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Abstract. Stellar occultations and transits occur when a planetary body passes in front of a star (including our
Sun). For objects with an atmosphere, refraction plays an essential role to explain the drops of flux and the
aureoles observed during these events. This can be used to derived key parameters of the atmospheres, such
as their density, pressure and temperature profiles, as well as the presence of atmospheric gravity waves and
zonal winds. Here we derive from basic principles the equations that rule the ray propagation in planetary
atmospheres, and we show how they can be used to derive the physical parameters of these atmospheres.

Résumé. Les occultations stellaires et les transits se produisent lorsqu’un corps planétaire passe devant une
étoile (y compris notre Soleil). Pour les objets avec une atmosphère, le rôle de la réfraction est essentiel
pour expliquer les chutes de flux et les auréoles observées lors de ces événements. Ces derniers peuvent
être utilisés pour déduire des paramètres clés des atmosphères, comme leurs profils de densité, de pression
et de température, ainsi que la présence d’ondes de gravité ou de vents zonaux. À partir des principes
fondamentaux, nous déduisons les équations qui régissent la propagation des rayons dans les atmosphères
planétaires, et nous montrons comment elles peuvent être utilisées pour déduire les paramètres physiques
de ces atmosphères.
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1. Introduction

As planetary bodies move in space, they may pass in front of another object, as seen from an
observer on Earth or from an instrument on board a spacecraft. Different terminologies are
used to describe these phenomena. An occultation occurs when a body blocks the light from a
background object. A typical example is a stellar occultation, where a planetary body passes in
front of a star. In these cases, the physical disk of the star usually appears as much smaller than
the size of the occulting body itself. For instance, the angular diameter of a star projected at the
typical distances of an asteroid amounts to a kilometer at most, while the asteroid itself may have
a diameter of tens of kilometers.

Conversely, transits occur when the foreground object is angularly much smaller than the
background object. Famous examples are transits of Mercury or Venus in front of the Sun as
seen from Earth. In the last two decades, transits of exoplanets in front of their stars have
been a very powerful tool to discover exoplanets, assess their sizes and orbital periods, measure
perturbations from other exoplanets around the same star, or detect chemical species in their
atmospheres.

Finally, the term eclipse refers to a body casting its shadow on another body. A well known
example is given by lunar eclipses1. While eclipses of the Galilean satellites have been observed
since their discovery by Galileo, these phenomena among satellites of Jupiter and Saturn have
been widely observed In the last decades to pin down their orbital elements and assess secular
trends caused for instance by tidal effects.

Here we focus on stellar occultations and transits involving bodies with atmospheres. During
a stellar occultation by an opaque object, the star abruptly disappears when reaching the limb
of that object. More precisely, the sharpness of the disappearance and reappearance of the star
are only limited by the stellar diameter and diffraction effects, and typically last for a fraction of a
second only.

In contrast, occultations by objects with an atmosphere are gradual and may last for several
minutes. In fact, even if the occultation is diametric, the occulted star may remain faintly visible
during the entire event, due to the refraction of the stellar rays by the atmosphere. Contrarily to
what is often thought, the gradual character of atmospheric occultations is usually not caused
by absorption (due for instance to hazes). In fact, even a completely transparent atmosphere
can cause the gradual disappearance of the star (or on the contrary, its brightening), through
refraction effects.

In fact, the atmosphere acts as a lens that may focus or defocus the stellar flux. As we will
see, the observed phenomena bear some ressemblance with gravitational lenses, where the ray
bending stems from gravity instead of gas refraction.

