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Abstract. In an ensemble of two-level atoms that can be described in terms of a collective spin, entangled
states can be used to enhance the sensitivity of interferometric precision measurements. While non-Gaussian
spin states can produce larger quantum enhancements than spin-squeezed Gaussian states, their use
requires the measurement of observables that are nonlinear functions of the three components of the col-
lective spin. In this paper we develop strategies that achieve the optimal quantum enhancements using non-
Gaussian states produced by a nonlinear one-axis-twisting Hamiltonian, and show that measurement-after-
interaction techniques, known to amplify the output signals in quantum parameter estimation protocols,
are effective in measuring nonlinear spin observables. Including the presence of the relevant decoherence
processes from atomic experiments, we determine analytically the quantum enhancement of non-Gaussian
over-squeezed states as a function of the noise parameters for arbitrary atom numbers.

Résumé. Dans un ensemble d’atomes à deux niveaux descriptible par un spin collectif, on peut utiliser
les états intriqués pour améliorer la sensibilité des mesures interférométriques. Bien que les états de spin
non gaussiens puissent produire des améliorations quantiques plus importantes que les habituels état
comprimés de spin, gaussiens, leur utilisation nécessite la mesure d’observables non linéaires en les trois
composantes du spin collectif. Nous expliquons ici comment maximiser le gain quantique en utilisant des
états non gaussiens surcomprimés produits par un hamiltonien non linéaire de torsion à un axe, et nous
montrons que les techniques de mesure après intéraction, connues pour amplifier les signaux de sorties
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dans les protocoles quantiques de détermination de quantités physiques, sont efficaces pour mesurer les
observables de spin non linéaires. En tenant compte des processus de décohérence pertinents pour les
expériences de physique atomique, nous déterminons analytiquement le gain quantique optimal en fonction
des paramètres de bruit pour un nombre d’atomes arbitraire.

Keywords. spin squeezing, non gaussian states, scaling laws, quantum metrology, decoherence.

Mots-clés. compression de spin, état non gaussiens, lois d’échelle, métrologie quantique, décohérence.
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1. Introduction

The classical precision limit of interfermetric measurements is determined by quantum projec-
tion noise. Entangled many-body spin states with correlated quantum fluctuations can overcome
this limit and may offer significant precision enhancements [1–5]. A widely known strategy offer-
ing quantum-enhanced precision in atomic Ramsey spectroscopy measurements is spin squeez-
ing [2, 6]. By redistributing the quantum noise into unmeasured observables, the variance of the
spin component that contains the information about the phase parameter φ of interest can be
reduced below the standard quantum limit (SQL): (∆φ)2

SQL = 1/N that is the minimum uncer-
tainty for N non-entangled atoms [7].

To generate the required quantum entanglement to improve the precision of measure-
ments [5, 7–11], well controlled interactions are used. In Bose–Einstein condensates, atomic col-
lisions naturally generate entanglement [12–15]. Alternatively, effective interactions mediated by
an electromagnetic field can be implemented in optical cavities [16]. In both cases, the one-axis-
twisting (OAT) Hamiltonian Ĥ = ħχŜ2

z , nonlinear in the spin component Ŝz where χ is deter-
mined by the interaction strength, allows for a unifying description of these interactions. Start-
ing from a coherent spin state, an eigenstate of Ŝx , the one-axis-twisting evolution allows for the
generation of states where a linear (L) spin component, a combination of Ŝ y and Ŝz , is squeezed,
i.e., its uncertainty is decreased below the standard quantum limit. Although it was shown to be
an experimentally robust to improve measurement precision in atomic interferometers [14–19],
this approach offers a quantum gain that is limited to (∆φ)2

SQL/(∆φ)2
L ∝ N 2/3 [6].

One-axis-twisting generates states that are more sensitive than spin-squeezed states when the
evolution is continued beyond the best linear squeezing time, eventually reaching the Heisenberg
limit (∆φ)2

SQL/(∆φ)2
HL = N that is the maximum gain allowed by quantum mechanics. Recently, an

experiment reaching the Heisenberg limit was realized using the spin of a highly magnetic atom
2J = 16 [20], and an experimental demonstration of a quantum gain reaching Heisenberg scaling,
i.e. (∆φ)2

SQL/(∆φ)2
HS = aN with a < 1, was realized with up to N = 350 Ytterbium atoms [21].

To exploit the sensitive features of these highly entangled states, measurement-after-interaction
(MAI) strategies such as squeezing echos have been developed [22–29] that reduce the sensitivity
to imperfections and detection noise. However, their fragility towards decoherence [30–33], and
the need for stable and coherent interactions on sufficiently long time scales renders the reach of
Heisenberg scaling in systems with large atom number extremely challenging.

A promising alternative is provided by over-squeezed spin states [34–37] that are generated by
OAT after the linear squeezing time but on time scales that are shorter than those needed to reach
Heisenberg scaling. The sensitivity of these states cannot be captured in terms of the squeezing of
linear spin observables, but instead requires the measurement of nonlinear spin observables [38]
whose squeezing can lead to significant quantum enhancements beyond the reach of linear spin
squeezing. Theoretically, the metrological potential of this relevant class of states in the limit of
large N is only accessible by analytical approaches since numerical simulations are limited to
moderate particle numbers that are too low to extrapolate the scaling behavior.

In this paper, after recalling the most important results of the squeezing of a linear (L) spin
observable, we focus on the squeezing of nonlinear spin observables generated by the OAT
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evolution, its sensitivity enhancement beyond the linear spin squeezing and its scaling with
the atom number for N À 1. First, we show that when a single nonlinear spin observable
(NL) of the form {Sx ,Sz } is added to the linear components in the ensemble of accessible
observables, the best quantum gain scales as (∆φ)2

SQL/(∆φ)2
NL ∝ N 4/5 and it is reached on

the time scale χt ∝ N−3/5; while for an optimal linear combination of arbitrary linear and
quadratic (Q) spin observables, the best quantum gain scales as (∆φ)2

SQL/(∆φ)2
Q ∝ N 6/7 and is

reached on a time scale χt ∝ N−4/7. Second, we show that the measurement-after-interaction
technique gives access to a continuous family of nonlinear spin observables that reproduce all
the scaling laws mentioned above. More generally, we show that on time scales χt ∝ N−α of
the one-axis twisting evolution with 1 ≥ α ≥ 1/2, the MAI technique allows one to achieve a
maximal quantum gain that scales as (∆φ)2

SQL/(∆φ)2
MAI ∝ N 2−2α. By comparing to the quantum

Fisher information, which quantifies the maximal sensitivity enhancement over all possible
measurements, we demonstrate that the scaling law of the MAI technique is optimal at any time
in the considered time window 1 ≥ α ≥ 1/2. In order to study the effect of decoherence on this
scaling law, we include two collective dephasing processes corresponding to realistic noise in
atomic experiments into our analytical study. For a ballistic dephasing processes, described by
fluctuating energy levels in the Hamiltonian, we predict a critical value of the preparation time at
which we observe a discontinuous change in the scaling law of the quantum gain. For a dephasing
of diffusive nature, described by a Lindblad master equation, we find that the scaling exponent is
reduced by a factor of 2 independently of the dephasing strength. In addition to the scaling laws
in the large-N limit, first reported in Ref. [39], we present general expressions of the quantum
gain for arbitrary atom numbers and identify finite-size corrections. Finally we study the effect of
particle losses on the squeezing of a nonlinear or a quadratic spin observable.

2. Optimization over rotation axis and measurement observables

We consider an ensemble of N two-level atoms that is described in terms of the collective spin
observables ~̂S = (Ŝx , Ŝ y , Ŝz )T , where Ŝk =∑N

i=1 σ̂
(i )
k /2 andσ(i )

k with k = x, y, z is the Pauli matrix for
the i th atom. Starting from the spin-coherent state |ψ0〉 such that

Ŝx
∣∣ψ0

〉= N

2

∣∣ψ0
〉

, (1)

an entangled spin state |ψt 〉 = Û t |ψ0〉 is generated via the OAT evolution Û t = e−iχt Ŝ2
z at time t .

A phaseφ is imprinted at this time by the rotation e−i Ŝ~n φ, with Ŝ~n =~n·~̂S, where~n is a unit vector in
the plane perpendicular to the initial spin polarization,~ex in this case. The goal of the protocol is
to infer the best estimate of the phaseφ from the measurement of an observable X̂ , subsequently
to the phase imprinting. The inferred phase uncertainty is given by [2]

(
∆φ

)2 =
(
∆X̂

)2∣∣∂φ 〈
X̂

〉∣∣2

∣∣∣∣∣
φ=0

, (2)

where ∂φ ≡ ∂/∂φ, while 〈X̂ 〉 and (∆X̂ )2 are the mean value and the variance of the measured
observable X̂ respectively. Since any additional shift can be absorbed by the initial state, we
focus on the estimation of the phase in the vicinity of zero without restriction of generality. The
denominator in (2) is given by

∂
〈

X̂
〉

∂φ

∣∣∣∣∣
φ=0

= ∂

∂φ

〈
ψ0

∣∣∣Û †
t e i Ŝ~n φ X̂ e−i Ŝ~n φÛ t

∣∣∣ψ0

〉∣∣∣
φ=0

= i
〈
ψt

∣∣[Ŝ~n , X̂
]∣∣ψt

〉
. (3)
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By replacing it in (2), we obtain (
∆φ

)2 =
(
∆X̂

)2∣∣〈[Ŝ~n , X̂
]〉∣∣2 . (4)

