(t, x) :=
∫

f (t, x, v)dv, RU (t, x) :=
∫

f (t, x, v)v dv ,

T (t, x) := 1

R(t, x)

(
1

d

∫
f (t, x, v)

(
v − U (t, x)

)2
dv

)
.

In general, we do not expect these variables to satisfy a closed system of equations. This will be the case only at the local 
thermodynamic equilibrium, i.e. in the limit when the collision process is much faster than the transport. The accuracy of 
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this approximation is therefore measured by the Knudsen number Kn, which is the ratio between the mean free path and 
the typical observation length.

For perfect gases, as the elementary particles have zero volume, this Knudsen number is related to two other key 
non-dimensional parameters by the Von Karman relation Kn = Ma/Re, where the Mach number Ma measures the com-
pressibility of the gas and is defined as the ratio of the bulk velocity to the thermal speed, and the Reynolds number Re
measures the kinematic viscosity of the gas. Diffusive limits are then obtained in regimes where both the Knudsen and Mach 
numbers are small, say of order α � 1. After a suitable non-dimensionalisation (and in particular rescaling time to t/α in 
order to recover a diffusive regime), the Boltzmann equation can be restated

α∂t fα + v · ∇x fα = 1

α
Q ( fα, fα) (2)

In order for these scaling assumptions to be consistent, the distribution fα has to satisfy that the bulk velocity Uα is 
very small (of order αγ with γ ≥ 1) compared to the thermal velocity 

√
Tα . This is typically the case when fα is a small 

perturbation (of order O (αγ )) around a thermodynamic equilibrium M = M(v), i.e. a stationary solution to the Boltzmann 
equation Q (M, M) = 0. It could be also the case in more general situations, but it is not known how to obtain an a priori 
control on the Mach number. For a perturbation of the form

fα = M(1 + αγ gα) ,

the temperature is Tα = T + O (αγ ) and we shall be interested in describing the evolution of the temperature in this 

diffusive regime. Without loss of generality, we can assume that M is the unit centered Gaussian: M(v) := 1

(2π)
d
2

e−|v|2/2.

Now let us prescribe boundary conditions to (2). In order to observe heat fluxes, we impose a diffuse reflection on the 
boundary, the temperature of which is fixed. As the Boltzmann equation (2) is a transport equation, only the incoming fluxes 
have to be prescribed: denoting n(x) the outward unit normal vector at x ∈ ∂�, we define �± := {

(x, v) ∈ ∂� ×Rd / ± v ·
n(x) > 0

}
and boundary conditions have to be prescribed on �−: we impose

fα(t, x, v) = M�(v)

∫
w·n(x)>0

fα(t, x, w)(w · n(x))+ dw on �− (3)

where M�(v) is a fixed isotropic function such that∫
M�(v)(v · n(x))+ dv = 1 and

∫
M�(v)|v|2(v · n(x))+ dv = (d + 1)T .

Thus the Maxwellian M�(v) imposing the temperature T at the boundary has the form

M�(v) := 1

(2πT )
d
2

√
2π
T

exp

(
−|v|2

2T

)
(4)

Note that this ensures in particular that there is no mass flux at the boundaries:∫
fα(t, x, v) (v · n(x)) dv = 0 on ∂� .

In accordance with the scaling assumptions, the shift of the temperature at the boundary has to be of order O (αγ ). Denoting 
by θ̄|∂� the small variations, at the scale αγ , of the temperature profile on the boundary ∂� of the domain, we set T |∂� =
1 + αγ θ̄|∂� . Linearizing (4) for small α, we set

M�(v) := √
2πM(v)

(
1 + αγ θ̄|∂�

|v|2 − (d + 1)

2

)
,

which is just the linearisation of (4). Notice that∫
M(v)

|v|2 − (d + 1)

2
(v · n(x))+ dv =

∫
M(v)

|v|2 − (d + 1)

2
|v|2(v · n(x))+ dv = 0 (5)

We shall now study the limit of (2), (3) as α → 0. Of course, the parameter α is a physical quantity that is 
fixed, but we expect the limit to be a good approximation of the solution when α � 1. Moreover, we shall use a 
weak notion of convergence filtering out oscillations on small (spatial/temporal) scales since they are not relevant for the 
macroscopic description.
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2.2. The heat equation as scaling limit of the local conservation of energy

Let us first explain the formal asymptotics. The variation of temperature at the boundary modifies the density in the 
bulk as fα = M(1 + αγ gα). Plugging this Ansatz in (2), we get

α∂t gα + v · ∇x gα = − 1

α
Lgα + αγ −1 Q (gα, gα) (6)

where

Lh(v) :=
∫ (

h(v∗) + h(v) − h(v ′∗) − h(v ′)
)
M(v∗)b(v − v∗,ω)dv∗ dω .

Step 1. Provided that one can obtain a uniform a priori bound on gα (in a suitable functional space such that all the 
terms are well defined), we deduce that any limit point ḡ of the sequence (gα) satisfies Lḡ = 0. Using the symmetries of L
inherited from the exchangeability of particles (v, v∗) �→ (v∗, v) and from the micro-reversibility of collisions (v, v∗, ω) �→
(v ′, v ′∗, ω), we obtain that Lh = 0 if and only if∫

MhLh dv = 1

4

∫∫ (
h(v∗) + h(v) − h(v ′∗) − h(v ′)

)2
M(v)M(v∗)b(v − v∗,ω)dv dv∗ dω = 0 ,

which implies that h(v) + h(v∗) − h(v ′) − h(v ′∗) = 0 for almost all (v, v∗, ω). One can then prove (using a suitable regular-
ization and differentiating this relation with respect to ω) that h is a linear combination of the collision invariants 1, v , |v|2
(cf. [3]). We conclude that ḡ has to be an infinitesimal Maxwellian:

ḡ(t, x, v) = ρ(t, x) + u(t, x) · v + θ(t, x)
|v|2 − d

2
(7)

where ρ , u, θ stand for the density, momentum, and energy profiles.
Step 2. The conservation laws associated with (6) state

α∂t

∫
gα

⎛
⎝ 1

v
|v|2

⎞
⎠ M dv + ∇x ·

∫
vgα

⎛
⎝ 1

v
|v|2

⎞
⎠ M dv = 0 .

From the conservation of mass, we deduce the incompressibility constraint

∇x · u = ∇ ·
∫

v ḡM dv = 0 ,

and from the conservation of momentum we get the Boussinesq relation

∂i(ρ + θ) = ∂i

∫
v2

i ḡM dv = 0 .