2. The equations of refraction from basic principles

We recall here a few basic principles that provide the equations of propagation of a luminous ray
in an atmosphere. The first principle was stated by Fermat, who noted that during its propagation
between two points A and B , a luminous ray minimizes the time of travel between A and B . Since
the velocity of light is v = c/n, where c is the speed of light in the vacuum and n is the index of
refraction, Fermat’s principle may be expressed as the fact that the optical path l , where

1In this context, solar eclipses should actually be referred to as “solar occulations”.
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l =
∫ B

A
nds, (1)

is stationary (and usually minimal) during the ray propagation.
Fermat’s principle can be derived from the undulatory nature of light (Huygens’ principle),

and more generally, from the more modern principle of least action, widely used in Quantum
Mechanics2. In practice, the problem of minimizing the integral l above is solved by the classical
Euler and Lagrange equation, which provides ([2, p. 1.20–24])

d⃗τ

ds
= ∇⃗n, (2)

with τ⃗= nû, where û is the unit vector tangent to the ray at r⃗ and ∇⃗n is the gradient of n (⃗r ).
In the case where the ray propagates in a plane, the equation above can be written in another

way. During an elementary displacement d s, the ray is deflected by an elementary angle dω, so
that û suffers a deviation dω given by

dû = v̂dω, (3)

where v̂ is the unit vector perpendicular to û. Using Eqs. (2) and (3), we obtain after elementary
calculations

dω

ds
=

(
∇⃗n

n

)
· v̂ , (4)

which will be used in the rest of this chapter. Note that Eq. (4) is equivalent to Eq. (2) only in the
case of a planar propagation of the ray. This is not true anymore for a 3D propagation, where the
torsion of the ray must also be accounted for.

3. Refraction by planetary atmospheres

The effects of refraction by a planetary atmosphere during Venus transits have been studied quite
long ago, with articles dating back to the eighteenth and nineteenth centuries, see Section 7.
Applications to stellar occultations, on the other hand, started to be discussed one century ago
or so, in particular by Anton Pannekoek [3] in 1903 and by Charles Fabry [4] in 1929.

Observations of stellar occultations were difficult at that time, though, because they required
a fast and sensitive photometric recording device. Only on 20 November 1952 was an occultation
of the star σ Arietis by Jupiter recorded [5]. Another occultation was monitored on 7 July 1959,
involving Venus that passed that time in front of the bright star α Leonis (alias Regulus) [6]. More
than one decade was necessary to have another event recorded, on 13 May 1971, when Jupiter
occulted the star β Scorpii [7–9].

The formal equations describing the effects of atmospheres during occultations are found in
various works from the beginning of the 1970’s [8–10]. They consider the simplest possible case:
a planet with a spherically symmetric and transparent atmosphere. Its refractive index n(r ) then
depends only on the distance r to the planet’s center. A ray coming from infinity from the left with
impact parameter p0 is refracted by the atmosphere and returns to infinity at the right with a total
deviationω(p0), after passing at a closest distance r0(p0) from the planet’s center (Figure 1). From
the symmetry of the problem, the ray propagates in the plane that passes through the center of
symmetry of the atmosphere, as depicted in Figure 1.

2 See the book by Feynman, where the connection between light and quantum electrodynamics (QED) is described
for a informed but wide public [1].
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Figure 1. A ray coming from infinity from the left with impact parameter p0 is refracted by
the atmosphere of a planet. It reaches its closest approach at r⃗0 and goes to infinity again
with a total deviation of ω(p0) that depends only on the incoming impact parameter. Note
that by convention here, the angle ω is negative while i is positive.

3.1. Bouguer’s rule

Let us denote i the angle between the position vector r⃗ of the current point along the ray path
and the tangent to the path, see Figure 1. We have

sin(i ) = (û × r̂ ) · ẑ,

where û is the unit vector in the direction of the ray propagation, r̂ is the unit radial vector r̂ = r⃗ /r ,
and ẑ is the unit vector perpendicular to the plane of Figure 1. Using τ⃗= nû, we define B as

B = nr sin(i ) = (⃗τ× r⃗ ) · ẑ.

As the ray progresses by a displacement d s along the path, B varies at the rate

dB

ds
=

(
d⃗τ

ds
× r⃗

)
· ẑ +

(⃗
τ× d⃗r

ds

)
· ẑ = (⃗∇n × r⃗

) · ẑ + (⃗τ× û) · ẑ = 0.

This directly results from the fact that the atmosphere is spherically symmetric, so that ∇⃗n is
parallel to r⃗ , and from the fact that τ⃗ is parallel to û by definition. We then obtain the Bouguer’s
rule, dB/ds = 0, i.e.

nr sin(i ) = constant along the path.