For the initial non-correlated state (1) and X̂ = Ŝ ~m a spin component in the y z-plane with ~m ⊥~n,
the phase uncertainty reaches the SQL. With respect to this limit, we quantify the quantum
metrological gain given by the state prepared at the time t of the OAT evolution, with a rotation
around ~n and a measurement of an observable X̂ , by the parameter [38]

ξ−2 (
χt , Ŝ~n , X̂

)≡ (
∆φ

)2
SQL(

∆φ
)2 =

∣∣〈[Ŝ~n , X̂
]〉∣∣2

N
(
∆X̂

)2 , (5)

where all the averages are taken in the state Û t |ψ0〉. In order to analytically optimize the metro-
logical gain (5) with respect to the rotation axis~n and the measurement observable X̂ , we assume

that we have a family of q accessible operators ~̂X = (X̂ 1, . . . , X̂ q )T and we can measure any arbi-

trary linear combination X̂ ~m = ~m · ~̂X =∑q
k=1 mk X̂ k . For a given measurement direction ~m, we can

re-express (5) as

ξ−2 (
χt , Ŝ~n , X̂ ~m

)=
∣∣∣~nT C

[
χt ,~̂S, ~̂X

]
~m

∣∣∣2

N
(
~mTΓ

[
χt , ~̂X

]
~m

) , (6)

where we introduced the 2×q commutator matrix

C
[
χt ,~̂S, ~̂X

]
kl

≡−i
〈[

Ŝk , X̂ l
]〉

, (7)

and the q ×q covariance matrix

Γ
[
χt , ~̂X

]
kl

≡ Cov
(
X̂ k , X̂ l

)= 1

2

〈
X̂ k X̂ l + X̂ l X̂ k

〉−〈
X̂ k

〉〈
X̂ l

〉
. (8)

For a state prepared at time t of the OAT evolution, the maximum of (6) over the rotation direction
~n and the measurement direction ~m corresponds to the maximum eigenvalue λmax of the matrix
CΓ−1C T [38]:

ξ−2
~̂X

(
χt

)= max
~m,~n

ξ−2 (
χt , Ŝ~n , X̂ ~m

)= λmax
(
CΓ−1C T

)
N

, (9)

and is reached with the choice ~n =~nmax where ~nmax is the eigenvector of CΓ−1C T corresponding
to λmax. The optimal measurement direction is ~mopt =αΓ−1C T~nmax, where α ∈R is a normaliza-
tion constant.

3. Squeezing of linear and quadratic spin observables

Starting with a coherent spin state, at short times, the OAT evolution Û t leads to the squeezing
of a linear spin component X̂ L = Ŝ ~m . An evolution beyond the best linear squeezing time allows
for the generation of non-Gaussian spin states where nonlinear spin observables are squeezed.

For each given choice of a family ~̂X of accessible operators that can contain nonlinear spin
observables, in addition to Ŝ ~m , the optimization explained in Section 2 allows us to identify, at any
time t of the one-axis-twisting evolution, the best squeezed observable and the corresponding
metrological gain.

C. R. Physique — 2022, 23, 1-26
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c d

Figure 1. Metrological gain ξ−2 in the limit of large N including finite size corrections (13),
(20), (29) and (42) (solid lines) for (a) linear (L), (b) nonlinear (NL), (c) quadratic (Q), and (d)
MAI measurement strategies, compared to the exact metrological gain (dashed lines). The
spin number is N = 103 (top row) and N = 104 (bottom row).

3.1. Linear spin squeezing

Let us first consider the squeezing of a linear spin observable X̂ L = Ŝ ~m = ∑
i=x, y, z mi Ŝi . By

considering that the initial state of the system is (1) where the collective spin is in the x direction,
we can show that 〈ψ0|Û †

t [Ŝx , Ŝi ]Û t |ψ0〉 = 0 for any i = x, y, z. This allows us to restrict ~m to
the y z-plane. In order to identify the best squeezed linear observable and the corresponding

metrological gain, we use the technique explained in Section 2 and we set ~̂X L = (
Ŝ y , Ŝz

)T
,

meaning that we study the squeezing of a linear observable of the form

X̂ L = my Ŝ y +mz Ŝz . (10)

The fact that the one-axis-twisting evolution is analytically solvable allows us to determine, see
Appendix A, the commutator (7) and the covariance (8) matrices for a given N at each time t . The
optimization over the rotation ~n and the measurement ~m directions gives us the metrological
gain (9) in the limit N À 1 at χt < 1/

p
N(

ξ−2
L

(
χt

))
N →∞ = N 2

(
χt

)2

1+N 4
(
χt

)6 /6
. (11)

The best metrological gain and the corresponding time can be obtained from a maximization
of (11) over χt as [40]

χtL,best = 31/6N−2/3 ;
(
ξ−2

L,best

)
N →∞ = 2

32/3
N 2/3. (12)

By introducing the rescaled time χ̃t = χt/(χtL,best) and by expanding the exact metrological
gain ξ−2

L (χt ) up to O (N 0), we obtain

ξ−2
L(

ξ−2
L,best

)
N →∞

= 3

2

(
χ̃t

)2

1+ (
χ̃t

)6 /2

[
1−31/3 (

χ̃t
)2 N−1/3 +O

(
N−2/3)] . (13)

This expression is shown as a solid line in Figure 1(a) as a function of χ̃t for N = 103,104,
and compared to the exact metrological gain. For χ̃t = 1 we obtain the best metrological gain
including finite size corrections

ξ−2
L,best =

(
ξ−2

L,best

)
N →∞

[
1−31/3N−1/3 +O

(
N−2/3)] . (14)

C. R. Physique — 2022, 23, 1-26



6 Youcef Baamara, Alice Sinatra and Manuel Gessner

that is shown as the red horizontal dashed line in Figure 2(a). The optimal rotation is Ŝ~nmax =
~nmax · ~̂S⊥ where ~nmax is a unit vector in the y z-plane with ~nmax = (cosθL

n , sinθL
n)T , and the best

squeezed linear spin observable is Ŝ ~mopt = ~mopt · ~̂X L with ~mopt = (cosθL
m , sinθL

m)T . In the limit of
large N , we obtain

θL
n = 3−1/6N−1/3 +O

(
N−2/3) ; θL

m =−π
2
+3−1/6N−1/3 +O

(
N−2/3) . (15)

The interferometric estimation of the unknown phase φ using the state prepared at χtL,best of
the OAT dynamics with the rotation generator Ŝ~nmax and the measurement of the best squeezed
linear observable Ŝ ~mopt lead to the sub-SQL phase uncertainty

∆φ' 31/3

p
2

1

N 5/6
. (16)

3.2. Nonlinear spin squeezing

In addition to Ŝ ~m , we first consider a single second-order observable 1
2 {Ŝx , Ŝz }, where {Â, B̂} =

ÂB̂ + B̂ Â denotes the anticomutator of Â and B̂ . This corresponds to the choice of the nonlinear
family ~̂X NL = (

Ŝ y , Ŝz , 1
2 {Ŝx , Ŝz }

)T
. We thus explore the squeezing of a nonlinear observable of the

form
X̂ NL = my Ŝ y +mz Ŝz + mxz

2

{
Ŝx , Ŝz

}
. (17)

The analytical calculation of the commutator (7) and covariance (8) matrices (given in Appen-
dix A), allows us to deduce the nonlinear metrological gain for N À 1 at χt < 1/

p
N as1

(
ξ−2

NL

(
χt

))
N →∞ = N 2

(
χt

)2

1+N 6
(
χt

)10 /270
. (18)

By maximizing (18) over χt , we find the scaling with N of the best metrological gain and the
corresponding time:

χtNL,best =
(

5

2

)1/10

33/10N−3/5 ;
(
ξ−2

NL,best

)
N →∞ = 2

(
2

5

)4/5

33/5N 4/5. (19)

In order to obtain the first finite-size corrections to (18), we introduce the rescaled time χ̃t =
χt

χtNL,best
to obtain

ξ−2
NL(

ξ−2
NL,best

)
N →∞

= 5
(
χ̃t

)2

4+ (
χ̃t

)10

[
1−

(
135

2

)1/5 (
χ̃t

)2 N−1/5 + 5
(
χ̃t

)4

4+ (
χ̃t

)10

221
(
χ̃t

)10 +672

405001/5 28
N−2/5 +O

(
N−3/5)] . (20)

A representation of (20) as a function of χ̃t for N = 103,104 compared to the exact metrological
gain is shown in Figure 1(b). For χ̃t = 1, we obtain the best nonlinear metrological gain including
finite-size corrections

ξ−2
NL,best =

(
ξ−2

NL,best

)
N →∞

[
1−

(
5

2

)1/5

33/5N−1/5 + 893

22/534/553/528
N−2/5 +O

(
N−3/5)] . (21)

shown as the orange horizontal dashed line in Figure 2(a).

1We calculate analytically the inverse of the 3×3 covariance matrix Γ and diagonalize the 2×2 matrix CΓ−1C T .
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Figure 2. (a) Quantum metrological gain for the linear ξ−2
L , nonlinear ξ−2

NL, quadratic ξ−2
Q

and MAI ξ−2
MAI measurement strategies as a function of time, compared to the quantum

Fisher information with N = 104. The solid vertical and horizontal lines represent the
corresponding (exact) best meteorological gain and best time, while the dashed horizontal
and vertical lines represent the analytical scaling laws in the limit of large N with finite size
corrections. (b) Optimisation over the second interaction time τ in the MAI technique. The
plot shows the best time τopt as a function of the squeezing time t for N = 103 (blue) and
N = 108 (orange). In the relevant time frame χt ≤ 1/

p
N , we have τopt ' −at +b where a

and b +1 are represented in the inset as functions of N .