Step 3. For the next order in the expansion, we use the crucial fact that L is a self-adjoint Fredholm operator with kernel 
spanned by 1, vi , |v|2. Since ψ(v) := v

(|v|2 − (d + 2)
)

and φ(v) := v ⊗ v − 1
d |v|2Id belong to (KerL)⊥ , we have

∂t

∫
Mgα v dv + 1

α
∇x ·

∫
LgαL−1φM dv + 1

d α
∇x

∫
gα|v|2M dv = 0 ,

∂t

∫
Mgα

(|v|2 − (d + 2)
)

dv + 1

α
∇x ·

∫
LgαL−1ψM dv = 0 .

Replacing α−1Lgα with (6), we obtain only terms of order O (1) up to a gradient term.

– If γ > 1, the nonlinear terms vanish in the limit, and we keep only the diffusion

∂t u − ν�xu + ∇x p = 0 , ∂tθ − κ�xθ = 0 ,

where the second equation is exactly the Fourier law.
– If γ = 1, using the identity Q(ḡ, ̄g) = 1

2L(ḡ2) (which holds true for any infinitesimal Maxwellian ḡ), one can show (see 
[4]) that the nonlinear terms correspond to the convection:

∂t u + u · ∇xu − ν�xu + ∇x p = 0 , ∂tθ + u · ∇xθ − κ�xθ = 0 .
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Step 4. At leading order in α, the boundary condition (3) states

gα(t, x, v) = θ̄|∂�

|v|2 − (d + 1)

2
+

∫
gα(t, x, w)

√
2πM(w)(w · n(x))+ dw on �− (8)

If the moments ρ , u, θ are smooth enough, then we can take the trace of the constraint equation (7), and plug this ansatz 
in the boundary condition:

ρ + u · v + θ
|v|2 − d

2
= θ̄|∂�

|v|2 − (d + 1)

2
+ (ρ + u · n

√
2π + 1

2
θ) on �− ,

from which we deduce that u = 0 and θ = θ̄|∂� on the boundary.
This formal analysis relies on many assumptions that need to be checked:

(i) the uniform a priori bounds on (gα);
(ii) the kinetic equation (6) and conservation laws satisfied in some suitable functional spaces;

(iii) the stability of the nonlinear (convection) terms;
(iv) the regularity of the moments up to the boundary.

For the sake of simplicity, we shall assume from now on that the non-equilibrium perturbation is very small (γ > 1), so 
that the nonlinear effects (namely the convection terms) are higher order corrections. From the mathematical point of view, 
we shall consider the linearized Boltzmann equation

α∂t gα + v · ∇x gα = − 1

α
Lgα (9)

supplemented with the boundary conditions (8), which will induce two major simplifications:

– first of all, the functional space defined by energy inequality (which is actually the linearized version of the physical 
entropy inequality)

1

2

∫
Mg2

α(t, x, v)dx dv + 1

α2

t∫∫
0

MgαLgα(s, x, v)dx dv ds

≤ 1

2

∫
Mg2

α,0(t, x, v)dx dv − 1

2α

t∫
0

∫
∂�×Rd

Mg2
α(t, x, v)(v · n(x))dσx dv

(10)

is built on L2 (with weights). In the inequality above, dσx is the surface measure on ∂�. We therefore have a Hilbertian 
structure (and there is no need to renormalize the kinetic equation).

– Moreover, there are no nonlinear terms in the local conservations laws, which makes it easier to study the limit as 
α → 0. (Note that for the nonlinear Boltzmann equation, it is not even known whether the local conservation laws are 
satisfied for fixed α > 0.)

We shall therefore focus on points (i) and (iv), and establish the following result.

Theorem 2.1. Consider a perfect gas with Knudsen and Mach numbers of order α evolving according to (9) with the boundary con-
ditions (8) in a smooth domain � at a given temperature θ̄|∂�. Then, for well-prepared initial data, in the diffusive limit α → 0, the 
density fluctuation gα converges weakly to the infinitesimal Maxwellian

g(t, x, v) := u(t, x) · v + |v|2 − (d + 2)

2
θ(t, x) ,

where (u, θ) satisfies the Stokes–Fourier equations

∂t u − ν�xu = −∇x p , ∇x · u = 0 , u|∂� = 0 ,

∂tθ − κ�xθ = 0 , θ|∂� = θ̄|∂� .

We stress the fact that more complete results have been established starting from the full Boltzmann equation. Refined 
tools such as hypoellipticity, averaging lemmas and compensated compactness allow us actually to study the limit of (2), (3)
as α → 0 for any γ ≥ 1 in the framework of renormalized solutions, provided that θ̄|∂� = 0 (see [4], [5], [6], [7], [8], [9] and 
references therein). Extending these results to inhomogeneous boundary conditions, i.e. when θ̄|∂� �= 0, seems however to 
be very difficult, since a uniform a priori bound (that would be the counterpart of (13) in the nonlinear setting) is missing.
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There are also alternative approaches dealing with smooth solutions to the Boltzmann equation, based on energy esti-
mates in weighted Sobolev spaces (see [10], [11] in the time-dependent case, and [12], [13], [14] in the stationary case). 
In particular, the case of the non-homogeneous boundary temperature has been addressed in [15] (see also [12]) and a 
quantitative convergence towards the compressible Navier–Stokes equation has been established in a stationary regime.

It is not clear whether the sophisticated methods described above could be used at the level of particles. Our result is 
more modest as it holds only in a linear regime; however, its derivation is much simpler, and we hope that it can be helpful 
for future applications to particle systems.

2.3. First step of the proof: establishing uniform a priori bounds

The first difficulty we encounter to justify the formal derivation of the previous paragraph is that the energy inequality 
(10) has a source term because of the boundary condition, which seems to be of order O (1/α). It is then not clear that the 
sequence (gα) is uniformly bounded in L2, and that we can extract converging subsequences.

When θ̄|∂� = 0, this term (which is the linearized version of the Darrozès–Guiraud information [16]) has a sign. To see 
this, let us first recall the definition of the boundary

�± := {
(x, v) ∈ ∂� ×Rd / ± v · n(x) > 0

}
and denote by dμx(v) := √

2πM(v · n(x))+ dv the probability measure on the boundary. Decomposing gα on �+ and �−
(by using (8) with θ̄|∂� = 0), we deduce that

∫
�

g2
α(t, x, v)

√
2πM(v · n(x))dv dσx =

∫
�+

g2
α(t, x, v)dμx(v)dσx −

∫
�+

( ∫
�+

gαdμx(w)
)2

dμx(v)dσx

=
∫

�+

⎛
⎜⎝gα(t, x, v) −

∫
�+

gα dμx(w)

⎞
⎟⎠

2

dμx(v)dσx ≥ 0 . (11)

Then, we obtain directly a uniform estimate on (gα) in L∞
t (L2(dx Mdv)), a control on the relaxation [3], namely there is 

a constant c > 0 such that

1

α2
‖gα − �gα‖2

L2(dt dx aMdv)
≤ c

α2

t∫∫
0

gαLgαM dv dx ds ≤ C0 ,

where a is the collision frequency: a(|v|) :=
∫

M(v∗)b(v − v∗, ω) dv∗dω, and � stands for the projection onto KerL. We 

also have a control at the boundary

1

α

∫
�+

(
gα −

∫
gα dμx(v)

)2
dμx(v)dσx ds ≤ C0 .

