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We summarize the results of several experiments that show the evolution of some 
scientific interests and goals of the statistical and nonlinear physics community in the 
last 40 years. Specifically, we present how the ideas of extending concepts of equilibrium 
statistical physics to out-of-equilibrium physics have been developed to characterize 
various phenomena such as, for example, transition to space-time chaos and glass 
aging. We then discuss the applications of this out-of-equilibrium thermodynamics to 
microsystems driven out of equilibrium either by external forces or by temperature 
gradients. We show that in these systems thermal fluctuations play a role and that 
all thermodynamics quantities, such as work, heat, and entropy fluctuate. We recall 
general concepts such as fluctuation theorems and fluctuation dissipation relations used 
to characterize the statistical properties of these small systems. We describe experiments 
where all these concepts have been applied and tested with high accuracy. Finally, we show 
how these theoretical concepts and the experiments allowed us to improve our knowledge 
on the connection between information and thermodynamics.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 
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r é s u m é

Nous résumons plusieurs expériences qui montrent l’évolution de certains intérêts et 
objectifs scientifiques de la physique statistique au cours des quarante dernières années. 
En particulier, nous présentons de quelle façon les idées sur les fluctuations d’énergie dans 
les systèmes hors équilibre se sont développées aux niveaux théorique et expérimental, en 
partant des études sur le chaos spatio-temporel. Ces idées ont été appliquées aux systèmes 
microscopiques dans lesquels le rôle des fluctuations thermiques ne peut pas être négligé. 
Dans ce contexte, nous décrivons quelques expériences dans lesquelles les propriétés 
statistiques des fluctuations du travail, de la chaleur et de l’entropie ont été mesurées. 
Enfin, nous montrons comment ces mesures nous ont permis de mieux comprendre le lien 
entre information et thermodynamique.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 
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1. Introduction

Thermodynamical equilibrium is an idealized situation that occurs very rarely in nature, being out of equilibrium the 
most common case. Physical systems can indeed be out of equilibrium either because they are submitted to external forces 
and temperature gradients or because they are slowly relaxing towards equilibrium. In both cases there will be a balance 
between the injected and dissipated energies, which in general are fluctuating quantities. For example, let us consider the 
motion of a Brownian particle subjected to a constant external force; because of thermal fluctuations, the work performed 
on the particle by this force per unit time, i.e. the injected power, fluctuates and the smaller is the force, the larger will 
be the importance of power fluctuations. Indeed thermal fluctuations become important when the size of the system is 
decreased and in macroscopic systems one does not care about them. However, the injected and dissipated energies may 
fluctuate also in macroscopic systems if the dynamics is chaotic. For instance, think of a motor used to stir a fluid strongly. 
The motor can be driven by imposing a constant velocity. Because of the turbulent motion of the fluid, the power needed 
to keep the velocity constant fluctuates [1,2]. This simple example shows that fluctuations of the injected and dissipated 
power may be relevant not only in microscopic but also in macroscopic systems such as hydrodynamic flows [2], granular 
media [3–6], mechanical systems [7], and more recently on self-propelling particles [8,9]. The main difference is that, in 
macroscopic systems, fluctuations are produced by the dynamics and are sustained by a constant energy flux, whereas in 
small systems they are either of thermal or quantum nature. As in this article we will discuss classical systems, it is useful to 
divide the fluctuations in out-of-equilibrium systems into two classes: one where thermal fluctuations play a significant role 
(thermal systems) and another where the fluctuations are produced by chaotic flows or fluctuating driving forces (athermal 
chaotic systems).

In the last fifteen years, we have experimentally studied the properties of energy fluctuations in macroscopic and mi-
croscopic systems, such as turbulent flows, electronic circuits, Brownian particles, and micro actuators. However, before 
discussing the kind of questions we analyzed within the framework of the so-called stochastic thermodynamic, we would 
like to discuss how our interest in these problems developed.

Indeed, around the years 1980–1990, the chaotic dynamics in highly confined systems have been widely experimentally 
studied to characterize the dynamics in terms of the route to chaos, the Lyapunov exponents, and the attractors proper-
ties. In the same period based on the work of Y. Pomeau [10], P. Manneville [11], and other theoreticians, we started to 
investigate the transition to space-time chaos in systems whose size was much larger than the instability wavelength. The 
experiments showed that the transition presented features of a second-order phase transition and that several analogies 
with thermodynamics can be done for the fluctuations of global variables characterizing the disorder of these systems [12,
13]. For example, P. Hohenberg and B. Shraiman [14] proposed that, for these chaotic systems, thermodynamics relations 
among the observables might be constructed and an effective temperature might be defined using Fluctuations Dissipation 
Relation (FDR), i.e. extending the fluctuation dissipation theorem out of equilibrium and defining the temperature as the 
correlation–response ratio (see section 3). Using an experiment of thermal convection, we showed that, in some specific 
cases, these ideas can be applied to real systems [15], although many questions have been raised about the general validity 
of these experimental results. Performing these experiments, we realize that similar questions have been asked in the study 
of other problems, such as, for example, the aging of amorphous materials. Specifically, L. Cugliandolo and J. Kurchan [16,17]
proposed the use of FDR in order to define an effective temperature of these aging materials, which are systems weakly 
but durably out of equilibrium. We performed experiments on this problem trying to measure FDR in these slowly relaxing 
material and to find effective temperatures for their dynamics. For performing these measurements, we set up very precise 
apparatus that allowed us to study not only the thermal fluctuations in aging glasses but also in out-of-equilibrium sys-
tems in which the role of thermal fluctuations cannot be neglected. In parallel, we continued our studies on hydrodynamic 
instabilities and turbulence where we analyzed the statistical properties of fluctuating injected and dissipated power.