The optimal rotation direction ~nmax = (cosθNL
n , sinθNL

n )T is given in the limit of large N by

θNL
n =

(
2

5

)1/10

3−3/10N−2/5 +O
(
N−3/5) , (22)

and the best spin observable among the nonlinear family ~XNL is X̂ ~mopt = ~mopt · ~̂X NL where we
write

~mopt =
(
sinϕNL

m cosθNL
m , sinϕNL

m sinθNL
m ,cosϕNL

m

)T
with θNL

m ∈ [−π,π] and ϕNL
m ∈ [0,π] (23)

and, in the limit of large N we find,

θNL
m =−π

2
+ 37/10

29/1051/10
N−2/5 +O

(
N−3/5) ; ϕNL

m = π

2
+ 1

N
+O

(
N−6/5) . (24)

Note that, since Ŝx is of order of N , the contribution mxz {Ŝx , Ŝz } of the nonlinear observable to
X̂ NL (17) is comparable to that of the linear observable although mxz = cosϕNL

m is of order 1/N .
If a phase φ is imprinted in the system at χtNL,best after the OAT evolution, the measurement of
X̂ NL allows us to estimate the value of the phase φ with an uncertainty

∆φ' 1p
2

(
5

2

)4/10

3−3/10 1

N 9/10
, (25)

clearly surpassing the squeezing of a linear observable (16) and approaching the Heisenberg limit
∆φ= 1/N .

3.3. Quadratic spin squeezing

We now explore the squeezing of an arbitrary linear combination of spin observables up to sec-
ond order. First, we find numerically that in the time window 0 < χt ≤ 1/

p
N of the one-axis-

twisting evolution, the best squeezed quadratic observable is a combination of only four observ-

ables ~̂X Q = (Ŝ y , Ŝz , 1
2 {Ŝx , Ŝz }, 1

2 {Ŝx , Ŝ y })T . For this reason, we limit ourselves, in the following, to
the observables X̂ Q of the form

X̂ Q = my Ŝ y +mz Ŝz + mxz

2

{
Ŝx , Ŝz

}+ mx y

2

{
Ŝx , Ŝ y

}
. (26)

C. R. Physique — 2022, 23, 1-26
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By proceeding similarly to the nonlinear case2 we obtain for χt < 1/
p

N :

(
ξ−2

Q

(
χt

))
N →∞ = N 2

(
χt

)2

1+N 8
(
χt

)14 /875
. (27)

The best metrological gain and the corresponding time are obtained by maximizing (27) over χt :

χtQ,best '
(

7

6

)1/14

53/14N−4/7 ;
(
ξ−2

Q,best

)
N →∞ =

(
6

7

)6/7

53/7N 6/7. (28)

Introducing the rescaled time χ̃t = χt
χtQ,best

we obtain the first finite-size corrections to (27) as

ξ−2
Q(

ξ−2
Q,best

)
N →∞

= 7
(
χ̃t

)2

6+ (
χ̃t

)14

[
1−

(
875

6

)1/7 (
χ̃t

)2 N−1/7 + 7
(
χ̃t

)4

6+ (
χ̃t

)14

86
(
χ̃t

)14 +297

51/762/775/715
N−2/7

− 7
(
χ̃t

)6

6+ (
χ̃t

)14

61
(
χ̃t

)14 +147

310/755/774/723/7
N−3/7 +O

(
N−4/7)] (29)

represented in Figure 1(c), and finite size corrections to the best quadratic metrological
gain ξ−2

Q,best

ξ−2
Q,best =(

ξ−2
Q,best

)
N →∞

[
1−

(
7

6

)1/7

53/7N−1/7 + 383

51/762/775/715
N−2/7 − 104×24/7

310/755/774/7
N−3/7 +O

(
N−4/7)] (30)

that is represented as the green dashed horizontal line in Figure 2(a).
The optimal rotation direction is ~nmax = (cosθQ

n , sinθQ
n )T , and the best observable is X̂ ~mopt =

~mopt · ~̂X Q where ~mopt is in this case a four-dimensional unit vector corresponding to the set of
observables (Ŝ y , Ŝz , 1

2 {Ŝx , Ŝz }, 1
2 {Ŝx , Ŝ y })T that can be written as

~mopt =
(
sinωQ

m sinϕQ
m cosθQ

m , sinωQ
m sinϕQ

m sinθQ
m , sinωQ

m cosϕQ
m ,cosωQ

m

)T
. (31)

In the limit N À 1, we obtain

θ
Q
n =

(
6

7

)1/14

5−3/14N−3/7 +O
(
N−4/7) ; θ

Q
m =−π

2
+ 215/14

3×53/14

(
7

3

)13/14

N−3/7 +O
(
N−4/7) (32)

ϕ
Q
m = π

2
− 4

3N
+O

(
N−8/7) ; ω

Q
m = π

2
+ 2

3

(
2

7

)1/14 1

313/1453/14
N−10/7 +O

(
N−11/7) . (33)

By taking into the account that Ŝx is of the order of N , we note that the contribution of the
two nonlinear observables {Ŝx , Ŝz } and {Ŝx , Ŝ y } to X̂ ~mopt are respectively of the same order and
N−3/7 smaller than the contribution of the linear observable. The squeezing of the quadratic
observable (26) allows to achieve an uncertainty

∆φ'
(

7

6

)6/14

5−3/14 1

N 13/14
, (34)

on the inferred phase which is even closer to the Heisenberg limit than the uncertainty (25)
attained by the squeezing of the nonlinear observable (17). As expected, the uncertainty on
the phase ∆φ decreases as both the preparation time of the state by OAT evolution and the
nonlinearity of the measured spin observable increase.

2We calculate this time the inverse of the 4×4 covariance matrix which is still analytically possible, and we take the
limit N →∞ in the metrological gain ξ−2

Q (χt ) calculated by (9). The elements of the covariance and commutator matrices

for the quadratic case are given in Appendix A.
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4. Scaling laws of measurement-after-interaction technique

As shown above, the evolution with the one-axis twisting Hamiltonian, used as a system prepa-
ration before phase imprinting, allows to achieve a high metrological gain through the squeezing
of nonlinear spin observables. Such observables, that are higher moments of the spin compo-
nents, can be extracted from the statistics of linear spin observables [34–37, 41]. However, due
to the increased measurement time and the need for low detection noise, this is challenging
to achieve in systems with large atom numbers. As we will show in this section, the MAI tech-
nique [23, 24, 27] represents an alternative method for measuring a nonlinear spin observable
directly. For that, after the phase impinting and prior to the measurement of a linear spin ob-
servable Ŝ ~m with ~m = (mx ,my ,mz )T , we allow a second evolution Ûτ of the system with the OAT
Hamiltonian Ĥ = ħχŜ2

z . Mathematically, this is equivalent to the measurement of the nonlinear
spin observable

X̂ MAI = Û †
τŜ ~mÛτ =

∑
k=x, y, z

mk e iχτŜ2
z Ŝk e−iχτŜ2

z . (35)

By expanding (35) up to linear order in χτ, we obtain

X̂ MAI = Ŝ ~m−χτmx
{
Ŝ y , Ŝz

}+χτmy
{
Ŝx , Ŝz

}+O
(
χτ

)2 . (36)

Hence, a OAT evolution up to χτ = mxz /(2my ) followed by a measurement of the linear spin
observable Ŝ ~m with mx = 0 is equivalent to first order in χτ to the measurement of the nonlinear
spin observable (17).

Motivated by this correspondence, we systematically study the metrological potential that is
offered by the continuous set of observables (35), which is parametrized by χτ and accessible by
the MAI technique. The analytical optimization (9) allows us to obtain the maximal metrological
gain ξ−2

MAI(χt ) over all rotation directions~n and measurement directions ~m for a fixed interaction
time τ at time t of the OAT evolution3.

As shown in Figure 2(b), numerical optimization over τ reveals that, in the limit of large N ,
for a given χt ≤ 1/

p
N , the optimal interaction time χτopt which maximizes the metrological gain

ξ−2
MAI(χt ) is given by

χτopt →
N À1

−χt . (38)

This corresponds to the echo protocol that was first suggested in Ref. [23] where, after the
first one-axis-twisting evolution up to t and phase imprinting, we implement a second one-
axis-twisting evolution of a duration t where we invert the sign of the constant χ→ −χ in the
nonlinear Hamiltonian. Motivated by the result (38), we replace χτ by −χt in the expression of
the observable X̂ MAI (35). Using cosN (χt ) ' e−N (χt )2/2 for χt → 0, the metrological gain ξ−2

MAI(χt )
for the MAI technique is given for χt ≤ 1/

p
N in the limit of large N by(

ξ−2
MAI

(
χt

))
N →∞ = N 2 (

χt
)2 e−N(χt)2

. (39)

3Starting with the coherent spin state (1), the metrological gain associated to the state prepared at time χt of the
OAT evolution with the measurement of the observable (35) for fixed χτ is written according to (6), (7) and (8), with
~X = Û †

τ
~̂SÛτ. We thus have to evaluate

C
[
χt ,~̂S,Û †

τ
~̂SÛτ

]
kl

=−i
〈[

Ŝk ,Û †
τŜl Ûτ

]〉
, and Γ

[
χt ,Û †

τ
~̂SÛτ

]
kl

= Cov
(
Û †
τŜkÛτ,Û †

τŜl Ûτ

)
= Γ

[
χ (t +τ) ,~̂S

]
kl

, (37)

where we used the property Û t Ûτ = Û t+τ. First, we note that〈
ψ0

∣∣∣Û †
t

[
Ŝx ,Û †

τŜ~mÛτ

]
Û t

∣∣∣ψ0

〉
=

〈
ψ0

∣∣∣Û †
t

[
Ŝ~n ,Û †

τŜxÛτ

]
Û t

∣∣∣ψ0

〉
= 0

for any linear spin observable Ŝ~m and Ŝ~n . This allows us to restrict the optimization of both the rotation direction ~n
and the measurement direction ~m to the plane perpendicular to the initial spin direction~ex . The 2×2 commutator and
covariance matrices are given in Appendix B.