Note that this last control implies more or less that uα and θα have to vanish at the boundary (Dirichlet boundary condition), 
since gα should look like its average with respect to dμx(v). In particular, we cannot hope to prove a similar result in the 
case when θ̄|∂� �= 0. In other words, it is not a good idea to control the fluctuation gα with respect to the Maxwellian M , 
since M does not satisfy the right boundary conditions and therefore is not an (approximate) equilibrium for (9) with the 
boundary conditions (8).

The key idea here is then to introduce a modulated entropy to measure the fluctuation with respect to a Maxwellian that 
has a suitable behaviour at the boundary. More precisely, we extend the temperature to the whole domain � by defining a 
smooth function θ̃ such that θ̃|∂� = θ̄|∂� and the following modulated fluctuation

g̃α(t, x, v) := gα(t, x, v) − θ̃ (x)
|v|2 − (d + 2)

2
(12)

A similar idea was used to obtain a priori estimates in different contexts involving boundaries, namely for hydrodynamic 
limits of lattice systems (see, for example, [17]) or for singular perturbation problems as in [18]. Note that this is different 
from [19] or [11], where the modulated entropy/energy is used directly to prove the convergence (which requires therefore 
to construct a precise approximate solution).
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Proposition 2.2. With the previous notation, the modulated entropy satisfies the uniform bound

∫
M g̃2

α(t, x, v)dx dv + 1

α2

t∫∫
0

M g̃αLg̃α(s, x, v)dx dv ds

+ 1

α
√

2π

t∫
0

∫
�+

(
g̃α(s, x, v) −

∫
g̃α(s, x, w)dμx(w)

)2
dμx(v)dσx ds ≤ C(t)

(13)

Proof. The modulated fluctuation (12) has been chosen so that the system at the boundary can be compared to a local 
equilibrium as in (3). As a consequence, the boundary conditions (8) can be rewritten, for any x in �− , as

g̃α(t, x, v) = 1

2
θ̄|∂� +

∫
gα(t, x, w)dμx(w)dw =

∫ (
gα(t, x, v ′) − θ̃ (x)

|v ′|2 − (d + 2)

2

)
dμx(w)dw

=
∫

g̃α(t, x, w)dμx(w) , (14)

where we used the Gaussian moments (5) at the boundary. Adjusting the boundary conditions comes at a price and the 
evolution equation (9) has to be replaced by

α∂t g̃α + v · ∇x g̃α = − 1

α
Lg̃α + v · ∇xθ̃ (x)

|v|2 − (d + 2)

2
(15)

where we used the local conservations of mass and energy so that Lg̃α =Lgα .
The same computation as for the Darrozès–Guiraud inequality applies for g̃α , with an additional contribution in the bulk 

due to the modulated fluctuation∫
M g̃2

α(t, x, v)dx dv + 1

α2

t∫∫
0

M g̃αL g̃α(s, x, v)dx dv ds + 1

α

t∫
0

∫
�

M g̃2
α(s, x, v) (v · n(x))dσx dv ds

=
∫

M g̃2
α,0(t, x, v)dx dv + 1

α

t∫∫
0

∇xθ̃ (x) · v
|v|2 − (d + 2)

2
g̃α(s, x, v)M(v)dv dx ds

(16)

The boundary term in (13) can been obtained as in (11) thanks to the tilted boundary conditions (14):

√
2π

t∫
0

∫
�

M g̃2
α(s, x, v) (v · n(x))dσx dv ds =

t∫
0

∫
�+

(
g̃α(s, x, v) −

∫
g̃α(s, x, w)dμx(w)

)2
dμx(v)dσx ds .

It then remains to control the flux term. Using again ψ(v) := v
(|v|2 − (d + 2)

)
, we get

∣∣∣ 1

α

t∫∫
0

∇xθ̃ · v(|v|2 − (d + 2)) g̃αMdv dx ds
∣∣∣ =

∣∣∣ 1

α

t∫∫
0

∇xθ̃ ·L−1ψL g̃α Mdv dx ds
∣∣∣

≤ C
√

t‖∇ θ̃‖L2(dx)‖L−1ψ‖L2(M a dv)

∥∥∥∥ 1

α
Lg̃α

∥∥∥∥
L2(dt dxMa−1 dv)

≤ Ct‖∇ θ̃‖2
L2(dx)‖L−1ψ‖2

L2(M a dv)
+ 1

2α2

t∫∫
0

M g̃αLg̃α(s, x, v)dx dv ds

where in the last inequality we have used the fact that, for any function h,

‖Lh‖2
L2(M a−1 dv)

=
∫ (∫ (

h(v∗) + h(v) − h(v ′∗) − h(v ′)
)
M(v∗)b dv∗dω

)2
M a−1 dv

≤
∫ (∫ (

h(v∗) + h(v) − h(v ′∗) − h(v ′)
)2

M(v∗)b dv∗ dω

) (∫
M(v∗)b dv∗ dω

)
M a−1 dv

=
∫∫ (

h(v∗) + h(v) − h(v ′∗) − h(v ′)
)2

M M(v∗) b dv∗ dω = 4
∫

MhLh dv .

The result follows. �
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Remark 1. In the nonlinear case, the counterpart of the energy inequality (10) is the entropy inequality

1

α2γ

∫
h
( fα

M

)
(t, x, v) M dv dx + 1

α2+2γ

t∫∫
0

D( fα)(s, x)ds dx

≤ 1

α2γ

∫
h
( fα,0

M

)
(x, v) M dv dx − 1

α1+2γ

t∫
0

∫
∂�×Rd

h
( fα

M

)
(s, x, v)M(v · n(x))dσx dv ds

where h(z) = z log z − z + 1. In order to kill the singularity coming from the boundary term in the right-hand side, a natural 
idea is to modulate the entropy. This strategy has been successfully used for stochastic dynamics; see, for example, [17,20,
21]. Unfortunately, it is not known whether the local conservation of energy holds for the Boltzmann equation, and anyway 
there is no uniform control on the energy flux. An alternative would then be to introduce a renormalized modulated entropy, 
but it is not clear how to define it.