In the following, we will shortly summarize our experimental results on thermal systems, because the results of exper-
iments on macroscopic systems are far to be universal and still present a lot of open questions. The main problem that 
we want to discuss is the role of fluctuations in out-of-equilibrium systems where the energies injected or dissipated are 
smaller than 100 kB T (kB being the Boltzmann constant and T the temperature). This limit is relevant for example in bio-
logical, nano and micro systems, where thermal fluctuations cannot be neglected. We will discuss the role of fluctuations in 
these systems and how one can gain some information by measuring them. In order to clarify the kind of questions that we 
analyze, let us consider the simplest and most basic out-of-equilibrium system, that is, a thermal conductor whose extrem-
ities are connected to two heat baths at different temperatures, as sketched in Fig. 1. The second law of thermodynamics 
imposes that in average the heat flows from the hot to the cold reservoir (from H to C in Fig. 1). However, the second law 
does not say anything about fluctuations and in principle one can observe for a short time a heat current in the opposite 
direction, which corresponds to an instantaneous negative entropy production rate.

These rare events of negative entropy production rate (in which the heat flows in the opposite direction of the mean) 
can be observed in other systems connected to a single heat bath, such as the above-mentioned example of the Brownian 
particle or electric circuits. In these systems, we can ask what is the probability that the particle moves in the direction 
opposite to the force and the electric current flows in the wrong direction inside the electric circuit. Let us consider an 
electrical conductor connected to a potential difference V = V A − V B and kept at temperature T by a heat bath as depicted 
in Fig. 1(b). Unlike the previous example, the electrical conductor is in contact with a single heat bath and the out-of-
equilibrium regime is imposed by the external potential difference V . If the mean current Ī = V /R (R being the electrical 
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Fig. 1. (a) Schematic representation of a conductor whose extremities are in contact with two heat baths at temperatures TH and TC with TH > TC. 
(b) Electrical analogy: a potential difference V = V a − V b is applied to a conductor of electrical resistance R and kept at a temperature T . (c) Instantaneous 
current I flowing into the resistance using R = 10 M�, T = 300 K, and τ0 = 2 ms (see [18]).

resistance of the conductor) is of the order of 10−13 A and the injected power is about 100 kB T /s � 10−19 J/s, then the in-
stantaneous current inside the resistance is subject to fluctuations produced by the Nyquist thermal noise, whose amplitude 
is comparable to the mean, as shown in Fig. 1c). The variance of these fluctuations is δ I2 � kBT /(Rτ0), where τ0 is the 
characteristic time constant of the electrical circuit. In the specific case of Fig. 1c, the current is several times opposed to its 
mean value. Taking into account that V · I is the power dissipated by a conductor, this means that, during this rare event, 
the conductor produces power instead of dissipating it, i.e. the conductor is extracting energy from a single heat bath. The 
probability of having those negative currents has been studied both theoretically and experimentally in [18,19] within the 
context of stochastic thermodynamics and the fluctuation theorem (FT).

These negative extreme events are clearly very important, because in small systems they can in principle stop the 
mechanisms and, in other cases, they can contribute to reducing the mean dissipated power [20]. Furthermore, FT has 
not only a theoretical interest, but can actually be useful for applications [21]. As these negative events are extremely rare, 
the large deviation theory plays an important role in this context.

2. Stochastic thermodynamics and fluctuation theorems

2.1. Fluctuation theorem

What is the probability of observing these rare events? The answer to this question can be found within the framework 
of stochastic thermodynamics [22] and fluctuations theorems (FTs) [23–31].

A fluctuation theorem (FT) fixes the symmetry around 0 of the probability density function (pdf) P (Xτ ) of a quantity Xτ , 
which can be either the work performed on the system by external forces or the heat exchanged with the heat bath in a 
time τ . The FT compares the probability of a positive event (Xτ = +x) versus the probability of a negative event (Xτ = −x). 
When the system is in contact with a single heat bath, the FT takes the form

ln
P (Xτ )

P (−Xτ )
= �(τ)

Xτ

kBT
(1)

where �(τ) takes into account the finite-time corrections. In a non-equilibrium steady state (NESS), one has
limτ→∞ �(τ) = 1. In contrast, �(τ) = 1, ∀τ when the system is driven in the time τ from an equilibrium state to non-
equilibrium. If Xτ is the heat exchanged with the heat bath Q τ , then Q τ /T in Eq. (1) can be easily identified as the entropy 
production during the time τ . However, it has to be noticed that for the heat Eq. (1) holds only for Q τ / < Q τ >≤ 1, being 
< Q τ > the mean value of Q τ . The difference between the FT for work and heat has been first understood in refs. [19,32]
and then tested in many experiments.