C. R. Physique — 2022, 23, 1-26



10 Youcef Baamara, Alice Sinatra and Manuel Gessner

The scaling laws of the metrological gain ξ−2
MAI for N À 1 on the time scales

χt =σN−α, 1 ≥α≥ 1/2, (40)

can be easily obtained from equation (39) and read4

ξ−2
MAI =


σ2N 2−2α, 1 ≥α> 1/2

σ2e−σ
2
N

[
1+

(
1+eσ

2

σ2 + 5σ2

3 − σ4

6 −2

)
1
N +O

(
N−2

)]
, α= 1/2

. (41)

We first note that to the leading order in the limit of large N , the result (41) reproduces the
scaling laws of the metrological gain of the linear, the nonlinear and the quadratic spin squeezing
discussed above: for α = 2/3, we recover the scaling of ξ−2

L ∝ N 2/3 for the linear spin squeezing.
For α = 3/5, the scaling law ξ−2

NL ∝ N 4/5 of the squeezing of the nonlinear observable (17) and
for α = 4/7, the scaling law ξ−2

Q ∝ N 6/7 of the squeezing of a quadratic observable. The best

metrological gain of the echo protocol [23], yielding the Heisenberg scaling ξ−2
MAI,best = N /e at

the time χtMAI,best = 1/
p

N , is obtained from (41) by maximization over both σ and α. Simlarly to
the previous section, the time rescaling χ̃t =χt/χtMAI,best allows us to write

ξ−2
MAI

ξ−2
MAI,best

= (
χ̃t

)2 e1−(χ̃t)2 +O
(
N−1) . (42)

This is represented in Figure 1(d). Note that the first finite size correction to the metrological
gain (42) of the MAI method, of order 1/N , are very small compared to the case of the nonlinear
(1/N 1/5) and the quadratic (1/N 1/7) spin squeezing.

The optimal rotation direction for a givenα andσ is written as~nmax = cosθn~ey+sinθn~ez where
we obtain in the limit of large N

θn =
{

arctan
( 2
σNα−1

)
, 1 ≥α> 1/2

1
σeσ

2/2 1p
N
+O

(
N−3/2

)
, α= 1/2

. (43)

X̂ ~mopt = Û †
−t (~mopt · ~̂S)Û−t , where ~mopt = cosθm~ey + sinθm~ez is a unit vector with

θm =
{

arctan
(− 1

σNα−1
)

, 1 ≥α> 1/2

− 1
σ

1p
N
+O

(
N−1

)
, α= 1/2

, (44)

represents, among the continuous set of observables (35), the best squeezed nonlinear observ-
able at the time (40) of the one-axis-twisting evolution5. Forα= 1/2, equations (43) and (44) con-
firm the optimality of the rotation direction ~n =~ey and the measurement direction ~m =~ey made
in Ref. [23] for N →∞.

5. Quantum Fisher information

The full metrological potential of a state is given by the quantum Fisher information FQ [42]
obtained by optimization over all possible measurements maxX̂ ξ

−2 = FQ /N . In order to assess
the quality of the MAI technique, we compare ξ−2

MAI, given in equation (41), to FQ /N of the states
generated by one-axis twisting. Starting with the state (1), for a phase imprinting rotation around
Ŝ~n with ~n in the y z-plane, the quantum Fisher information at a time t of the one-axis-twisting
evolution is given by FQ = 4λmax,F , where λmax,F is the largest eigenvalue of the covariance

matrix Γ[χt , ~̂X y z = (Ŝ y , Ŝz )T ] [5]. This can be obtained by restricting the covariance matrix of the

4For 1 ≥α> 1/2, we do not include the first correction whose form depends on the value of α.
5Here again in (43) and (44), the first corrections for 1 ≥α> 1/2 depend on the value of α.

C. R. Physique — 2022, 23, 1-26



Youcef Baamara, Alice Sinatra and Manuel Gessner 11

quadratic measurement given in Appendix A to the first two rows and columns. In the limit of
large N and for χt ≤ 1/

p
N , we obtain(

FQ /N
)

N →∞ = 1

2

(
1−e−2N(χt)2)

N . (45)

Using (45), we obtain the scaling law of the quantum Fisher information FQ /N at the time scales
χt =σN−α with 1 ≥α≥ 1/2

FQ /N =
{
σ2N 2−2α, 1 ≥α> 1/2
1
2

(
1−e−2σ2

)
N +O

(
N 0

)
, α= 1/2

. (46)

Comparison of this last equation to (41), shows that the MAI technique reaches the optimal
scaling law of sensitivity enhancement over the entire range of time 1 ≥α> 1/2.

We note that the metrological gain ξ−2
L (11), ξ−2

NL (18) and ξ−2
Q (27) discussed above have the

same structure and can be summarized in a unifying formula that gives the metrological gain in
the limit of large N for different mesurement strategies. For χt < 1/

p
N , we have

(
ξ−2 (

χt
))

N →∞ = FQ /N

1+M
, (47)

where

ML = N 4
(
χt

)6

6
; MNL = N 6

(
χt

)10

270
; MQ = N 8

(
χt

)14

875
(48)

for a linear, nonlinear and quadratic measurement respectively. In the case of the MAI technique,
the metrological gain in the limit of large N is given by (47) for χt ≤ 1/

p
N with

MMAI =
sinh

[
N

(
χt

)2
]

N
(
χt

)2 −1. (49)

These expressions quantify the limitation of the metrological gain due to suboptimal measure-
ments (M). In this sense, M can be interpreted as the information that cannot be extracted from
the state in a given measurement strategy.

6. Dephasing noise

In experiments, for physical systems that are not perfectly isolated from the environment or
that have other degrees of freedom coupled to the spin degrees of freedom we are interested
in, decoherence affects the OAT evolution and limits the metrological gain ξ−2. Realizations of
the OAT evolution based on Bose–Einstein condensates are fundamentally limited by particle
losses and finite temperature [43, 44]. It has been shown that for spin squeezing these effects
can be described with a dephasing model that leads to a ballistic behavior of spin fluctuations
(∆Ŝ y )2 [40]. In OAT realizations using trapped ions [31, 35, 45], magnetic field fluctuations cause
a similar ballistic collective dephasing [31, 46, 47]. On the contrary, in cavity-induced squeezing
of atomic ensembles, the collective dephasing of the spin due to cavity losses is of a diffusive
nature [48,49]. In the following, we focus on these classes of processes, i.e. on ballistic or diffusive
fluctuations of a collective spin observable and we quantify the resulting limitations on the
metrological gain ξ−2. The ballistic dephasing model is based on a Hamiltonian evolution with a
parameter that fluctuates from a realization to the other, which on average, leads to incoherent
evolution. The diffusive dephasing model is obtained from a Lindblad master equation [50, 51].
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6.1. Ballistic dephasing

To describe the OAT evolution in the presence of a ballistic collective dephasing, we consider the
Hamiltonian

Ĥ bal =ħχ(
Ŝ2

z +DŜz
)

, (50)

where ħχD represents an energy shift in the two-level systems. The constant D , here, is a classical
random variable whose value fluctuates between different repetitions of the experiment. We
consider D to follow a Gaussian distribution p(D) with zero average and a possibly extensive
variance

p(D) = 1√
2π

〈
D2

〉e
− D2

2〈D2〉 where
〈

D2〉= εNγ with 0 ≤ γ≤ 1, (51)

and ε a small parameter. Starting again with the coherent spin state (1), the state of the system
becomes |ψt 〉 = e−i Ĥ balt/ħ|ψ0〉, and the expectation value 〈Â〉 of any observable Â is given by〈

Â
〉= ∫ +∞

−∞
p(D)

〈
ψt

∣∣Â
∣∣ψt

〉
dD. (52)

6.1.1. Linear, nonlinear, and quadratic spin observables

The metrological gain of the state |ψt 〉, with a rotation around ~n and a measurement of X̂ can
always be written as in equation (6) where the corresponding analytical expressions for C and Γ
are given in Appendix C. Following an analogous strategy as in the noiseless case, to the leading
order in the limit of large N , the metrological gain of the linear, the nonlinear and the quadratic
spin squeezing is obtained for χt < 1/

p
N as

(
ξ−2

bal

(
χt

))
N →∞ = N 2

(
χt

)2

1+M +εN 1+γ (
χt

)2 , (53)

with the appropriate expression M of each measurement strategy given in Section 5. The precise
scaling in the large-N limit now depends on the interplay between the terms in the denominator.
Generally, we note that as soon as the noise-dependent term becomes non-negligible over 1+M ,
it will determine the scaling of the maximal quantum gain. Thus, the effect of ballistic dephasing,
in the limit of large N , is to set the upper bound ξ−2

lim = N 1−γ/ε to the scaling of the metrological
gain, independently of the measurement strategy. Due to the form of (53), the maximisation over
χt is not affected by the ballistic dephasing. The best time χtbest is then unchanged and the
metrological gain is

ξ−2
best,L(bal) '

2×3−2/3N 2/3

1+2ε×3−2/3Nγ−1/3
;

ξ−2
best,NL(bal) '

2
( 2

5

)4/5
33/5N 4/5

1+2ε
( 2

5

)4/5
33/5Nγ−1/5

;

ξ−2
best,Q(bal) '

( 6
7

)6/7
53/7N 6/7

1+ε( 6
7

)6/7
53/7Nγ−1/7

,

(54)

for the linear, the nonlinear and the quadratic spin squeezing respectively. Equations (54) show
that for a linear measurement, a collective ballistic dephasing with γ ≤ 1/3 does not change the
best noiseless metrological gain. This is also true for a nonlinear measurement if γ≤ 1/5 and for
a quadratic measurement if γ≤ 1/7.
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Figure 3. Metrological gain as a function of time using the measurement-after-interaction
strategy in presence of decoherence. The atom number is N = 103 (top row) and 104

(bottom row). (a) Ballistic dephasing with γ = 0,0.5,1 and ε = 0.05. Solid lines are the
analytic formulas (58) for ξ−2

MAI,bal in the limit of large N , and dashed lines are exact results.
(b) Diffusive dephasing with ε = 0,0.01,0.05. Solid lines are the analytical predictions (76)
for ξ−2

MAI,dif in the large N limit, and dashed lines the exact result.