Once we have uniform bounds on gα and qα(v, v∗) := 1

α

(
gα(v) + gα(v∗) − gα(v ′) − gα(v ′∗)

)
, there is no particular 

difficulty to prove that any joint limit points (ḡ, ̄q) satisfy

Lḡ = 0 , v · ∇x ḡ = −
∫

q̄(v, v∗)M(v∗)b(v − v∗,ω)dv∗ dω (17)

in the sense of distributions. Then, taking limits in the conservations of mass, momentum and energy, we obtain that the 
moments of ḡ satisfy the incompressibility and Boussinesq constraints as well as

∂t u − ν�xu + ∇x p = 0 , ∂tθ − κ�xθ = 0 .

2.4. Second step of the proof: analyzing the boundary conditions

The second difficulty is to obtain the limiting boundary conditions. From the control on the boundary term in the 
modulated entropy inequality, we deduce easily that

g̃α −
∫

g̃α dμx(v) → 0 in L2(dt dμx(v)dσx) .

It remains then to prove that the limit of the trace is the trace of the limit, which will imply that

ḡ − θ̄|∂�

|v|2 − (d + 2)

2
−

(
ρ − 1

2
θ̃
)

= 0 on �+ ,

and consequently that

u = 0, θ = θ̄|∂� on ∂� .

We shall follow essentially the same path as in [8] (see also [9]).

Proposition 2.3. With the previous notation,

gα|� ⇀ g|� weakly in L2((1 + |v|2)−1 dt dμx(v)dσx
)
.

Proof. The key point is that, in viscous regimes, the energy/entropy dissipation provides a uniform bound on the transport

(α∂t + v · ∇x)gα = − 1

α
Lgα ∈ L2(dt dx M a−1 dv) .

We then expect to have:

– some regularity of the moments by the averaging lemma (see [22]),∥∥∥∥
∫

gα Mϕ(v)dv

∥∥∥∥
L2

t (H1/2
x )

≤ C ;
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– weak traces defined by Green’s formula (see [23])

t2∫
t1

∫
∂�

ϕgα(v · n)M v dσx dt = α

∫∫
�

ϕgα(t1) M dv dx − α

∫∫
�

ϕgα(t2) M dv dx

+
t2∫

t1

∫
�

(v · ∇xϕ)gα M dv dx dt −
t2∫

t1

∫
�

∫
ϕqαb(v − v∗,ω)M(v∗)Mdω dv∗ dv dx dt

(18)

with qα(v, v∗) := 1

α

(
gα(v) + gα(v∗) − gα(v ′) − gα(v ′∗)

)
.

The first step is to establish a uniform a priori bound on the traces. From the identity

t2∫
t1

∫
∂�

g2
α

(v · n(x))2

1 + |v|2 χ(x)Mdv dσx dt = α

∫∫
�

g2
α(t1)

v · n(x)

1 + |v|2 χ(x) M dv dx − α

∫∫
�

g2
α(t2)

v · n(x)

1 + |v|2 χ(x) M dv dx

+
t2∫

t1

∫
�

∫
g2
α(t)

1

1 + |v|2 v · ∇x
(
(v · n(x))χ(x)

)
M dv dx dt

− 2

t2∫
t1

∫
�

∫∫
gαqα

v · n(x)

1 + |v|2 b(v − v∗,ω)χ(x)M(v∗)M(v)dω dv∗ dv dx dt ,

where n is a smooth extension of the outward unit normal in a neighborhood of the boundary associated with the test 
function χ , we deduce that (gα|∂�) is weakly compact in L2((1 + |v|2)−1 dt dμx(v) dσx).

The second step is then to identify the limit γ of (gα|∂�). Taking limits in (18), we get

t2∫
t1

∫
∂�

ϕγ (v · n)Mdv dσx dt =
t2∫

t1

∫
�

(v · ∇xϕ)ḡ M dv dx dt −
t2∫

t1

∫
�

∫
ϕq̄b(v − v∗,ω)M(v∗)M(v)dv∗ dv dx dt .

Applying Green’s formula to the limiting kinetic equation (17), we can express the right-hand side of this identity in terms 
of the trace of ḡ , from which we deduce that γ = ḡ|∂� . �
Remark 2. As already noted, the control on free transport provides some regularity with respect to the spatial variable x. 
This is of course a major ingredient when considering the non-linear case with convection terms. In that case, we also need 
to control the fast time oscillations (acoustic waves) that describe the compressible effects, and to prove that there is no 
constructive interference of these waves.

3. The case of real rarefied gases

3.1. Diffusive limits of the hard-sphere dynamics

In the previous section, we have proved that the Fourier law is a scaling limit of the Boltzmann equation. However, it 
does not really answer our original question of deriving the Fourier law from the first principles of mechanics, since the 
Boltzmann equation is already an idealization of gas dynamics. What we would like to start with is a microscopic model of 
N interacting particles. We denote by XN := (x1, . . . , xN ) their positions and by V N := (v1, . . . , v N) their velocities. For the 
sake of simplicity, we shall focus on the hard-sphere interaction:

dxi

dt
= vi ,

dvi

dt
= 0

on

DN := {Z N = (XN , V N) ∈ �N ×RdN /∀i �= j, |xi − x j| > ε} .

The collision law is given by the elastic reflection condition:

v ′ = vi − (vi − v j) · nij ni j, v ′ = v j + (vi − v j) · nij ni j when xi − x j = εnij , |nij| = 1 (19)
i j
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It remains then to prescribe a boundary condition on ∂�. The natural way to express that one has a thermostat fixing the 
temperature T is to impose a stochastic reflection condition with law M� .

Although it is certainly not physically relevant (even neglecting quantum effects, we expect the atoms to have long-range 
interactions), this model shares many important features with general systems of interacting particles:

– it is completely deterministic – given the configuration at time 0, we know exactly the state of the system both in the 
past and in the future;

– it satisfies the Poincaré recurrence theorem, which means that its state is arbitrarily close to any given configuration 
for arbitrarily large times.

At first sight, those properties seem incompatible with the Boltzmann dynamics or the Fourier law, since those evolutions 
are not time-reversible, and they predict a relaxation towards equilibrium. The suitable way to understand this paradox is 
to see the Boltzmann dynamics (and its hydrodynamic approximations) as an averaged behavior, i.e. a law of large numbers
as the number of particles N tends to infinity.