2.2. Trajectory-dependent entropy and the total entropy

Another quantity, useful to characterize the dynamical properties of energy fluctuations, is the trajectory-dependent 
entropy difference �Ss(t, τ ) = −kB ln[P (�r(t + τ ), λ)/P (�r(t), λ)], where P (�r(t), λ) is the probability of finding the system in 
the position �r(t) of the phase space at a value λ of the control parameter. Thus the total entropy difference on the time 
τ is: �Stot(t, τ ) = �Ss(t, τ ) + Q τ (t)/T [30,31], i.e. the sum of the trajectory-dependent entropy change and the entropy 
change in the reservoirs due to energy flow. The mean total entropy difference is equal to the entropy production rate, i.e. 
< �Stot(t, τ ) >=< Q τ (t)/T >, which is zero in equilibrium because in average no heat is exchanged with the heat bath. 
It is important to notice that at equilibrium �Stot(t, τ ) has not only a zero mean, but also has no fluctuations and its 
probability distribution is a delta function. In other words, < �Stot(t, τ ) > is a good quantity to characterize the statistical 
properties of the out-of-equilibrium dynamics, because in equilibrium it is rigorously zero. The fluctuations of this quantity 
impose several constrains on time reversibility, which is a central result of stochastic thermodynamics [30,33–35] and has 
been tested experimentally [36]. The FT for the �Stot in a NESS implies �(τ) = 1 for any τ , i.e. the FT has not an asymptotic 
validity, but is valid for any τ . This is certainly a useful property in an experiment because one has not to look for very long 
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Fig. 2. (a) Drawing of the polystyrene particle trapped by two laser beams whose axis distance is about the radius of the bead. (b) Potential felt by the 
bead trapped by the two laser beams. The barrier height between the two wells is about 2kBT .

asymptotic behavior. However the calculation of Stot in experiments is not easy and a lot of care must be taken in order to 
correctly estimate this quantity [37,38].

2.3. Jarzynski and Crooks equalities

The knowledge of out-of-equilibrium fluctuations is actually very useful in experiments to extract fundamental informa-
tion on the equilibrium and out-of-equilibrium properties of a specific system. Typical examples are the Jarzynski and Crook 
equalities [33,39,40], which estimate the equilibrium properties starting from non-equilibrium measurements.

Specifically, when a system parameter λ(t) is varied from an initial value λ(0) to the final value λ(ts), Jarzynski defines 
for one realization of the “switching process” from the initial to the final state the work performed on the system as

W =
ts∫

0

λ̇
∂ Hλ[z(t)]

∂λ
dt (2)

where z denotes the phase-space point of the system and Hλ its λ-parametrized Hamiltonian. One can consider an ensemble 
of realizations of this “switching process” with initial conditions all starting within the equilibrium distribution. Then W (ts), 
because of thermal fluctuations, will have a different value for each realization of the ensemble. The Jarzynski equality (JE) 
states that [39,40]

exp (− �F

kBT
) = 〈exp (− W

kBT
)〉 (3)

In other words, 〈exp [−βWdiss]〉 = 1, since we can always write W = �F + Wdiss, where Wdiss is the dissipated work. Thus 
it is easy to see that there must exist some paths γ such that Wdiss ≤ 0. Moreover, the inequality 〈exp x〉 ≥ exp 〈x〉 allows 
us to recover the second principle, namely 〈Wdiss〉 ≥ 0, i.e. 〈W 〉 ≥ �F .

Eq. (3) turns out to be a very useful tool to experimentally estimate the free energy in small systems (see [21] for more 
details).

2.4. Experimental tests

2.4.1. Brownian particle in a non-linear potential
As an example of the experimental measurements that we performed, we present an experiment in which the work 

pdfs are highly not Gaussian. In this example, we measure the fluctuations of a Brownian particle trapped in a non-linear 
potential produced by two laser beams, as shown in Fig. 2 [41]. It is very well known that a particle of small radius 
R � 2 μm can be trapped by a focused laser beam, which produces a harmonic potential, thereby confining the Brownian 
particle motion to the potential well. When two laser beams are focused at a distance D � R , as shown in Fig. 2(a) the 
particle has two equilibrium positions, i.e. the foci of the two beams. Thermal fluctuations allow the particle to hop from 
one to the other. The particle feels an equilibrium potential U0(x) = ax4 − bx2 − dx, shown in Fig. 2(b), where a, b and d are 
determined by the laser intensity and by the distance of the two focal points. This potential has been computed from the 
measured equilibrium distribution of the particle P (x) ∝ exp(U0(x)) (see [41] for more experimental details). To drive the 
system out of equilibrium, we periodically modulate the intensity of the two beams at low frequency ω. Thus the potential 
felt by the bead has the following profile: U (x, t) = U0(x) + U p(x, t) = U0 + cx sin(ωt).