6.1.2. MAI measurements

We have shown in Section 4 that the MAI method allows, with an appropriate value of α, to
reproduce all the scaling laws for the linear, nonlinear and the quadratic spin squeezing in the
noiseless case. To show that this observation can be extended to realistic scenarios, we identify
the limitations of the MAI metrological gain (41) in the presence of ballistic dephasing6.

The dominant effect of this random dephasing process is to increase, in a ballistic way, i.e.,
quadratically in χt , the variance of the optimal measurement observable ≈ Ŝ y . Indeed, for a small
ε, large N , and χt ≤ 1/

p
N , after the second one-axis twisting evolution in presence of ballistic

noise we obtain (
∆Ŝ y

)2
bal =

N

4

[
1+4εN 1+γ (

χt
)2 +O

(
χt

)4
]

. (57)

This decreases the metrological gain (39) by a factor (1+4εN 1+γ(χt )2)−1

(
ξ−2

MAI,bal

(
χt

))
N →∞ = N 2

(
χt

)2 e−N(χt)2

1+4εN 1+γ (
χt

)2 . (58)

This expression is compared to the exact result in Figure 3(a) for different values of γ and N .

6The metrological gain is given by equation (6) with ~X = Û †
τ
~̂SÛτ. The elements of the commutator and the covariance

matrices including the average over the random variable D

Ckl =−i
∫

dDp (D)
〈
ψt

∣∣∣[Ŝk ,ei Ĥbalτ/ħŜl e−i Ĥbalτ/ħ]∣∣∣ψt

〉
(55)

Γkl =
1

2

∫
dDp (D)

〈
ψt

∣∣∣ei Ĥbalτ/ħ {
Ŝk , Ŝl

}
e−i Ĥbalτ/ħ∣∣∣ψt

〉
− ∏

j=l ,k

∫
dDp (D)

〈
ψt

∣∣∣ei Ĥbalτ/ħŜ j e−i Ĥbalτ/ħ∣∣∣ψt

〉
(56)

where we take χτ=−χt as before and Dτ= Dt , are given in Appendix C.
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Using equation (58), we can deduce the scaling laws for large N of the gain on time scales
χt =σN−α with 1 ≥α≥ 1/2:

ξ−2
MAI,bal =


σ2N 2−2α

1+4εσ2N 1+γ−2α , 1 ≥α> 1/2

σ2e−σ2
N

1+4εσ2Nγ , α= 1/2

. (59)

We thus observe the existence of a critical value of α

αc = 1+γ
2

, (60)

such that for α≥ αc the gain (59) corresponds to the noiseless scaling law (41), while for α< αc ,
the gain is affected by the dephasing and becomes independent of α.

ξ−2
MAI,bal '

1

4ε
N 1−γ . (61)

A maximization of ξ−2
MAI,bal over σ and α allows us to find, for a given γ, the scaling law of the best

metrological gain and the corresponding time. For γ= 0, we obtain

χtMAI,bal,best ' (1−2ε)N−1/2 ; ξ−2
MAI,bal,best '

ε

e
N , (62)

while for γ 6= 0, the scaling law (61) represents the maximum metrological gain. This is achieved
exactly at the critical point αc , as well as by all longer times. By including first finite size
corrections to (59), we obtain

ξ−2
MAI,bal '

σ2N 2−2α

1+4εσ2N 1+γ−2α

[
1−σ2N 1−2α+ σ4

4
N 2−4α

]
. (63)

A maximization over α and σ of (63), shows that ξ−2
MAI,bal attains its maximal value (61) at χt =

(4ε)−1/4N−1/2−γ/4. In general, for a desired value ofα, equation (60) sets a maximal tolerable level
of ballistic dephasing noise γ= 2α−1 up to which the noiseless metrological gain is not affected
by the ballistic dephasing. As we already observed in equation (54), for the linear spin squeezing
where the best time corresponds to α= 2/3, the tolerable noise level is γ= 1/3; for the nonlinear
squeezing where α= 3/5, this is given by γ= 1/5 and it is given by γ= 1/7 for the quadratic spin
squeezing where α= 4/7. We thus demonstrate, as in the noiseless case, that the MAI technique
reproduces all the scaling laws of the metrological gain of different squeezing strategies also in
the presence of ballistic dephasing.

6.2. Diffusive dephasing

The OAT evolution in some experimental realizations is accompanied by collective spin fluctua-
tions of diffusive nature. To describe these fluctuations, we consider a collective dephasing pro-
cess at a rate γC where the dynamics is governed by the master equation [50,51] with the Lindblad
operator L̂ = Ŝz

∂ρ̂

∂t
=− i

ħ
[
Ĥ , ρ̂

]+γC L
[
ρ̂
]

, (64)

where, L [ρ̂] = Ŝz ρ̂Ŝz − 1
2 {Ŝ2

z , ρ̂} and Ĥ is the noiseless OAT Hamiltonian Ĥ =ħχŜ2
z . Starting from

the coherent spin state ρ̂0 = |ψ0〉〈ψ0| where |ψ0〉 is given by (1), the evolution of the system is
given by

ρ̂(t ) = eεχtL
[
Û t ρ̂0Û †

t

]
with ε= γC

χ
, (65)

where we used the fact that [Ĥ , L̂] = 0. Using L † = L , the expectation value of any operator Â
can be obtained from the adjoint master equation [51] as〈

Â
〉= tr

{
Âρ̂(t )

}= tr
{

eεχtL [
Â

]
Û t ρ̂0Û †

t

}
. (66)
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These expressions can then be inferred from the noiseless expectation values by explicitly deter-
mining the transformed operator eεχτL [Â].

6.2.1. Linear, nonlinear, and quadratic spin observables

In the limit N À 1, the metrological gain of the linear, the nonlinear and the quadratic spin
squeezing in the presence of a diffusive dephasing for χt < 1/

p
N are obtained using the same

steps as before7 and read

ξ−2
dif

(
χt

)' N 2
(
χt

)2

1+M +εNχt
, (69)

with the appropriate expression of M , which is given in Section 5. To maximize over χt in the
limit of large N at fixed ε, where εÀ 1/(Nχtbest), we can approximate (69) as

ξ−2
dif

(
χt

)' N 2
(
χt

)2

M +εNχt
. (70)

We then find the best time for the linear, nonlinear and the quadratic squeezing in presence of
the diffusive dephasing

χtbest,L(dif) '
(

3ε

2

)1/5

N−3/5 ;

χtbest,NL(dif) '
(

5ε

4

)1/9

31/3N−5/9 ;

χtbest,Q(dif) '
(

7

3

)1/13 53/13ε1/13

22/13
N−7/13 ,

(71)

and corresponding best metrological gain

ξ−2
best,L(dif) '

2×31/5

5

(
2

ε

)4/5

N 2/5 ;

ξ−2
best,NL(dif) '

4

3

27/951/9

35/3ε8/9
N 4/9 ;

ξ−2
best,Q(dif) '

2

13

211/13312/1353/1371/13

ε12/13
N 6/13.

(72)

For a linear measurement, the equations (71) and (72) confirm the optimal scaling laws χtbest ∝
N−3/5 and ξ−2

best ∝ N 2/5 found in the presence of diffusive dephasing due to cavity losses in cavity
induced spin squeezing [48, 49, 52].