More precisely, instead of considering one specific realization corresponding to a given initial configuration, we shall 
endow the space of initial configurations DN with a probability density F N,0 (assumed to be symmetric as particles are 
exchangeable), and then look at the evolution of this measure under the hard-sphere dynamics. We shall further assume 
that initially the particles are identically distributed and almost independent (up to the exclusion condition), so that

F N,0(Z N) = 1DN

ZN

N∏
i=1

f0(xi, vi) ,

where the partition function ZN is a normalization constant ensuring that
∫

F N,0 dZ N = 1. The distribution F N ≡ F N (t, Z N)

satisfies the Liouville equation

∂t F N +
N∑

i=1

vi · ∇xi F N = 0 on DN , F N|t=0 = F N,0 (20)

supplemented with the boundary condition

F N(Z N) = F N(Z ′ (i, j)
N ) on ∂Di, j+

N

where Z ′ (i, j)
N is the configuration obtained from Z N by the scattering (19) and

dDi, j+
N :=

{
ZN ∈ DN

∣∣∣ |xi − x j| = ε , (vi − v j) · (xi − x j) > 0

and ∀(k, �) ∈ [1, N]2 \ {(i, j)} ,k �= � , |xk − x�| > ε
}
.

In the following, we shall consider the idealized situation of a periodic domain � = Td := [0, 1]d in order to neglect the 
boundary effects. We are going to review the main steps of the derivation of the Fourier law from [24] in this simplified 
framework.

It is possible to define the microscopic counterpart of the heat reservoirs (3) at the boundary of a general domain � by 
adding the diffuse reflection condition

F N(Z N) = M�(vi)

∫
F N(Z ′ (i)

N )(v ′
i · ni)− dv ′

i on ∂Di−
N

where Z ′ (i)
N is the configuration obtained from Z N by changing vi into v ′

i and

∂Di−
N :=

{
Z N ∈ DN

∣∣∣ d(xi, ∂�) = ε and vi · ni < 0
}

,

denoting ni the outward unit normal at the contact point. Nevertheless, we are not aware of any result on the derivation of 
the Boltzmann equation from microscopic models with such non-equilibrium boundary conditions.

We expect F N to be a very complicated object (depending on all individual trajectories (XN (t), V N(t)) of the hard-sphere 
dynamics), but we are interested only in the statistical properties of the system, in particular on the 1-particle density,

F (1)
N (t, x, v) :=

∫
F N(t, x, v, x2, v2, . . . , xN , v N) dz2 . . . dzN ,

from which we can compute the thermodynamic parameters of the gas U N(t, x), T N (t, x). The Boltzmann equation for 
perfect gases (2) (and its linearized version (9)) expresses a balance between transport and collisions. When the Knudsen 
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Fig. 1. N spheres of size ε are placed on a lattice. The volume covered by a particle of velocity v during a time t is |v|tεd−1. Thus the mean free path is of 
order 1/(Nεd−1), which leads to the Boltzmann–Grad scaling Nεd−1 = O (1/Kn) (see [3]).

and Mach numbers are of order 1, particles undergo in average one collision per unit of time, while moving by a length 
of O (1). A rough computation due to Maxwell shows that at the microscopic level a tagged particle moving with velocity 
v in a regular lattice of N fixed obstacles of size ε (in a unit volume � ⊂ Rd) will encounter an obstacle on [0, t] with 
probability O (Nεd−1 V t). In other words, the perfect gas approximation should be obtained in the limit N → ∞, under the 
Boltzmann–Grad scaling Nεd−1 = O (1/Kn) (Fig. 1). Recall that because of the very different natures of the hard-sphere 
dynamics and perfect gas dynamics, we cannot expect a strong convergence in this limit ε → 0, N → ∞, Nεd−1 = O (1), but 
only a weak convergence after averaging over initial configurations.

3.2. The heat equation as a scaling limit of the local conservation of energy

At the formal level, one can see that the first marginal F (1)
N of the N-particle distribution F N satisfies an equation similar 

to the Boltzmann equation, by integrating (20) with Green’s formula, and using the exchangeability:

∂t F (1)
N + v · ∇x F (1)

N = (N − 1)εd−1
∫

F (2)
N (t, x, v, x + εω2, v2)((v2 − v) · ω2)dω2 dv2 .

Splitting the boundary term according to the sign of (v2 − v) · ω2, and using the reflection condition to express the distri-
bution of post-collisional configurations in terms of the distribution of pre-collisional configurations

F (2)
N (t, x, v, x + εω2, v2) = F (2)

N (t, x, v ′, x + εω2, v ′
2) with v ′ = v − (v − v2) · ω2 ω2 , v ′

2 = v2 + (v − v2) · ω2 ω2 ,

we obtain finally

∂t F (1)
N + v ·∇x F (1)

N = (N − 1)εd−1
∫ (

F (2)
N (t, x, v ′, x +εω2, v ′

2)− F (2)
N (t, x, v, x −εω2, v2)

)
((v2 − v) ·ω2)+dω2 dv2

which we shall abbreviate

∂t F (1)
N + v · ∇x F (1)

N = C1,2 F (2)
N (21)

At this stage, there are three important differences with the Boltzmann equation:

– the collision operator involves a prefactor (N − 1)εd−1, which is not exactly 1/Kn. Note however that this would not be 
the case if we had used the grand canonical formalism instead of the canonical formalism (i.e. not prescribing a priori 
the number of particles N , but just a Poisson law for this number);

– the particles are not pointwise, which implies that there is a small shift between colliding particles as |x − x2| = ε;
– but the main difficulty is that the equation for F (1)

N is not closed: the probability of having a collision depends on the 
joint probability F (2)

N of having two particles in a collisional configuration.

This means that, in addition to the scaling assumption, the perfect gas approximation relies on a strong chaos property, 
referred to as Boltzmann’s Stosszahlansatz (which is actually assumed to hold for all times in the original work of Boltz-
mann). The question here is to understand when this assumption is satisfied, for the Boltzmann equation and subsequently 
the Fourier law to provide good approximations of the macroscopic evolution of the particle system.