The x position of the particle can be described by an overdamped Langevin equation:

ν
dx = −∂U (x, t) + η (4)

dt ∂x
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Fig. 3. (a) Distribution of classical work W̃τ for different numbers of period n = 1, 2, 4, 8 and 12 (ω = 4.71 rad/s). Inset: Same data in lin–log. (b) Normal-
ized symmetry function as a function of the normalized work for n = 1 (+), 2 (◦), 4 (
), 8 (�), 12 (�).

with ν the friction coefficient and η the thermal noise delta correlated in time. When c �= 0, the particle can experience a 
stochastic resonance [42–44] when the forcing frequency is close to the Kramers rate [41]. One can compute the work

W̃τ =
t+τ∫
t

f (t′)ẋ(t′)dt′ (5)

of the external force f (t) = −c sin(ωt) on the time interval [t, t + τ ], where τ = 2πn
ω is a multiple of the forcing period [41]. 

We consider the pdf P (W̃τ ), which is plotted in Fig. 3(a). Notice that, for n = 1, 2, the distributions have two peaks and a 
very complex shape. They tend to a Gaussian for large n (inset of Fig. 3(a)). In Fig. 3(b), we plot the normalized symmetry 
function

Sym(W̃τ ) = kBT

W̃τ

ln

[
P (W̃τ )

P (−W̃τ )

]

as a function of W̃τ / < W̃τ >. We can see that the curves are close to the line of slope 1. For high values of the work, the 
dispersion of the data increases due to the lack of events. The slope tends toward 1, as expected by the FT in Eq. (1). In 
spite of the fact that FT for NESS is asymptotic, the convergence of Sym(W̃τ ) towards the asymptotic behavior is very fast. 
Indeed, a straight line of slope 1 is obtained even at n = 1, although the corresponding distribution P (W̃τ ) presents a very 
complex and unusual shape (see Fig. 3(a)). The very fast convergence to the asymptotic value is rather striking because the 
convergence of FT for work is not universal, and other systems need very large values of τ in order to reach the asymptotic 
value. These measurements are in full agreement with a realistic model based on the Fokker–Planck equation, where the 
measured values of U (x, t) have been inserted [45]. This example shows the application of the FT in a non-linear case where 
the distributions are strongly non-Gaussian.

2.4.2. Two heat baths
In the introduction, we discussed the case of heat conduction. In order to measure the main properties of the energy 

fluxes systems driven out of equilibrium by a temperature gradient, we studied both experimentally and theoretically the 
statistical properties of the energy exchanged by two conductors kept at different temperatures, as illustrated in Fig. 4(a), 
which has a mechanical analogy shown in Fig. 4(b) [46,47]. The specificity of this system is that the heat flux is sustained 
only by the thermal fluctuations, which are larger in the hot resistance than in the cold one. In these two articles, we 
measured the trajectory-dependent entropy based on the measure of V 1 and V 2.
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Fig. 4. (a) Diagram of the circuit. The resistances R1 and R2 are kept at temperatures T1 and T2 = 296 K, respectively. T1 can be fixed in the interval 
88–296 K. They are coupled via the capacitance C . The capacitances C1 and C2 schematize the capacitances of the cables and of the amplifier inputs. The 
voltages V 1 and V 2 are amplified by the two low-noise amplifiers A1 and A2. The other relevant parameters are qm (m = 1, 2), i.e. the charges that have 
flowed through the resistances Rm , and the instantaneous current flowing through them, i.e. im = dqm

dt . The two baths are coupled via the thermal noise 
of each conductor, indicated by η1 and η2 in the diagram. (b) The circuit in (a) is equivalent to two Brownian particles (m1 and m2) moving inside two 
different heat baths at T1 and T2. The two particles are trapped by two elastic potentials of stiffness values K1 and K2 and coupled by a spring of stiffness 
K . The analogy is straightforward by considering qm the displacement of the particle m, im its velocity, Km = Cm′ /X (with m �= m′) the stiffness of the 
spring m, and K = C/X the coupling spring, where X = C2 C1 + C (C1 + C2).

�Ss,τ = −kB ln

[
P (V 1(t + τ ), V 2(t + τ ))

P (V 1(t), V 2(t))

]

and the total entropy

�Stot,τ = Q τ (
1

T1
− 1

T2
) + �Ss,τ

where Q τ is the heat flowing in the two resistances because of the electric coupling. For this quantity, the FT takes the 
form

ln
P (�Stot)

P (−�Stot)
= �Stot

kB
, ∀ τ (6)

3. Fluctuation dissipation relations for NESSs

As we have seen in the previous section, current theoretical developments in nonequilibrium statistical mechanics have 
led to significant progress in the study of systems around states far from thermal equilibrium. Systems in nonequilibrium 
steady states (NESSs) are the simplest examples, because the dynamics of their degrees of freedom x under fixed control 
parameters λ can be statistically described by time-independent probability densities ρ0(x, λ). NESSs naturally occur in 
mesoscopic systems such as colloidal particles dragged by optical tweezers, Brownian ratchets and molecular motors because 
of the presence of nonconservative or time-dependent forces [48]. At these length scales, fluctuations are important, so it is 
essential to establish a quantitative link between the statistical properties of the NESS fluctuations and the response of the 
system to external perturbations. Around thermal equilibrium, this link is provided by the fluctuation–dissipation theorem 
[49].