Very far away from the planet (at left in Figure 1), there is no atmosphere (n = 1) and r sin(i ) = p0.
At closest approach, i =π/2 and B = n0r0, where n0 = n(r0). Hence

nr sin(i ) = n0r0 = p0, (5)

which relates the impact parameter p0, the closest approach distance r0 of the ray and the index
of refraction n0 at that point.

3.2. Total deviation of the ray

Since the ray propagates in a plane in the case examined here, we can use Eq. (4) to calculate the
ray deviationω as the ray progresses in the atmosphere. For a spherically symmetric atmosphere,
∇⃗n can be expressed as

∇⃗n = dn

dr
r̂ = 1

r

dn

dr
r⃗ .

Hence

dω

ds
= 1

n

dn

dr

(
r̂ · v̂

)
.
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We see in Figure 2 that r̂ · v̂ = sin(i ), where sin(i ) = p0/r n (Eq. (5)), thus

dω

ds
= p0

r n2

dn

dr
.

Moreover, again from Figure 2 we see that dr = −cos(i )ds. From cos(i ) =
√

1− sin2(i ) and
sin(i ) = p0/r n, we finally arrive at

dω

dr
=−p0

n

dn

dr

1√
r 2n2 −p2

0

.

By integrating dω/dx from+∞ (corresponding to a ray coming from infinity at the left of Figure 1)
to r0 (the closest approach to the planet), we obtain half of the total deviation, so that the total
deviation is

ω
(
p0

)= 2
∫ +∞

r0(p0)

p0

n

dn

dr

dr√
r 2n2 −p2

0

, (6)

where we recall that p0 = r0n0.
Suppose that we know the refractive structure of the atmosphere, i.e. the profile n(r ). Then,

for each impact parameter p0, we can determine the closest approach distance r0 by solving the
equation r0n(r0) = p0. This entirely determines ω(p0) using a numerical scheme to calculate the
integral above. In other words, to each impact parameter p0, we can associate a deviation angle
ω(p0).

4. Retrieval of the atmospheric structure

Figure 3 summarizes the principle of differential refraction in an atmosphere, and defines the
various geometrical quantities used in the text. For the commodity of plotting, the deviation is
sketched as an abrupt change of propagation, which it is actually gradual (Figure 1).

4.1. Abel inversion

Stellar occultations provide the deviation ω of the ray and the corresponding impact parameter
p at the various instants of the event, thus yielding p(ω). The problem is now to derive the value
of n(r0) using all these values p(ω). This is done through an Abel inversion of Eq. (6), which is
detailed for instance in [8–10] and provides

n0 = exp

{
1

π

∫ ω(p0)

ω=0
ln

[
p(ω)

p0
+

√(
p(ω)

p0

)2

−1

]
dω

}
, (7)

!𝑣

Figure 2. The definitions of the vectors and angles used in the text. The ray is in blue.
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A’

B
C A
C’

D

Figure 3. Left: The geometry of a refractive occultation. The stellar rays come from infinity
at left with impact parameter p. They are differentially refracted as they probe deeper
atmospheric layers, and reach the observer located at z after traveling the distance D .
Outside the atmosphere (e.g. at zout), the deviationω is zero. Right: A sketch illustrating the
relation between the angular diameter θ of a star and the angular diameter of its refracted
image, θ′. See text for details.

which is a relation between n0 and p0 = r0n0, from which n0 corresponding to the distance r0,
i.e. n(r 0), is retrieved.

During an occultation by a transparent planetary atmosphere, the flux of the star gradually
dims due to the differential deviation of the stellar rays. Thus in this case, the dimming of the flux
is not caused by absorption or scattering (due for instance to hazes) or but by refraction.

Consider in Figure 3 a planet with an atmosphere that deviates a stellar ray with impact
parameter p by an angle ω (which is negative by convention, see Figures 1 and 3), and reaches
the observer at z. We have

z = p +Dω, (8)

which provides

dω= 1− (dp/dz)

D
d z.