6.2.2. MAI measurements

For the MAI measurement, the quantum gain is again given by (6) with ~X = Û †
τ
~̂SÛτ with the

following elements of C and Γ

Ckl =−i
〈
ψt

∣∣∣eεχtLC
[[

Ŝk ,Û †
τeεχτLC

[
Ŝl

]
Ûτ

]]∣∣∣ψt

〉
, (73)

7The elements of the commutator and covariance matrices to be used in the metrological gain (6) now read

Ckl =−i
〈
ψt

∣∣∣eεχtLC
[[

Ŝk , X̂ l
]]∣∣∣ψt

〉
; (67)

Γkl =
1

2

〈
ψt

∣∣∣eεχtLC
[{

X̂ k , X̂ l
}]∣∣∣ψt

〉
−

〈
ψt

∣∣∣eεχtLC
[

X̂ k
]∣∣∣ψt

〉〈
ψt

∣∣∣eεχtLC
[

X̂ l
]∣∣∣ψt

〉
, (68)

where |ψt 〉 = e−iχt Ŝ2
z |ψ0〉. Their analytical expression is given in Appendix D.
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Γkl =
1

2

〈
ψt

∣∣∣eεχtLC
[
Û †
τeεχτLC

[{
Ŝk , Ŝl

}]
Ûτ

]]∣∣∣ψt

〉
− ∏

j=k, l

〈
ψt

∣∣∣eεχtLC
[
Û †
τeεχτLC

[
Ŝ j

]
Ûτ

]]∣∣∣ψt

〉
(74)

The analytical expressions of (73) and (74) are given in Appendix D. Taking the optimization (38)
into account, we replace τ = −t . The variance of the optimal measurement observable Ŝ y here
increases as (

∆Ŝ y
)2

dif =
N

4

[
1+2εNχt +O

(
χt

)2
]

, (75)

showing a diffusive behavior, i.e., linear in χt . This limits the quantum metrological gain of the
MAI technique (39) and indeed we find for χt ≤ 1/

p
N

ξ−2
MAI,dif

(
χt

)= N 2
(
χt

)2 e−N(χt)2

1+2εNχt
. (76)

This expression is represented and compared to exact results in Figure 3(b) for varying ε and N .
Again, we obtain the scaling laws of the metrological gain on the time scales χt =σN−α in the

limit of large N

(
ξ−2

MAI,dif

)
N →∞ =


σ
2εN 1−α, 1 ≥α> 1/2

σe−σ2

2ε N 1/2, α= 1/2

. (77)

Due to the diffusive dephasing, the scaling law of the metrological gain for the MAI method passes
from ξ−2

MAI ∝ N 2−2α to ξ−2
MAI ∝ N 1−α for a given α. As expected, the scaling for the MAI method

reproduces the scaling laws (72) for the states prepared at the times (71).
For 1/2 ≤ α ≤ 1, an optimization of (77) over α and σ gives us the best metrological gain and

the corresponding time for N À 1

χtMAI,dif,best =
1p
2

N−1/2 ; ξ−2
MAI,dif,best =

N 1/2

p
8ε2e

. (78)

This analytically confirms a result that was obtained numerically in Ref. [29].

6.3. Unified expression

Taking e−N (χt )2 ≈ 1 for χt < 1/
p

N and N À 1, equations (53), (58), (69) and (76) show that in the
presence of decoherence, the metrological gain can again be written with a unified expression:

ξ−2 (
χt

)' FQ /N

1+M +B
, (79)

where Bbal = εN 1+γ(χt )2 and Bdif = εNχt describes the loss of sensitivity due to ballistic and
diffusive dephasing, for the linear, nonlinear and quadratic measurements. In the case of an MAI
measurement, the nonlinear OAT evolution is effectively twice as long, which increases the effect
of the decoherence. This effect can be easily accounted for by replacing χt by 2χt in the case of
MAI for the decoherence terms, leading to Bbal = 4εN 1+γ(χt )2 and Bdif = 2εNχt . The result (79)
allows us to obtain, in a simple way, the scaling laws and optimal times in all cases discussed
above.

7. Particle losses

Up to now we have considered dephasing processes perturbing the coherent evolution with the
OAT Hamiltonian. In this last section we will explore the limitiations imposed by particle losses
to the linear, nonlinear and quadratic spin squeezing.
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7.1. Loss model

For convenience we write here the collective spin components using the creation ĉ†
a (ĉ†

b) and the
annihilation ĉa (ĉb) operators corresponding to the mode a (b) respectively:

Ŝx =
ĉ†

a ĉb + ĉ†
b ĉa

2
, Ŝ y =

ĉ†
a ĉb − ĉ†

b ĉa

2i
, Ŝz =

ĉ†
a ĉa − ĉ†

b ĉb

2
, (80)

and we introduce the phase state

∣∣ϕ〉
N ≡ 1p

N !

(
e iϕĉ†

a +e−iϕĉ†
bp

2

)N

|0〉 . (81)

Note that |ϕ = 0〉N corresponds to the coherent spin state (1) with 〈ϕ = 0|N̂ l |ϕ = 0〉|l=a,b = N /2
where N̂ l = ĉ†

l ĉ l is the operator of number of particles in the mode l . The presence of m-body
losses, in addition to the one-axis-twisting dynamics Ĥ = ħχŜ2

z , can be described by the master
equation [53],

∂ρ̂

∂t
=− i

ħ
[
Ĥ , ρ̂

]+ ∑
l=a,b

γ(m)
l

(
[ĉ l ]m ρ̂

[
ĉ†

l

]m − 1

2

{
[ĉ l ]m

[
ĉ†

l

]m
, ρ̂

})
(82)

where γ(m)
l is the m-body loss rate in the mode l . This evolution can be equivalently represented

in terms of the Monte-Carlo wave function formalism [54]. In this point of view, the system is
described by a wave function whose evolution is generated by an effective Hamiltonian Ĥ eff

in time intervals of duration τ j separated by random quantum jumps, described by the jump
operators Ĵ (m)

l , at times t j :

Ĥ eff = Ĥ − iħ
2

∑
l=a,b

Ĵ (m)†
l Ĵ (m)

l with Ĵ (m)
l =

√
γ(m)

l [ĉ l ]m . (83)

As long as the fraction of lost particles is weak we can approximate the effective Hamiltonian (83)
by [53]

Ĥ eff = Ĥ − iħ
2
λ, (84)

where λ = ∑
l=a,b λl with λl = γ(m)

l 〈ĉ†m
l ĉm

l 〉ψ0 . For simplicity, we restrict, in the following, to

the symmetric case where γ(m)
a = γ(m)

b = γ(m). We assume that the system is initially in the
phase state (81) with ϕ= 0. In a particular Monte-Carlo realization with k quantum jumps, each
resulting in m-body losses in the mode li = a,b at times ti with i = 1, . . . , k, the state of the system
at time t is given by∣∣ψ(t )

〉=N e−
i
ħ Ĥ eff(t−tk ) Ĵ lk

e−
i
ħ Ĥ eff(tk−tk−1) . . . Ĵ l1 e−

i
ħ Ĥ efft1

∣∣ϕ= 0
〉

N (85)

with N a normalization constant. By using the identity

ĉm
l f

(
N̂ a , N̂ b

)= f
(
N̂ a +mδl , a , N̂ b +mδl ,b

)
ĉm

l (86)

for l = a,b and the properties of phase states (81)

ĉ l
∣∣ϕ〉

N =
√

N

2
e iϕ(δl , a−δl ,b) ∣∣ϕ〉

N−1 ; e−iα
(
N̂ a−N̂ b

) ∣∣ϕ〉
N = ∣∣ϕ+α〉

N , (87)

we can show that, in the approximation (84), the state (85) for a particular Monte-Carlo realiza-
tion can be written as a shifted phase state with less particles, evolved with the one-axis-twisting
Hamiltonian. In terms of a normalization factor F (t ) and a random relative phase shift D :∣∣ψ(t )

〉= F (t )e−iχt Ŝ2
z |D〉N−mk ; D = m

k∑
i=1

χti

(
δb,ci −

1

2

)
. (88)
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The expectation value of any operator Ô can be calculated by averaging the single realization
mean value 〈

ψ(t )
∣∣Ô∣∣ψ(t )

〉= N−mk

〈
D

∣∣∣e iχt Ŝ2
z Ôe−iχt Ŝ2

z

∣∣∣D
〉

N−mk
(89)

over all Monte-Carlo realizations, that is to average (89) over the random variables k, ti and
δb,ci [53]. This allows us to analytically calculate the commutator and the covariance matrices
(given in Appendix E) and thus to obtain the quantum metrological gain (9) corresponding to the
squeezing of a linear, nonlinear and quadratic spin observable in presence of m-body losses. In
Figure 4(b), we compare the analytical metrological gain for the linear, nonlinear and quadratic
spin squeezing in presence of one-body losses in the approximation (84), valid for the loss of a
small fraction of the particles, to the exact numerical Monte-Carlo simulation with the effective
Hamiltonian (83).

7.2. Scaling laws of the linear, nonlinear and quadratic spin squeezing

Let us focus on the case of 1-body losses (m = 1) with a loss rate γ(1). To obtain the best
metrological gain of the linear spin squeezing in the limit of large N , we use the best linear
squeezing time to introduce an auxiliary dimensionless variable r = N−1/3 and rescale the time as
χt = θr 2. By expanding the linear metrological gain ξ−2

L for r ¿ 1 and γ(1)/χ constant, we obtain(
ξ−2

L (t )
)

N →∞ = N 2
(
χt

)2

1+N 4
(
χt

)6 /6+ (
γ(1)t/3

)
N 2

(
χt

)2 . (90)

Similarly, using the best nonlinear squeezing time (19), we set r = N−1/5 and we rescale the time
as χt = θr 3 to obtain (

ξ−2
NL(t )

)
N →∞ = N 2

(
χt

)2

1+N 6
(
χt

)10 /270+ (
γ(1)t/3

)
N 2

(
χt

)2 . (91)

For the quadratic squeezing, after setting r = N−1/7, rescaling the time as χt = θr 4 we obtain(
ξ−2

Q (t )
)

N →∞ = N 2
(
χt

)2

1+N 8
(
χt

)14 /875+ (
γ(1)t/3

)
N 2

(
χt

)2 . (92)

By comparing the equations (90)-(92) to the equation (53), we deduce that the effect of one-
body losses is equivalent to the ballistic dephasing effect discussed in Subsection 6.1 with γ = 1
and ε = γ(1)t/3 where γ(1)t corresponds to the lost fraction of atoms at time t . For the three
measurement strategies, the metrological gain in the large N limit, taken at constant lost fraction
at tbest, is then limited by the fraction of lost atoms

ξ−2 = 3

γ(1)t
. (93)

We then conclude, as shown in Figure 4. that for a fixed atom number N , a nonlinear measure-
ment can enhance the linear metrological gain as long as 3/(γ(1)tL,best) > ξ−2

L,best. Such a regime

can be reached as long as the 1-body loss rate γ(1) is not too large (Figure 4(b)).