As we already discussed in the § ‘Introduction’, the validity of the fluctuation-dissipation theorem (FDR) in systems out 
of thermal equilibrium has been the subject of intensive study since 1985, when it has been proposed to be used as a 
method to define an effective temperature of dynamical instabilities and space-time chaos. For a system in equilibrium 
with a thermal bath at temperature T , the FDT establishes a simple relation between the two-times correlation function 
C(t, s) =< O (t)O (s) > of an observable O (t) and the linear response function R(t, s) = δO (t)/δh(s) of this observable to a 
weak external perturbation of its conjugate variable h. At equilibrium, FDT takes the form:

∂sC(t, s) = kBT R(t, s) (7)

where in equilibrium C(t, s) and R(t, s) depend only on the time difference (t − s). However, Eq. (7) is not necessarily 
fulfilled out of equilibrium and violations are observed in a variety of systems such as glassy materials [50–56], granular 
matter [57], biological systems [58], and resonators [59].

This motivated a theoretical and experimental work devoted to a search of a general framework describing fluctuation–
dissipation relations (FDR) (see the review [49]). The generalization of the fluctuation–dissipation theorem around NESS for 
systems with Markovian dynamics has been achieved from different theoretical approaches [60–72]. The different general-
ized formulations of FDR link correlation functions of the fluctuations of the observable of interest O (x) in the unperturbed 
NESS with the linear response function of O (x) due to a small external time-dependent perturbation around the NESS. How-
ever, several approaches require the measure of other “auxiliary” observables (such as local currents and entropy), whereas 
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other theoretical formulations are based on a non-linear transformation of the observables. Let us consider the simple ex-
ample of a Brownian particle confined in a periodic potential U (x) and driven in a NESS by a constant external force that 
pushes the particle at a velocity vo(t). It can be shown that any function O (x) of the particle position verifies:

∂sC(t, s)− < O (t)vo(s)O (s) >= kBT R(t, s) (8)

This example (tested experimentally in [73]) shows that in this case the equilibrium FDT (Eq. (7)) is modified, in the NESS 
(Eq. (8)), by an extra correlation function of the observable with the local velocity. The FDR is useful in experiments and 
simulations to determine R(t, s) in the NESS using only the measure of fluctuations, i.e. by computing the correlations 
in the left term of Eq. (8). However, not all the variables have the same experimental accessibility and the existence of 
various formulations of FDR for NESS allows one to choose those that are the best for a particular system [73,74]. Hence, 
before implementing the different fluctuation–response formulas in real situations, it is important to test their experimental 
validity under very well controlled conditions and to assess the influence of finite data analysis. The experimental test 
of some fluctuation–dissipation relations has been done in [73–76] for colloidal particles in toroidal optical traps and in 
systems subjected to thermal gradients [77,78]. We will not describe here specific experimental results that have been 
already widely discussed in the above-mentioned articles (see also [35,49,79]). What is important to recall is that in all of 
formulations the corrections to equilibrium relations are related to the out-of-equilibrium current of the system, which is 
proportional to the mean total entropy production for a NESS.

4. Thermodynamics, information, and the Maxwell demons

It is worth to say that the study of stochastic thermodynamics has allowed us to bring more insight on the connection be-
tween information and thermodynamics. Specifically, the study of the energy fluctuations in small systems has transformed 
gedanken experiments, as the Maxwell demon, in experiments that may actually be performed thanks to new technologies 
such as optical/electrical traps and single electron devices. The relationship between stochastic thermodynamics and infor-
mation has nowadays an increasing importance, both theoretically and experimentally. This relationship is related to the 
famous paradox of the Maxwell demon (see Fig. 5), who is an intelligent creature able to monitor individual molecules of 
a gas contained in two neighboring chambers [80,81]. Initially, the two chambers are at the same temperature, defined by 
the mean kinetic energy of the molecules and proportional to their mean-square velocity. Some of the particles, however, 
travel faster than others. By opening and closing a molecule sized trapdoor in the partitioning wall, the demon can collect 
the faster molecules in one chamber and the slower ones in the other. The two chambers then contain gases with different 
temperatures, and that temperature difference may be used to power a heat engine and produce mechanical work. By gath-
ering information about the particles positions and velocities and using that knowledge to sort them, the demon is able to 
decrease the entropy of the system and convert information into energy. Assuming the trapdoor is frictionless, the demon 
is able to do all that without performing any work himself, in an apparent violation of the second law of thermodynamics. 
This paradox has stimulated a long debate on the connection between information and thermodynamics. A solution to the 
problem was proposed in 1929 by Leo Szilard, who used a simplified one-particle engine to explain it. Modern technologies 
allow us to realize this gedanken experiment related to the Maxwell demon original idea [80].