If the atmosphere is transparent, the luminous flux contained in the beam of width dp is retrieved
in the beam of width dz. Consequently, the stellar flux at z is “diluted” and yields the irradiance3:

φ= dp

dz
, (9)

taking a stellar irradiance outside the occultation normalized to unity. Thus we obtain ω(z) by

ω(z) = 1

D

∫ z

+∞
(1−φ)dz. (10)

In practice, it is enough to start the integration just outside the occultation, at some level zout

where we have φ = 1 and ω = 0, see Figure 10. This is reached rapidly, as planetary atmospheres
decay exponentially in density, and become undetectable by the observer above a certain level.
Once ω(z) is known, p(z) is given by Eq. (8), which provides ω(p). This is finally introduced in
Eq. (7) to obtain the refractivity profile n0 at radius r0.

Here we drop for sake of simplicity the index 0 and we use r instead of r0. The refractivity of the
gas at a given radius is defined as ν(r ) = n(r )−1. It is related to the molecular density of the gas ng

3 We ignore for moment the curvature of the planetary limb. It becomes relevant near the shadow center, where it
causes a “flash”, see Section 6.
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by ν = K ng , where K is the molecular refractivity of the gas under consideration. Consequently,
the Abel inversion eventually provides the density profile of the atmosphere through

ng (r ) = ν(r )

K
. (11)

On the other hand, the hydrostatic equation provides the pressure p by integration of the
equation

dp

dr
=−µng (r )g (r ), (12)

where µ is the molecular mass and g (r ) the acceleration of gravity at radius r . Finally, the ideal
gas equation p = ng kB T (where kB is Boltzmann’s constant) provides

1

T

dT

dr
=−

[
µg (r )

kB T
+ 1

ng

(
dng

dr

)]
(13)

Both Eqs. (12) and (13) are first order differential equations. As such, they require a boundary
condition, i.e. the value of p and T at some prescribed radius r , respectively. This is not too much
of a problem for the pressure, as the atmosphere decays exponentially with radius. Thus, we can
safely take p = 0 at zout , as we did for ω.

This approximation cannot be used for the temperature, as it is usually not known at zout ,
and it is certainly not zero. In fact, integrating Eq. (13) requires an independent knowledge of
T at some given radius. Otherwise, an infinity of profiles T (r ) can explain the same observable
(here, the occultation light curve). This ambiguity can be resolved for instance by using other
ground-based observations or spacecraft measurements that have access to the level probed by
the occultation. Another approach is to propose physical arguments (such as a radiative transfer
model) that restrict the range of plausible values of T at some level.

4.2. Conservation of energy, primary and secondary stellar images

We now consider the problem of stellar images during a refractive occultation. For this, we have to
reverse the diagram displayed in the left panel of Figure 3, as shown in the right panel of this same
figure. Let us consider an observer at coordinate z (point A) who watches though the atmosphere
a star at infinity with angular diameter θ, subtended by the blue and red rays in the figure. These
two rays are deflected by the atmosphere and reach the observer at A, where they subtend an
angle θ′. This angle defines the angular diameter of the stellar image after refraction. We now
rotate the red ray around B by an angle θ, A and C will superimpose onto A′ and C ′, respectively.
In that case, BC ′ is parallel to the outgoing blue ray.

For large distances D , θ = dz/D and θ′ = dr /D . Using Figure 3 and p ∼ r , we have from the
conservation of energy in a transparent atmosphere

θ′

θ
=φ. (14)

This means that the stellar image is compressed by a factor of φ perpendicularly to the limb
of the planet. Consequently, the brightness of the stellar image through the atmosphere (i.e. the
flux received per unit surface and unit angle at the observer) is the same as the brightness of
the stellar image outside the atmosphere. The equation above actually states the conservation of
the specific intensity (also called radiance or brightness) of the ray as it propagates through the
transparent atmosphere, a theorem due to Clausius (see [11] and the discussion in [2, p. 1.25]).
Another, equivalent way to state this conservation law is to say that the observed irradiance is
proportional to the angular dimension of the stellar image seen through the atmosphere.