The mathematical justification of the Boltzmann equation in the Boltzmann–Grad limit, in the absence of boundary effects, 
goes back to Lanford [25]. It relies on the study of the BBGKY hierarchy, i.e. the hierarchy of equations governing the whole 
family of marginals (F (s)

N )s≤N (since none of them is closed for s < N):

∂t F (s)
N +

s∑
vi · ∇xi F (s)

N := Cs,s+1 F (s+1)
N (22)
i=1
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where Cs,s+1 has a structure very similar to that of C1,2: defining Z 〈i〉
s := (z1, . . . , zi−1, zi+1, . . . zs),

Cs,s+1 F (s+1)
N (t, Zs) =(N − s)εd−1

s∑
i=1

∫ (
F (s+1)

N (t, Z 〈i〉
s , xi, v ′

i, xi + εωs+1, v ′
s+1)

− F (s+1)
N (t, Z 〈i〉

s , xi, vi, xi − εωs+1, vs+1)
)
((vs+1 − vi) · ωs+1)+dωs+1 dvs+1 .

In particular, it involves a prefactor (N − s)εd−1 and micro-translations O (ε), which are expected to disappear in the limit 
ε → 0. The main difficulty at this stage is that the transport equation is set on Ds (with the reflection condition on the 
internal boundaries dDi, j

s ). Taking limits as ε → 0 then requires proving that, in average, this operator behaves as the free 
transport, or in other words that collisions between particles that are already correlated are negligible (see [26] or [27] for 
a careful estimate of these recollisions). Lanford’s theorem states the convergence towards the Boltzmann equation for short 
times starting from any chaotic initial data.

Theorem 3.1 (Lanford). Consider a system of N hard spheres of diameter ε on Td, initially “independent” and identically distributed 
with density f0:

F N,0(XN , V N) = 1DN (XN)

ZN

N∏
i=1

f0(zi) with f0 continuous such that ‖ f0(z)exp(β|v|2 + μ)‖∞ ≤ 1 (23)

for some constants β > 0, μ. Then, in the Boltzmann–Grad limit N → ∞, ε → 0, Nεd−1α = 1, the 1-particle distribution F (1)
N con-

verges almost everywhere to the solution of the Boltzmann equation

∂t f + v · ∇x f = 1

α
Q ( f , f ) , f |t=0 = f0 ,

on some time interval [0, Cβ,μα]. Furthermore, one has the convergence of all marginals F (s)
N towards the tensor products f ⊗s , which 

implies that the empirical measure μn(t) = 1

N

N∑
i=1

δx−xi(t),v−vi (t) converges in law to f .

This result is however not completely satisfactory, especially if we have in mind to derive the Fourier law.

– First of all, it holds only for short times (short being measured here in terms of the average number of collisions per 
particle), which is incompatible with the fast relaxation limit (where we assume that the time of observation is much 
longer than the mean free time, i.e. α � 1).

– Furthermore, extending this result to the case of a bounded domain � with diffuse reflection on the boundary is not 
an easy exercise: given a smooth temperature profile T on ∂�, the usual Cauchy–Kowalewski estimates for the BBGKY 
hierarchy fail in general, even for short times.

The challenge to obtain the Fourier law directly from the hard sphere system is then to obtain a priori bounds and to 
establish the propagation of chaos on time intervals that are much longer than the mean free time.

It is important to note here that there is something strange in our mathematical understanding of chaos. In Lanford’s 
strategy, independence is assumed at initial time, and it is proved that it will survive at least for a short time, but collisions 
are somehow the enemy. What is expected at the physical level is quite the opposite: collisions should induce a mixing 
mechanism and bring some chaos. This is however very far from being a mathematical statement!

A small step in this direction has been made in [24] in dimension d = 2 when considering very small fluctuations around 
an equilibrium, say for instance the Gibbs measure:

MN(Z N) = 1DN (Z N)

ZN

1

(2π)N
exp

(
−

N∑
i=1

|vi|2
2

)
, F N,0 = MN + 1

N
δF N,0 .

Note that the existence of such a microscopic equilibrium is the only way we are able to take advantage of the cancellations 
between the gain term and loss term in the collision operator. The usual restriction on the time of convergence is related 
to the fact that these cancellations are neglected when establishing a priori bounds.

Close to equilibrium, we can actually use some comparison principle to improve these a priori bounds. More precisely, 
the main idea is that we can control a very weak form of chaos by an argument of exchangeability, independently of the 
dynamics of the system (see Lemma 3.5). We can then import these (global in time) a priori bounds in the proof of Lanford, 
to extend for long times the convergence towards the (linearized) Boltzmann equation.
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Theorem 3.2 (Bodineau, Gallagher, Saint-Raymond). Consider a system of N hard spheres of diameter ε on T 2 , initially close to 
equilibrium

δF N,0(Z N) = MN(Z N)

N∑
i=1

g0(zi) with

∫
Mg0(z)dz = 0 , and ‖g0‖L∞ ≤ C0 .

Then in the Boltzmann–Grad limit N → ∞, ε → 0, Nεα = 1, the one-particle fluctuation δF (1)
N (t, x, v) is close to the solution of the 

linearized Boltzmann equation Mgα

∂t gα + v · ∇x gα = − 1

α
Lgα , gα|t=0 = g0 ,

in the sense that, for t ≤ T /α,

∥∥δF (1)
N (t) − Mgα(t)

∥∥
L2 ≤ C

eC/α2

log log N
·

In particular, in diffusive regime, we recover the Fourier law.

Corollary 3.3. Consider a system of N hard spheres of diameter ε on T 2 , initially distributed according to

δF N,0(Z N) = MN(Z N)

N∑
i=1

(
u0(xi) · vi + |vi|2 − 4

2
θ0(xi)

)
with ∇x · u0 = 0 .

Then in the Boltzmann Grad limit N → ∞, ε → 0, Nε = 1
α → ∞ (with α(log log log N)1/2 � 1), the one-particle fluctua-

tion δF (1)
N ( τ

α , x, v) is close (in L2 norm) to Mg(τ , x, v) := M
(
u(τ , x) · v + |v|2−4

2 θ(τ , x)
)

, where (u, θ) satisfies the Stokes–Fourier 
equations

∂τ u − ν�xu = −∇x p , ∇x · u = 0 , u|t=0 = u0 ,

∂τ θ − κ�xθ = 0 , θ|t=0 = θ0 .

Note that the Knudsen number α, although small, is much larger than the radius of particles ε

α � (log log | logε|)−1/2

and that such a scale separation does not really make sense from the physical point of view. But, for the moment, we do 
not know how to generalize these results in the nonlinear setting: this is due in particular to the fact that the entropy 
(which is the natural uniform bound) is not suitable to control quadratic nonlinearities (which is also the reason why the 
Boltzmann equation is only known to have renormalized solutions globally in time).