8. Conclusion

We have analytically found the scaling laws of the metrological gain in the limit of large atom
numbers N for the squeezing of nonlinear spin observables. For the effective measurement of a
nonlinear spin observable, we have identified the measurement-after-interaction technique that
consists in adding a second nonlinear evolution before the direct measurement of a linear spin
observable as a feasible possibility. This method indeed gives rise to a general scaling law for
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Figure 4. Linear, nonlinear and quadratic metrological gain for N = 106 as a function of
time in presence of one-body losses with (a) γ(1)/χ = 20 and (b) γ(1)/χ = 0.05 compared
to the limit (93). The metrological gain at the limit N À 1 given by (90), (91) and (92) are
represented in dashed lines. Points in (b) are results of numerical Monte-Carlo simulation
with 600 realizations.

the metrological gain that continuously connects the different cases of measurement strategies
based on linear and second-order spin observables.

We have identified the limits imposed by two different models of decoherence, describing
dominant decoherence processes in different physical realizations of the one-axis-twisting evolu-
tion. In the presence of ballistic collective dephasing, our results predict, in the thermodynamic
limit, an abrupt change of the metrological gain at a critical preparation time that depends on
the noise. This transition determines the longest state preparation time by one-axis-twisting for
which the quantum scaling enhancement can be sustained in the presence of dephasing. Below
this critical evolution time, the quantum gain is not affected by decoherence. In contrast, for dif-
fusive dephasing, the scaling law corresponds to the square root of the gain in the noiseless case,
independently of the preparation time. Finally, in the presence of particle losses, the best linear,
nonlinear and quadratic spin squeezing are limited by the fraction of lost particles at the best
squeezing time.

Our work analytically identifies the maximally achievable quantum sensitivity gain offered by
the squeezing of nonlinear spin observables during a realistic one-axis-twisting evolution with
an arbitrary number of atoms. As a function of the chosen measurement strategy, we identify
optimal rotation directions, measurement observables and preparation times. These results may
serve as a guide for designing feasible strategies for achieving high quantum enhancements in
quantum phase estimation protocols with a relatively large number of atoms.

Appendix A. Covariance and commutator matrices for quadratic measurements

Here we provide the non-zero elements of the 2 × 4 commutator matrix C (7) obtained after
restricting the interferometric rotation direction to the y z plane ~̂S = (Ŝ y , Ŝz )T , and the elements

of the symmetric 4 × 4 covariance matrix Γ (8) for the family of accessible observables ~̂X Q =
(Ŝ y , Ŝz , 1

2 {Ŝx , Ŝz }, 1
2 {Ŝx , Ŝ y })T that corresponds to a quadratic (Q) measurement. The results for

the family ~̂X NL, which corresponds to a nonlinear (NL) measurement, are obtained by focusing
only on the 2×3 sub-matrix of C and the 3×3 sub-matrix of Γ.
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C12 = N

2
cosN−1 (

χt
)

; C13 = N (N −1)

8

(
cosN−2 (

2χt
)+1

)
; C14 =−N (N −1)

4
sin

(
χt

)
cosN−2 (

χt
)

C21 =−C12 ; C23 = N (N −1)

4
sin

(
χt

)
cosN−2 (

χt
)

; C24 =−N (N −1)

4
cosN−2 (

χt
)

Γ11 = N (N +1)

8
− N (N −1)

8
cosN−2 (

2χt
)

; Γ12 = N (N −1)

4
sin

(
χt

)
cosN−2 (

χt
)
,

Γ13 = N (N −1)(N −2)

16
sin

(
2χt

)
cosN−3 (

2χt
)

;

Γ14 = N (N −1)

8
cosN−1 (

χt
)− N (N −1)(N −2)

32

(
cosN−3 (

3χt
)−cosN−3 (

χt
))

,

Γ22 = N

4
; Γ23 = N (N −1)

8
cosN−1 (

χt
)− N (N −1)(N −2)

8
sin2 (

χt
)

cosN−3 (
χt

)
,

Γ24 = N (N −1)(N −2)

16
sin

(
2χt

)
cosN−3 (

2χt
)
,

Γ33 = N (N −1)(N −2)

32

(
cosN−2 (

2χt
)+1

)
− N (N −1)

32

(
cosN−2 (

2χt
)−3

)
− N (N −1)(N −2)(N −3)

32
sin2 (

2χt
)

cosN−4 (
2χt

)
,

Γ34 = N (N −1)(N −2)

16
sin

(
χt

)
cosN−2 (

χt
)− N (N −1)

16
sin

(
χt

)
cosN−2 (

χt
)

+ N (N −1)(N −2)(N −3)

64

(
sin

(
χt

)
cosN−4 (

χt
)+ sin

(
3χt

)
cosN−4 (

3χt
))

,

Γ44 =−N (N −1)(N −2)(N −3)

128
cosN−4 (

4χt
)− 1

64
N (N −1)+ 1

128
(N −1)(N +3)N 2.

Appendix B. Covariance and commutator matrices for the MAI technique

Here we provide the non-zero 2×2 commutator matrix C and the 2×2 symmetric covariance ma-
trix Γ for the measurement-after-interction technique corresponding to the family of observables
~̂X MAI = (Û †

τŜ yÛτ,Û †
τŜzÛτ)T .

C11 = N (N −1)

4
sin

(
χτ

)[
cosN−2 (

χ (τ+2t )
)+cosN−2 (

χτ
)]

;

C12 = N

2
cosN−1 (

χt
)

; C21 =−N

2
cosN−1 (

χ (t +τ)
)
,

Γ11 = N (N +1)

8
− N (N −1)

8
cosN−2 (

2χ (t +τ)
)

;

Γ12 = N (N −1)

4
cosN−2 (

2χ (t +τ)
)

sin
(
χ (t +τ)

)
; Γ22 = N

4
.

Appendix C. Covariance and commutator matrices in the presence of ballistic de-
phasing

In the following, we provide the expressions of the commutator and the covariance matrices
considered in Appendix A and B, including a ballistic dephasing in the state preparation (and
measurement for MAI):
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Ckl =−i
∫

e
− D2

2〈D2〉 〈
ψt

∣∣[Ŝk , X̂ l
]∣∣ψt

〉
dD,

Γkl =
1

2

∫
e
− D2

2〈D2〉 〈
ψt

∣∣{X̂ k , X̂ l
}∣∣ψ0

〉
dD

−
∫

e
− D2

2〈D2〉 〈
ψt

∣∣X̂ k
∣∣ψt

〉
dD

∫
e
− D2

2〈D2〉 〈
ψt

∣∣X̂ l
∣∣ψt

〉
dD.

(94)

C12 = N

2
e−

1
2 (χt)2〈D2〉 cosN−1 (

χt
)

; C13 = N (N −1)

8

(
e−2(χt)2〈D2〉 cosN−2 (

2χt
)+1

)
,

C14 =−N (N −1)

4
e−

1
2 (χt)2〈D2〉 sin

(
χt

)
cosN−2 (

χt
)
, ; C21 =−C12 ,

C23 = N (N −1)

4
e−

1
2 (χt)2〈D2〉 sin

(
χt

)
cosN−2 (

χt
)

; C24 =−N (N −1)

4
e−

1
2 (χt)2〈D2〉 cosN−2 (

χt
)
,

Γ11 = N (N +1)

8
− N (N −1)

8
e−2(χt)2〈D2〉 cosN−2 (

2χt
)

;

Γ12 = N (N −1)

4
e−

1
2 (χt)2〈D2〉 sin

(
χt

)
cosN−2 (

χt
)
,

Γ13 = N (N −1)(N −2)

16
e−2(χt)2〈D2〉 sin

(
2χt

)
cosN−3 (

2χt
)
,

Γ14 = N (N −1)

8
e−

1
2 (χt)2〈D2〉 cosN−1 (

χt
)

− N (N −1)(N −2)

32

(
e−

9
2 (χt)2〈D2〉 cosN−3 (

3χt
)−e−

1
2 (χt)2〈D2〉 cosN−3 (

χt
))

Γ22 = N

4
;

Γ23 = N (N −1)

8
e−

1
2 (χt)2〈D2〉 cosN−1 (

χt
)

− N (N −1)(N −2)

8
e−

1
2 (χt)2〈D2〉 sin2 (

χt
)

cosN−3 (
χt

)
,

Γ24 = N (N −1)(N −2)

16
e−2(χt)2〈D2〉 sin

(
2χt

)
cosN−3 (

2χt
)
,

Γ33 = N (N −1)(N −2)

32

(
e−2(χt)2〈D2〉 cosN−2 (

2χt
)+1

)
− N (N −1)

32

(
e−2(χt)2〈D2〉 cosN−2 (

2χt
)−3

)
− N (N −1)(N −2)(N −3)

32
e−2(χt)2〈D2〉 sin2 (

2χt
)

cosN−4 (
2χt

)
,

Γ34 = N (N −1)(N −2)

16
e−

1
2 (χt)2〈D2〉 sin

(
χt

)
cosN−2 (

χt
)

− N (N −1)

16
e−

1
2 (χt)2〈D2〉 sin

(
χt

)
cosN−2 (

χt
)+ N (N −1)(N −2)(N −3)

64(
e−

1
2 (χt)2〈D2〉 sin

(
χt

)
cosN−4 (

χt
)+ sin

(
3χt

)
e−

9
2 (χt)2〈D2〉 cosN−4 (

3χt
))

,

Γ44 =−N (N −1)(N −2)(N −3)

128
e−8(χt)2〈D2〉 cosN−4 (

4χt
)

− 1

64
N (N −1)+ 1

128
(N −1)(N +3)N 2.
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In the case of the MAI method we obtain:

C11 = N (N −1)

4
e−

1
2χ

2(2t+τ)2〈D2〉 sin
(
χτ

)
cosN−2 (

χ (τ+2t )
)

+ N (N −1)

4
e−

1
2 (χτ)2〈D2〉 sin

(
χτ

)
cosN−2 (

χτ
)

,

C12 = N

2
e−

1
2 (χt)2〈D2〉 cosN−1 (

χt
)

, C21 = N

2
e−

1
2χ

2(t+τ)2〈D2〉 cosN−1 (
χ (t +τ)

)
.