For the moment, we have considered that the refraction acts in the plane of the figure. In
reality, the limb curvature also causes a deviation of the rays, perpendicular to that limb. It is then
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easy to extend the result obtained above to a full 2D image, replacing the angle θ (resp. θ′) by the
solid angleΩ (resp.Ω′) subtended by the star (resp. its image). Then Eq. (14) can be re-written as

Ω′

Ω
=φ, (15)

which states again that the received flux during an occultation by a transparent atmosphere is
directly proportional to the apparent size of the refracted stellar image.

5. Useful approximations

5.1. The straight line approximation

For ground-based stellar occultations, the deflection angle ω (Eq. (10)) is very small because the
distance D is very large. This angle is actually of the order of the angular diameter of the observed
body, typically a few arc seconds, i.e. less than 10−5 radian. From Eq. (5), this implies that r0 is
very close to p0, to within p0ω, so that n0 is very close to unity. Consequently, in Eq. (6), we can
write n ∼ 1 and p0 ∼ r0. Moreover, dn/dr = dν/dr , so that

ω(r0) ∼ 2
∫ +∞

r0

r0
dν

dr

dr√
r 2 − r 2

0

,

One can change the variable r to l =
√

r 2 − r 2
0 (Figure 4), which leads to

ω(r0) ∼
∫ +∞

−∞

( r0

r

)(
dν

dr

)
dl , (16)

where r =
√

r 2
0 + l 2. Note that the equation above can be used for ray tracing purposes, once a

density profile ng (r ) — and thus a refractivity profiles ν(r ), see Eq. (11) — has been prescribed.

𝒍

𝚫𝒍 = 𝟐𝝅𝒓𝟎𝑯

Figure 4. he straight line approximation for refractive occultations by remote bodies in the
solar system with radius r0 and atmospheric scale height H . The deviation angle ofω(r0) in
Eq. (16) is so small that it is not perceptible at the scale of the figure. The length∆l (Eq. (19))
corresponds to the interval where most of the ray deviation occurs.

5.2. The small scale height approximation

In most of the cases, planets have atmospheres with a roughly constant density scale height H ,
defined as

H =− ng(
dng /dr

) .
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In usual cases, T varies much more slowly than ng , so that H also varies slowly with r . Moreover,
it is usually much smaller than the planet typical radius, i.e.

H ≪ r. (17)

Then

ν(r ) ∼ ν0 exp
[
−

( r − r0

H

)]
and

dν

dr
∼−

(ν0

H

)
exp

[
−

( r − r0

H

)]
,

where ν0 = ν(r0). Furthermore, we will see that most of the refractive deviation occurs over a
distance ∆l that is significantly smaller than r0. Thus,

r =
√

r 2
0 + l 2 = r0

√
1+ l 2/l 2 ∼ r0

(
1+ l 2/2r 2

0

)
,

so that r − r0 ∼ l 2/2r0 and r0/r ∼ 1. Using those approximations, introducing in Eq. (16) the
expression of dν/dr obtained above and using

∫ +∞
−∞ exp(−u2)du =π, we obtain

ω(r0) ∼−ν0

√
2πr0

H
. (18)

By writing (dν/dr )r0 =−ν0/H , we obtainω(r0) ∼ (dν/dr )r0

p
2πr0H . This shows that the deviation

angle mainly comes from a interval along the ray path of characteristic length

∆l ∼
√

2πr0H . (19)

For Jupiter, r0 ∼ 70,000 km and H ∼ 30 km, so that ∆l ∼ 3,500 km, which is significantly smaller
that r0, as announced. For Pluto or Triton, r0 ∼ 1500 km and H ∼ 20− 50 km we obtain ∆l ∼
400−700 km. The approximation ∆l ≪ r0 is not so good in those cases, but Eq. (18) still captures
the correct orders of magnitude.