3.3. Lanford’s proof

We shall not give in this note all the details of the proof of Theorem 3.2 as it is rather technical. The general strategy 
follows the lines of Lanford’s proof. More precisely, it relies on an integral formulation of the BBGKY hierarchy (22) obtained 
by iterating Duhamel’s formula

δF (1)
N (t) =

N∑
n=1

Q 1,n+1(t) δF (n+1)
N,0 ,

where Q 1,n+1 encodes n collisions and Ss is the transport operator on Ds

Q 1,n+1(t) :=
t∫

0

t2∫
0

. . .

tn∫
0

S1(t − t2)C1,2S2(t2 − t3)C2,3 . . . S1+n(t1+n)dt2 . . . dtn+1 .

This expansion has a geometric interpretation in terms of collision trees (ai)1≤i≤n+1 with ai < i (encoding the collisional 
particle in Ci−1,i ), and pseudo-trajectories defined as follows.

Definition 3.4 (Pseudo-trajectory). Given z1 ∈T 2 ×R2, t > 0 and a collision tree a, consider a collection of times, angles and 
velocities (T2,n+1, �2,n+1, V 2,n+1) = (ti, ωi, vi)2≤i≤n+1 with 0 ≤ tn+1 ≤ · · · ≤ t2 ≤ t . We then define recursively the pseudo-
trajectories of the backward BBGKY dynamics as follows:
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– in between the collision times ti and ti+1, the particles follow the i-particle backward flow on Di (with specular 
reflection on ∂Di );

– at time t+
i , particle i is adjoined to particle ai at position xai (t

+
i ) + εωi and with velocity vi , provided |xi − x j(t

+
i )| > ε

for all j < i with j �= ai . If (vi − vai (t
+
i )) · ωi > 0, velocities at time t−

i are given by the scattering laws

vai (t
−
i ) = vai (t

+
i ) − (vai (t

+
i ) − vi) · ωi ωi , vi(t

−
i )= vi + (vai (t

+
i ) − vi) · ωi ωi .

We denote by zi(a, T2,n+1, �2,n+1, V 2,n+1, τ ) the position and velocity of the particle labeled i, at time τ ≤ ti . The configu-
ration obtained at the end of the tree, i.e. at time 0, is Zn+1(a, T2,n+1, �2,n+1, V 2,n+1, 0). The set of admissible parameters 
(i.e. such that the dynamics has no overlap and the pseudo-trajectory is defined up to time 0) is denoted Gn(a).

We therefore end up with the following representation formula

δF (1)
N (t) =

N−1∑
n=0

(N − 1) . . .
(
N − n

)
εn

∑
a∈An

∫
Gn(a)

dT2,n+1 d�2,n+1 dV 2,n+1

( n+1∏
i=2

(
(vi − vai (ti)) · ωi

)

× δF (n+1)
N,0

(
Zn+1(a, T2,n+1,�2,n+1, V 2,n+1,0)

)
.

Note that the factor (N − 1) . . .
(
N − n

)
εn is of order αn in the Boltzmann–Grad limit.

Lanford’s proof can then be decomposed in two steps:

– we first compare the pseudo-trajectories of the BBGKY hierarchy with the pseudo-trajectories describing the Boltzmann 
dynamics. We expect these two families of pseudo-trajectories to differ because of the small shifts at the collision times 
(|xi − xai | = ε), and because of the possible recollisions due to the fact that Ss is the transport with exclusion (in Ds). 
Note that they will also have slightly different weights in the representation formula because of the prefactors (N − s)ε
(replaced by 1/α in the limit).

– we then use an argument of dominated convergence to sum over all possible collision trees, and obtain the convergence 
of the series.

We stress the fact that only the second step imposes a restriction on the time of convergence in the original proof of Lanford. 
It is indeed based on (loss) continuity estimates for the collision operators in weighted L∞ spaces (with exponential decay 
in v) denoted by L̃∞

∥∥∥
t∫

0

dt1Ss(t − t1)Cs,s+1Ss+1(t1) f s+1

∥∥∥
L̃∞ ≤ C s

t

α
‖ f s+1‖L̃∞ ,

which provide

‖Q 1,n+1(t)F (n+1)
N,0 ‖L̃∞ ≤

(
Cβ,μ

t

α

)n
(24)

Extending the convergence beyond Lanford’s time relies on two important ideas:

– a pruning procedure to sort out pathological pseudo-trajectories involving too many collisions on small time intervals;
– refined continuity estimates for the collision operators that allow one to control these bad terms using cumulant ex-

pansions.

The technical arranging of these arguments is rather complicated, but we shall just describe roughly the main ideas.

3.4. Extending the time of validity of Lanford’s series expansion

The pruning procedure is a strategy that was devised in [28] in order to control the growth of collision trees. The idea 
is to introduce a sampling in time with a (small) parameter h > 0. Let {nk}k≥1 be a sequence of integers, typically nk = 2k . 
We study the dynamics up to time t = τ/α by splitting the time interval [0, t] into K intervals of size h, and controlling 
the number of collisions on each interval. In order to discard trajectories with a large number of collisions in the iterated 
Duhamel formula, we define collision trees “of controlled size” by the condition that they have strictly less than nk branch 
points on the interval [t − kh, t − (k − 1)h]. Note that, by construction, the trees are actually followed “backwards”, from 
time t (large) to time 0. So we decompose the iterated Duhamel formula by writing
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δF (1)
N (t) :=

n1−1∑
j1=0

. . .

nK −1∑
jK =0

Q 1, J1(h)Q J1, J2(h) . . . Q J K−1, J K (h)δF ( J K )
N,0

+
K∑

k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q 1, J1(h) . . . Q Jk−2, Jk−1(h) Q Jk−1, Jk (h)δF ( Jk)
N (t − kh)

(25)

with J0 := 1, Jk := 1 + j1 + · · · + jk . The first term on the right-hand side corresponds to the smallest trees (having less 
than Nk = n1 + · · · + nK = O (2K+1) branching points), and the second term is the remainder: it represents trees with super 
exponential branching, i.e. having at least nk collisions during the last time lapse, of size h. We have then to prove that the 
remainder is small, even for large t (but small h).

In [28], we were interested in the motion of one tagged particle in a gas close to equilibrium, and we had the global 
uniform estimate

∀n,∀t > 0, δF (n)
N (t, Zn) ≤ C0M(n)

N ≤ C0Cn M⊗n

which results from the L∞ bound on the initial data, the maximum principle for the Liouville equation and the fact that 
the Gibbs measure MN is invariant under the flow. By (24), we thus obtained that the remainder is controlled by

‖
K∑

k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q 1, J1(h) . . . Q Jk−2, Jk−1(h) Q Jk−1, Jk (h)δF ( Jk)
N (t − kh)‖L∞

≤
K∑

k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

C0

(
C

t

α

)Nk−1
(

C
h

α

)nk

≤ C0

K∑
k=1

2k2
(

C2 th

α2

)2k

which is small provided that ht � α2. However, under the assumptions of Theorem 3.2, the initial datum δF N is no 
longer O (1) in L∞ , and we cannot apply the same strategy.