4.1. The Sizlard engine

For example, a Szilard engine has been realized in 2010 [82] by using a single microscopic Brownian particle in a fluid 
and confined to a spiral-staircase-like potential. This has been the first example of a device that converts information into 
energy for a system coupled with a single thermal environment. However, there is not a contradiction with the second law, 

Fig. 5. Maxwell’s demon. By detecting the positions and velocities of gas molecules in two neighboring chambers and using that information to time the 
opening and closing of a trapdoor that separates them, a tiny, intelligent being could, in theory, sort molecules by velocity. By doing so, it could create a 
temperature difference across the chambers that could be used to perform mechanical work. If the trapdoor is frictionless, the sorting requires no work 
from the demon himself, which is able to produce work starting from a single heat reservoir, violating in this way the second principle of thermodynamics. 
(See text for details.)
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because Sagawa and Ueda [83] formalized the idea that information gained through microlevel measurements can be used 
to extract added work from a heat engine. Their formula for the maximum extractable work is:

Wmax = −�F + kBT < I > (9)

where �F is the free energy difference between the final and initial state and the extra term represents the so-called 
mutual information I . In the absence of measurement errors, the quantity I reduces to the Shannon entropy H , i.e. I = H =
− 

∑
k P (�k) ln[P (�k)], where P (�k) is the probability of finding the system in the state �k .

In this context, the Jarzynski equality discussed in section 2.3 also contains this extra term and becomes:

< exp(−βW + I) >= exp(−β�F ) (10)

which leads to

< W >≥ �F − kBT < I > (11)

Eqs. (10) and (11) generalize the second law of thermodynamics, taking into account the amount of information introduced 
into the system [81,84]. Indeed, Eq. (11) indicates that, thanks to information, the work performed on the system to drive 
it between an initial and a final equilibrium state can be smaller than the free energy difference between the two states.

Eq. (10) has been directly tested in a single-electron transistor [85].

Box 1: Landauer’s erasure principle

Landauer’s principle can be seen as a direct consequence of the second law of thermodynamics. Consider a system 
(SYS) coupled with a reservoir (RES) at temperature T . According to the second law, the total entropy change for 
system and reservoir is positive: Stot = Ssys + Sres ≥ 0. Since the reservoir is always at equilibrium, owing to its very 
large size, we have, following Clausius, �Sres = Q res/T . In other words, the heat absorbed by the reservoir satisfies 
Q res ≥ T �Ssys. For a two-state system that stores one bit of information, there are initially two possible states that 
can be occupied with probability one half, and the initial Shannon entropy is H i = ln(2). After erasure, the system is 
with unit probability in one of the states and the final Shannon entropy vanishes H f = 0. The change of information 
entropy is thus �H = − ln(2). During this erasure process, the ability of the system to store information has been 
modified. By further using the (assumed) equivalence between thermodynamic entropy S and information entropy H , 
we can write �Ssys = kB H = kB ln(2). We hence obtain Q res ≥ kBT ln(2), showing that the heat dissipated into the 
reservoir during the erasure of one bit of information is always larger than kB T ln(2).

4.2. Energy cost of information erasure

Eq. (9) shows that one can extract work from information. In the rest of this section, we will discuss the reverse process, 
i.e. the energy needed to process information. By applying the second law of thermodynamics, Landauer demonstrated 
that information erasure is necessarily a dissipative process: the erasure of one bit of information is accompanied by the 
production of at least kB T ln(2) of heat into the environment. This result is known as Landauer’s erasure principle.

It emphasizes the fundamental difference between the process of writing and erasing information. Writing is akin to 
copying information from one device to another: state left is mapped to left and state right is mapped to right, for example. 
This one-to-one mapping can be realized in principle without dissipating any heat (in statistical mechanics, one would say 
that it conserves the volume in phase space). By contrast, erasing information is a two-to-one transformation: states left 
and right are mapped onto one single state, say right (this process does not conserve the volume in phase space and is thus 
dissipative).

Landauer’s original thought experiment has been realized [20,86] for the first time in a real system in 2011 using a 
colloidal Brownian particle in a fluid trapped in a double-well potential produced by two strongly focused laser beams [20]. 
This system has two distinct states (particle in the right or left well) and may thus be used to store one bit of information. 
The erasure principle has been verified by implementing a protocol proposed by Bennett and illustrated in Fig. 6(a). At the 
beginning of the erasure process, the colloidal particle may be either in the left or right well, with equal probability of 
one half. The erasure protocol is composed of the following steps: (1) the barrier height is first decreased by varying the 
laser intensity, (2) the particle is then pushed to the right by gently inclining the potential, and (3) the potential is brought 
back to its initial shape. At the end of the process, the particle is in the right well with unit probability, irrespective of its 
departure position. As in the previous experiment, the position of the particle is recorded with the help of a camera. For a 
full erasure cycle, the average heat dissipated into the environment is equal to the average work needed to modulate the 
form of the double-well potential. This quantity (plotted as a function of time in Fig. 6(b) was evaluated from the measured 
trajectory and shown to be always larger than Landauer’s bound, which is asymptotically approached in the limit of long 
erasure times. However, in order to reach the bound, the protocol must be accurately chosen because, as discussed in [20]
and shown experimentally [87], there are protocols that are intrinsically irreversible, no matter how slow are performed. 
The way in which a protocol can be optimized has been theoretically solved in [88], but the optimal protocol is not often 
easy to apply in an experiment
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Fig. 6. Experimental verification of Landauer’s erasure principle. A colloidal particle is initially confined in one of two wells of a double-well potential with 
probability one half. This configuration stores one bit of information. By modulating the height of the barrier and applying a tilt, the particle can be brought 
to the well on the right with probability one, irrespective of the initial position. (b) In the limit of long erasure cycles, the heat dissipated during the erasure 
process (plotted as a function of time in b) can approach, but not exceed, the Landauer bound indicated by the dashed line (see [20] for details).