5.3. The Baum and Code equation

Baum and Code [5] derived a simple equation that describes how the stellar flux decrease when
observed from Earth when observing a stellar occultation by a planetary atmosphere. Using
Figure 3, Eq. (9) and p ∼ r (the straight line approximation), we obtain

1

φ
= 1+D

(
dω

dr

)
. (20)

We note that in Eq. (18), the rapidly varying factor in an exponential atmosphere is ν0, not r0.
More precisely, we have dω/dr ∼−ω/H , so that, dropping from now on the index 0 in Eq. (18)

1

φ
= 1− Dω

H
= 1+ν

√
2πr D2

H 3 . (21)

This shows that the stellar flux has dropped by a factor of two (the “half light level”, denoted here
by a subscript 1/2) for

ω1/2 =−H/D, so that z1/2 = r1/2 −H . (22)

This means that the ray corresponding to the half light level has been deviated by one scale height
H when it arrives at the observer. This occurs for

ν1/2 =
√

H 3

2πr1/2D2 , (23)

corresponding to a molecular density ng ,1/2 = ν1/2/K .
From Eqs. (8) and (21) and from the definition of the half light level, we have

1

φ
= 1+ r − z

H
and 2 = 1+ r1/2 − z1/2

H
.
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H = 100 kmH = 20 km

H = 50 km

~ 𝑒!"#/%

~ -𝐻/Δ𝑧

Figure 5. Left: Examples of solutions to the Baum and Code equation (27) for typical values
of the scale height H . Right: The asymptotic behavior of the Baum and Code solution for
large values of ∆z (positive or negative), see Eqs. (29) and (30)

Thus
1

φ
−2 = r − r1/2

H
− ∆z

H
, (24)

where
∆z = z − z1/2.

Using the fact that ω/ω1/2 ∼ ν/ν1/2 = exp[−(r − r1/2)/H ], and from Eq. (22), we have

ω=−H

D
exp

[
−

( r − r1/2

H

)]
(25)

and thus from Eq. (21)

1

φ
−1 = exp

[
−

( r − r1/2

H

)]
. (26)

This permits to express r − r1/2 as a function of φ in Eq. (24), and finally get(
1

φ
−2

)
+ ln

(
1

φ
−1

)
=−∆z

H
, (27)

known as the Baum and Code equation [5].
Classical numerical schemes can be used to invert this equation so that to provide φ as a

function of ∆z, the distance traveled by the observer in the shadow plane (Figure 5). Once this
is done, Eq. (24) provides the radius of closest approach r probed by the ray as a function of z:

r = z +H

(
1

φ
−1

)
. (28)

Asymptotic expressions of φ can be obtained for ∆z →+∞, i.e. when the star is observed far
away from the planet. Then φ approaches unity, so that Eq. (27) yields

φ∼ 1−exp

(
−∆z

H

)
. (29)

Consequently, the light curve approaches very rapidly (in fact, exponentially) the unocculted
stellar flux unity as the star probes a few scale heights only above the half light radius. To take
an example, suppose that the photometric quality of the occultation light curve is such that a
drop of flux by at least 1% is necessary to be detected, a common situation in practical cases. This
means that we must have exp(−∆z/H) > 0.01 for detecting the stellar drop. In other words, we
can probe only levels below r1/2 − ln(0.01)H ∼ r1/2 +4.6H .
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At the other extreme, in the case ∆z → −∞ (i.e. when the star probes deep layers of the
atmosphere), Eq. (27) provides

φ∼− H

∆z
. (30)

Thus, the stellar flux goes to zero rather mildly (∝ 1/|∆z|) when compared to its exponential
behavior nearφ∼ 1. The asymptotic behaviors ofφ are summarized in the right panel of Figure 5.

5.4. Applications to planetary atmospheres

Eq. (23) shows that the larger the scale height H , the denser the half light level probed in the
atmosphere. Conversely, the larger the distance D , the smaller ng ,1/2. This explains why ground-
based observations, for which D is very large (up to billions of kilometers), can probe very
tenuous pressure levels and still cause significant stellar drops. Using the ideal gas equation and
the classical expression H ∼ kB T /µg (r1/2), Eq. (23) provides the expression of the pressure P1/2

probed by the half light rays:

P1/2 ∼ GMµ

K D

√
H 5

2πr 5
1/2

, (31)

where M is the mass of the body and G is the constant of gravitation. Using this equation and the
parameters listed in Table 1, we obtain order-of-magnitude estimations of P1/2.