3.5. Taking advantage of the exchangeability

The second key argument is specific to the linearized setting. In dimension d = 2, the partition function introduced in 
(23) is bounded from below uniformly in N

ZN =
∫

1DN dZ N ≥ ce−C/α2
(26)

This means that the product measure M⊗N and the measure MN conditioned by the exclusion constraint are comparable in 
a very strong sense. This fact will be crucial in the decomposition (28) and in (27) in order to replace MN by M⊗N .

Combining estimate (26) with the initial L2 bound (which is the counterpart in this setting of the initial entropy control)

∫
δF 2

N,0

MN
dZ N ≤ C

∫
M⊗N

(
N∑

i=1

g0(zi)

)2

dZ N ≤ C N‖g0‖2
L2( M dv dx)

and the conservation law for the Liouville equation, we obtain that, for all t∫
δF 2

N(t)

M⊗N
dZ N ≤ CeC/α2

∫
δF 2

N(t)

MN
dZ N ≤ CeC/α2

∫
δF 2

N,0

MN
dZ N = O (N eC/α2

) (27)

The following cumulant estimates can then be obtained from this a priori bound.

Lemma 3.5. Let δF N be a mean free, symmetric function such that δF N/M⊗N ∈ L2(M⊗N dZ N ). There exist symmetric functions f m
N on 

(T 2 ×R2)m for 1 ≤ m ≤ N such that, for all s ≤ N, the marginal of order s has the following cumulant expansion:

δF (s)
N (Zs) = M⊗s(V s)

s∑
m=1

∑
σ∈Sm

s

f m
N (Zσ ) (28)

where Sm
s denotes the set of all parts of {1, . . . , s} with m elements, and 

( s
m

)
is its cardinal. Moreover, we have the following decay 

estimate on the cumulants:



T. Bodineau et al. / C. R. Physique 20 (2019) 402–418 417
N∑
m=1

(
N

m

)
‖ f m

N ‖2
L2(M⊗m dZm)

≤ ‖δF N/M⊗N‖2
L2(M⊗N dZN )

= O (NeC/α2
) (29)

The upper bound (29) shows that the correlations decrease in L2-norm according to the number of particles. In particular, 
this implies that the leading order term, in L2, for the marginals (28) comes from the first cumulant

δF (s)
N (Zs) = M⊗s(V s)

[
s∑

m=1

f 1
N(zm)

]
+ O

(
1√
N

)
L2

(30)

This very weak chaos property can be interpreted as a step towards proving local equilibrium.

Remark 3. The approximation (30) is not strong enough to deduce directly that the equation on the first marginal (21) can 
be closed, i.e. to replace F (2)

N by (F (1)
N )⊗2, because the collision operator C1,2 is too singular (see [29,30] for a discussion on 

this point).
Note in addition that the argument cannot be applied directly in dimension greater than 2, since the Gibbs measure MN

is very different from the tensor product M⊗N (the partition function is no longer uniformly bounded from below as in 
(26)).

The difficulty is then to use these L2 a priori bounds to obtain a control on the remainders in the BBGKY series expansion 
(25). The operator Cs,s+1 is indeed ill defined in L2 (as it acts on hypersurfaces) and it has to be combined with the transport 
operator to recover the missing dimension (see [26], Section 5). One can show that there exists weighted L2-norms denoted 
by L̃2 such that∥∥∥∥∥∥

t∫
0

dτCs,s+1S0
s+1(−τ )hs+1

∥∥∥∥∥∥
L̃2

≤ C

√
s t

ε
‖hs+1‖L̃2 . (31)

The constants in the L2-estimate (31) are much worse than in the L∞-estimate (24) as each collision operator induces 
a loss of order ε−1/2. Nevertheless, estimate (29) implies that higher-order cumulants decay as f m

N = O (ε(m−1)/2)L2 . Thus, 
combining (29) and the singular continuity estimate (31), we see that the powers of ε exactly compensate, leading to a 
control of the remainder in (25) of the type

‖
K∑

k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q 1, J1(h) . . . Q Jk−2, Jk−1(h) Q Jk−1, Jk (h)δF ( Jk)
N (t − kh)‖L2

≤ eC/α2
K∑

k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

C0

(
C

t

α

)3Nk−1/2(
C

h

α

)nk/2

≤ C0eC/α2
K∑

k=1

2k2
(

C2 t3/2h1/2

α2

)2k

.

This can be made as small as needed by choosing t3/2h1/2 � α2.
In fact, the previous estimates only holds if the total number of recollisions is controlled. It remains then to control super 

exponential trees with many recollisions. We shall skip here this part of the proof, which requires rather tough geometric 
estimates on multiple recollisions.

4. Concluding remarks

The results presented in this note provide very preliminary answers to the problem of deriving the Fourier law from 
microscopic mechanical systems. We discuss here the possibility of extending these results to more physically relevant 
situations, and the blocking points.

The first issue is that, in the case of the hard-sphere dynamics, the boundary conditions introduced in Section 3.1 have 
not yet been taken into account. We however expect that Theorem 3.2 and Corollary 3.3 can be extended to thermostated 
systems very close to equilibrium.

Then the main restriction we have imposed here is a (very stringent) smallness condition on the size of the non-equilibrium 
perturbation. This condition takes different forms in the case of a perfect gas and a hard-sphere gas, but it allows us to 
overcome two difficulties:
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– close to equilibrium, the collision process is very well controlled: it is both efficient (inducing a relaxation towards 
thermodynamic equilibrium in a very homogeneous way) and non singular (no correlation structure violating the chaos 
assumption will appear);

– close to equilibrium, the hypoellipticity of the transport is well understood: we then expect the thermodynamic fields to 
be rather smooth and thus to have good homogenization properties.

A natural question is to know whether the smallness condition is purely technical or whether the physics beyond this 
threshold is expected to be more complicated. For the particle system, the scaling condition f0 = M(1 + 1

N g0) can be related 
to the fluctuation field, which is controlled by the central limit theorem. At this scale, the Fourier law describes a dissipation 
mechanism associated with the mixing property of the time correlations of the fluctuation field (at equilibrium). Looking 
at the formal asymptotics, it is not clear that there is any obstruction (other than technical) to get the Fourier law in more 
general situations, at least in incompressible regimes.
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