4.3. Other examples on the connection between information and energy

By having successfully turned gedanken into real experiments, the above-mentioned results provide a firm empirical 
foundation to the physics of information and to the intimate connection existing between information and energy. This 
connection is reenforced by the relationship between the generalized Jarzinsky equality [89] and Landauer ’s bound, which 
has been proved and tested on experimental data in [86]. A number of additional experiments have been performed on this 
subject [90–94], confirming the initial experimental observation. It is worth to mention experiments where the Landauer’s 
bound has been reached in nano devices [90,93]. These experiments open the way to insightful applications for future 
developments of information technology.

Finally, the connection between thermodynamics and information plays a very important role in the understanding of 
biological systems [95,96]. The summary of this section is that information can be used to produce energy, but information 
processing needs more energy than what is produced, so that the second principle is not violated by a Maxwell demon.

5. Conclusions

The purpose of this article was to write a short overview of the historical development of the study of the energy 
fluctuations in out-of-equilibrium systems, mainly focusing on the experimental tests that we developed in the past. We 
started from the first ideas on FDR applied to space-time chaos till the application of stochastic thermodynamics in small 
systems and to the energetics of information. Many aspects have been only sketched, because more detailed reviews have 
been written on the subject [21]. We did not discuss the energy fluctuations of macroscopic systems, as the connection 
with theoretical predictions is in general more complex and as it will be difficult to summarize it in a short review [38].

References

[1] R. Labbé, F.J. Pinton, S. Fauve, J. Phys. II 6 (1996) 1099.
[2] S. Ciliberto, N. Garnier, S. Hernandez, C. Lacpatia, F.J. Pinton, G. Ruiz Chavarria, Physica A 340 (2004) 240.
[3] K. Feitosa, N. Menon, Phys. Rev. Lett. 92 (2004) 164301.
[4] N. Kumar, S. Ramaswamy, K.A. Sood, Phys. Rev. Lett. 106 (2011) 118001.
[5] A. Mounier, A. Naert, Europhys. Lett. 100 (2012), https://doi .org /10 .1209 /0295 -5075 /100 /30002.
[6] A. Naert, Europhys. Lett. 97 (2012), https://doi .org /10 .1209 /0295 -5075 /97 /20010.
[7] O. Cadot, A. Boudaoud, C. Touzé, Eur. Phys. J. B 66 (2008) 399.
[8] A. Argun, A.-R. Moradi, E. Pince, G.B. Bagci, G. Volpe, arXiv:1601.01123, 2017.
[9] S. Krishnamurthy, S. Ghosh, D. Chatterji, R. Ganapathy, A.K. Sood, Nat. Phys. 12 (2016) 1134.

[10] Y. Pomeau, Physica D 23 (1986) 3.
[11] H. Chaté, P. Manneville, Phys. Rev. Lett. 54 (1987) 112.
[12] S. Ciliberto, P. Bigazzi, Phys. Rev. Lett. 60 (1988) 286.
[13] M. Caponeri, S. Ciliberto, Phys. Rev. Lett. 64 (1990) 2775.

http://refhub.elsevier.com/S1631-0705(19)30114-8/bib4C61626265s1
http://refhub.elsevier.com/S1631-0705(19)30114-8/bib43696C69626572746F5F74757262756C656E6365s1
http://refhub.elsevier.com/S1631-0705(19)30114-8/bib466569746F73615F32303034s1
http://refhub.elsevier.com/S1631-0705(19)30114-8/bib73726972616D5F50524C5F32303131s1
https://doi.org/10.1209/0295-5075/100/30002
https://doi.org/10.1209/0295-5075/97/20010
http://refhub.elsevier.com/S1631-0705(19)30114-8/bib4361646F745F32303038s1
http://refhub.elsevier.com/S1631-0705(19)30114-8/bib566F6C70655F323031375F73656C665F70726F70s1
http://refhub.elsevier.com/S1631-0705(19)30114-8/bib4B726973686E616D75727468795F32303137s1
http://refhub.elsevier.com/S1631-0705(19)30114-8/bib506F6D6561755F506844s1
http://refhub.elsevier.com/S1631-0705(19)30114-8/bib4D616E6E6576696C6C655F50524Cs1
http://refhub.elsevier.com/S1631-0705(19)30114-8/bib43696C69626572746F5F737469s1
http://refhub.elsevier.com/S1631-0705(19)30114-8/bib43696C69626572746F5F7374695F31393930s1