Γ11 = N (N +1)

8
− N (N −1)

8
e−2χ2(t+τ)2〈D2〉 cosN−2 (

2χ (t +τ)
)

,

Γ12 = N (N −1)

4
e−

1
2χ

2(t+τ)2〈D2〉 cosN−2 (
2χ (t +τ)

)
sin

(
χ (t +τ)

)
, Γ22 = N

4
.

Appendix D. Covariance and commutator matrices in presence of diffusive dephasing

Here we give the expressions of the commutator and the covariance matrices considered in
Appendix A and B, including a collective diffusive dephasing in the state preparation (and
measurement for MAI):

C12 = N

2
e−

ε
2χt cosN−1 (

χt
)

, C13 = N (N −1)

8

(
e−2εχt cosN−2 (

2χt
)+1

)
C14 =−N (N −1)

4
e−

ε
2χt sin

(
χt

)
cosN−2 (

χt
)

; C21 =−C12,

C23 = N (N −1)

4
e−

ε
2χt sin

(
χt

)
cosN−2 (

χt
)

; C24 =−N (N −1)

4
e−

ε
2χt cosN−2 (

χt
)

Γ11 = N (N +1)

8
− N (N −1)

8
e−2εχt cosN−2 (

2χt
)

; Γ12 = N (N −1)

4
e−

ε
2χt sin

(
χt

)
cosN−2 (

χt
)
,

Γ13 = N (N −1)(N −2)

16
e−2εχt sin

(
2χt

)
cosN−3 (

2χt
)
,

Γ14 = N (N −1)

8
e−

ε
2χt cosN−1 (χt )− N (N −1)(N −2)

32

(
e−

9ε
2 cosN−3 (

3χt
)−e−

ε
2χt cosN−3 (

χt
))

,

Γ22 = N

4
; Γ23 = N (N −1)

8
e−

ε
2χt cosN−1 (

χt
)− N (N −1)(N −2)

8
e−

ε
2χt sin2 (

χt
)

cosN−3 (
χt

)
,

Γ24 = N (N −1)(N −2)

16
e−2εχt sin

(
2χt

)
cosN−3 (

2χt
)
,

Γ33 = N (N −1)(N −2)

32

(
e−2εχt cosN−2 (

2χt
)+1

)
− N (N −1)

32

(
e−2εχt cosN−2 (

2χt
)−3

)
− N (N −1)(N −2)(N −3)

32
e−2εχt sin2 (

2χt
)

cosN−4 (
2χt

)
,

Γ34 = N (N −1)(N −2)

16
e−

ε
2χt sin

(
χt

)
cosN−2 (

χt
)− N (N −1)

16
e−

ε
2χt sin

(
χt

)
cosN−2 (

χt
)

+ N (N −1)(N −2)(N −3)

64

(
e−

ε
2χt sin

(
χt

)
cosN−4 (

χt
)+ sin

(
3χt

)
e−

9ε
2 χt cosN−4 (

3χt
))

,

Γ44 =−N (N −1)(N −2)(N −3)

128
e−8εχt cosN−4 (

4χt
)− 1

64
N (N −1)+ 1

128
(N −1)(N +3)N 2.

For the MAI method, we obtain

C11 = N (N −1)

4
e−ε

[
2|χt|+ 1

2 |χτ|
]

sin
(
χτ

)
cosN−2 (

χ (τ+2t )
)+ N (N −1)

4
e−

ε
2 |χτ| sin

(
χτ

)
cosN−2 (

χτ
)

,

C12 = N

2
e−

ε
2 |χt| cosN−1 (

χt
)

, C21 =−N

2
e−

ε
2 (|χt|+|χτ|) cosN−1 (

χ (t +τ)
)
,

Γ11 = N (N +1)

8
− N (N −1)

8
e−2ε(|χt|+|χτ|) cosN−2 (

2χ (t +τ)
)

,
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Γ12 = N (N −1)

4
e−

ε
2 (|χt|+|χτ|) cosN−2 (

χ (t +τ)
)

sin
(
χ (t +τ)

)
, Γ22 = N

4
.

Appendix E. Covariance and commutator matrices in presence of m-body losses

Here we provide the commutator matrix C and the symmetric covariance matrix Γ for the
quadratic squeezing in the presence of m-body losses with loss rate γ(m) and the mean total
number of m-body losses events per unit of time λ. As explained above, the commutator and
the covariance matrices for the linear and nonlinear squeezing are obtained by restricting C and
Γ to the first two lines and columns and to the first three lines and columns respectively:

C12 =
N −mλt

sinc(mχt)
cosm(χt)

2
cosN−1 (

χt
)
e
−λt

(
1− sinc(mχt)

cosm (χt)

)
,

C13 = 1

8
F (0)+ 1

8
F

(
2χt

)
cosN−2 (

2χt
)
e
−λt

(
1− sinc(2mχt)

cosm (2χt)

)
,

C14 =−1

4
F

(
χt

)
sin

(
χt

)
cosN−2 (

χt
)
e
−λt

(
1− sinc(mχt)

cosm (χt)

)
, C21 =−C12 ,

C23 = 1

4
F

(
χt

)
sin

(
χt

)
cosN−2 (

χt
)
e
−λt

(
1− sinc(mχt)

cosm (χt)

)
, C24 =−1

4
F

(
χt

)
cosN−2 (

χt
)
e
−λt

(
1− sinc(mχt)

cosm (χt)

)
,

Γ11 = N −mλt

4
+ 1

8
F (0)− 1

8
F

(
2χt

)
cosN−2 (

2χt
)
e
−λt

(
1− sinc(2mχt)

cosm (2χt)

)
,

Γ12 = 1

4
F

(
χt

)
sin

(
χt

)
cosN−2 (

χt
)
e
−λt

(
1− sinc(mχt)

cosm (χt)

)
,

Γ13 = 1

16
G

(
2χt

)
sin

(
2χt

)
cosN−3 (

2χt
)
e
−λt

(
1− sinc(2mχt)

cosm (2χt)

)
,

Γ14 = 1

8
F

(
χt

)
cosN−1 (

χt
)
e
−λt

(
1− sinc(mχt)

cosm (χt)

)

+ 1

32
G

(
χt

)
cosN−3 (

χt
)
e
−λt

(
1− sinc(mχt)

cosm (χt)

)
− 1

32
G

(
3χt

)
cosN−3 (

3χt
)
e
−λt

(
1− sinc(3mχt)

cosm (3χt)

)
,

Γ22 = N −mλt

4
,

Γ23 = 1

8
F

(
χt

)
cosN−1 (

χt
)
e
−λt

(
1− sinc(mχt)

cosm (χt)

)
− 1

8
G

(
χt

)
sin2 (

χt
)

cosN−3 (
χt

)
e
−λt

(
1− sinc(mχt)

cosm (χt)

)
,

Γ24 = 1

16
G

(
2χt

)
sin

(
2χt

)
cosN−3 (

2χt
)
e
−λt

(
1− sinc(2mχt)

cosm (2χt)

)
,

Γ33 = 3

32
F (0)− 1

8
F

(
2χt

)
cosN−2 (

2χt
)
e
−λt

(
1− sinc(2mχt)

cosm (2χt)

)

+ 1

32
G(0)+ 1

32
G

(
2χt

)
cosN−2 (

2χt
)
e
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(
1− sinc(2mχt)

cosm (2χt)

)

− 1

32
I
(
2χt

)
sin2 (

2χt
)

cosN−4 (
2χt

)
e
−λt

(
1− sinc(2mχt)

cosm (2χt)

)
,

Γ34 =− 1

16

(
F

(
χt

)
sin

(
χt

)
cosN−2 (

χt
)
e
−λt

(
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)
+F (0)

)
+ 1

16
G

(
χt

)
sin

(
χt

)
cosN−2 (

χt
)
e
−λt

(
1− sinc(mχt)

cosm (χt)

)

+ 1

64
I
(
χt

)
sin

(
χt

)
cosN−4 (

χt
)
e
−λt

(
1− sinc(mχt)

cosm (χt)

)

+ 1
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I
(
3χt

)
sin

(
3χt

)
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3χt
)
e
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(
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,
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Γ44 =− 1

64
F (0)− 1

128
I
(
4χt

)
cosN−4 (

4χt
)
e
−λt

(
1− sinc(4mχt)

cosm (4χt)

)
+ 1

128
J (0).

The functions F , G , I and J are given by

F
(
χt

)= N (N −1)−m(2N −1)λt
sinc

(
mχt

)
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(
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) +m2λt
sinc
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