538 S. Ciliberto / C. R. Physique 20 (2019) 529–539
[14] P. Hohenberg, B. Shraiman, Physica D 37 (1989) 109.
[15] M. Caponeri, S. Ciliberto, Physica D 58 (1992) 365.
[16] L. Cugliandolo, J. Kurchan, Phys. Rev. Lett. 71 (1993) 173.
[17] L.F. Cugliandolo, J. Kurchan, L. Peliti, Phys. Rev. E 55 (1997) 3898.
[18] N. Garnier, S. Ciliberto, Phys. Rev. E 71 (2005) 060101.
[19] R. van Zon, S. Ciliberto, E.G.D. Cohen, Phys. Rev. Lett. 92 (2004) 130601.
[20] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Nature 483 (2012) 187.
[21] S. Ciliberto, Phys. Rev. X 6 (2017) 021051.
[22] K. Sekimoto, Prog. Theor. Phys. Suppl. 130 (1998) 17.
[23] D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71 (1993) 2401.
[24] D.J. Evans, D.J. Searles, Adv. Phys. 51 (2002) 1529.
[25] G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74 (1995) 2694.
[26] J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95 (1999) 333.
[27] J. Kurchan, J. Phys. A, Math. Gen. 31 (1998) 3719.
[28] J.D.J.D. Searles, L. Rondoni, J.D. Evans, J. Stat. Phys. 128 (2007) 1337.
[29] D.J. Evans, D.J. Searles, S.R. Williams, J. Chem. Phys. 128 (2008) 014504.
[30] U. Seifert, Phys. Rev. Lett. 95 (2005) 040602.
[31] L. Puglisi, A. Rondoni, A. Vulpiani, J. Stat. Mech. (2006) P08010.
[32] R. van Zon, E.G.D. Cohen, Phys. Rev. Lett. 91 (2003) 110601.
[33] G.E. Crooks, J. Stat. Phys. 90 (1998) 1481.
[34] P. Gaspard, J. Stat. Phys. 117 (2004) 599.
[35] U. Seifert, Rep. Prog. Phys. 75 (2012) 126001.
[36] D. Andrieux, P. Gaspard, S. Ciliberto, S. Garnier, S. Joubaud, S. Petrosyan, J. Stat. Mech. Theory Exp. 2008 (2008) P01002.
[37] S. Joubaud, B.N. Garnier, S. Ciliberto, Europhys. Lett. 82 (2008) 30007.
[38] S. Ciliberto, S. Joubaud, A. Petrosian, J. Stat. Mech. (2010) P12003.
[39] C. Jarzynski, Phys. Rev. Lett. 78 (1997) 2690.
[40] C. Jarzynski, Phys. Rev. E 56 (1997) 5018.
[41] P. Jop, A. Petrosyan, S. Ciliberto, Europhys. Lett. 81 (2008) 50005.
[42] R. Benzi, G. Parisi, A. Sutera, A. Vulpiani, SIAM J. Appl. Math. 43 (1983) 565.
[43] L. Gammaitoni, F. Marchesoni, S. Santucci, Phys. Rev. Lett. 74 (1995) 1052.
[44] C. Schmitt, B.B. Dybiec, P. Hänggi, C. Bechinger, Phys. Rev. Lett. 74 (2006) 937.
[45] A. Imparato, P. Jop, A. Petrosyan, S. Ciliberto, J. Stat. Mech. Theory Exp. 2008 (2008) P10017.
[46] S. Ciliberto, A. Imparato, A. Naert, M. Tanase, Phys. Rev. Lett. 110 (2013) 180601.
[47] S. Ciliberto, A. Imparato, A. Naert, M. Tanase, J. Stat. Mech. Theory Exp. 2013 (2013) P12014.
[48] P. Reimann, C.V. den Broeck, H. Linke, P. Hänggi, J.M. Rubi, A. Pérez-Madrid, Phys. Rev. Lett. 87 (2001) 010602.
[49] U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni, A. Vulpiani, Phys. Rep. 461 (2008) 111.
[50] L.F. Cugliandolo, J. Phys. A, Math. Gen. 44 (2011) 483001.
[51] T.S. Grigera, N.E. Israeloff, Phys. Rev. Lett. 83 (1999) 5038.
[52] L. Bellon, S. Ciliberto, C. Laroche, Europhys. Lett. 53 (2001) 511.
[53] D. Herisson, M. Ocio, Phys. Rev. Lett. 88 (2002) 257202.
[54] L. Berthier, J.-L. Barrat, Phys. Rev. Lett. 89 (2002) 095702.
[55] A. Crisanti, J. Ritort, J. Phys. A, Math. Gen. 36 (2003) R181.
[56] P. Calabrese, A. Gambassi, J. Phys. A, Math. Gen. 38 (2005) R133.
[57] A. Barrat, V. Colizza, V. Loreto, Phys. Rev. E 66 (2002) 011310.
[58] K. Hayashi, M. Takano, Biophys. J. 93 (2007) 895.
[59] L. Conti, et al., Phys. Rev. E 85 (2012) 066605.
[60] P. Hänggi, H. Thomas, Z. Phys. 22 (1975) 295.
[61] T. Harada, S-i. Sasa, Phys. Rev. Lett. 95 (2005) 130602.
[62] E. Lippiello, F. Corberi, M. Zannetti, Phys. Rev. E 71 (2005) 036104.
[63] T. Speck, U. Seifert, Europhys. Lett. 74 (2006) 391.
[64] R. Chetrite, G. Falkovich, K. Gawȩdzki, J. Stat. Mech. (2008) P08005.
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