Table 1. Estimation of the half light pressure level P1/2 probed during ground-based stellar
occultations.

Object GM r1/2 D H gas µ K
(
10−29 P1/2(

m3 s−2
)

(km) (ua) (km) composition
(
10−26 kg

)
m3 molecule−1

)
(Pa)

Jupiter 1.21×1017 71840 4.2 25 90% H2+10% He 0.37 0.479 0.1
Saturn 3.79×1016 61000 8.5 55 90% H2+10% He 0.37 0.479 0.2
Uranus 5.79×1015 25900 18.2 65 90% H2+10% He 0.37 0.479 0.2
Neptune 6.84×1015 25100 29.0 50 90% H2+10% He 0.37 0.479 0.1
Titan 8.98×1012 3070 8.5 45 N2 4.7 1.11 0.3
Triton 1.43×1012 1440 29.0 25 N2 4.7 1.11 0.02
Pluto 8.70×1011 1300 32.0 65 N2 4.7 1.11 0.2

In Table 1, we assume that the objects are observed from Earth near opposition, providing
a heliocentric distance D that is roughly the orbital radius of the object minus 1 au. In spite of
very large ranges of values for the masses, radii, molecular masses and distances, we see that the
combination of these parameters eventually provides a rather narrow range for P1/2, typically a
fraction of a Pascal, corresponding a few µbar, using 1 Pa = 10 µbar.

The analysis presented in this Section assumes an atmosphere with constant scale height H
and adopts approximations that permit the use of the Baum and Code equation. In view of
the increasing quality of the occultation light curves and the significant departure of certain
density profiles from having a constant H , it is now customary to use “brute force” ray tracing
that numerically integrate Eqs. (6) and (13), and then Eqs. (8)–(10). This allows one to generate
synthetic light curves with any atmosphere profiles, and compare them with observations, even
in the case of strong local variations of H . Moreover, ray tracing has the advantage to account for
the limb curvature, which is not necessarily circular, or not even smooth, as developed in the next
Section 6.

In any case, the stellar occultation method has been very unique and productive for studying
planetary atmospheres. Besides the historical cases evoked in Section 3, and without being
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exhaustive, we may cite the structure and extinction of the Martian upper atmosphere [12],
the study of waves in Uranus’ stratosphere [13], the discovery of Pluto’s atmosphere in the
1980’s [14–16], its seasonal three-fold pressure increase between 1988 and 2020 [17–19], the
wave forcing by solar-induced sublimation at Pluto’s surface [20, 21], the structure and evolution
of Neptune’s stratosphere [22], the structure, zonal wind regime and haze properties of Titan’s
stratosphere [23, 24] and Triton’s atmosphere [25].

An important point is the complementarity between those ground-based observations and
space exploration. They may access different regions of the studied atmospheres and thus,
provide a synoptic description of these atmospheres. Stellar, solar or radio occultations have been
performed by various spacecraft. As they are much closer to the body than terrestrial observers,
they probe much deeper layers as the quantity D in Eq. (31) is much smaller.

For instance, while ground-based Titan occultations typically probe a few µbar to some 100
µbar pressure levels, the solar occultations observed by the Cassini spacecraft could reach layers
with pressure of more than 10 mbar [26].

6. Central flashes

6.1. Primary and secondary images

From now on, we will consider the curvature of the planetary limb, which creates a “central
flash” effect. First, as illustrated in Figure 6, we see that a spherical planetary atmosphere
generally produces two images, a primary image (sometimes called the near-limb image) and
a secondary (or far-limb) image. More complex situations where several images are produced by
non-spherical atmospheres will be considered later in this chapter.

𝑧

primary image

secondary image

Figure 6. Stellar rays coming from infinity at left can be refracted to the observed at z
following two paths. One produces the primary (or near-limb) image and corresponds to
the less refracted ray, plotted here in red. The other ray (in blue) produces a secondary (or
far-limb) image that comes from the other side of the planetary disk, and thus suffers a
stronger deviation. If z is negative, the primary and secondary characters of the images are
swapped.

The Figure 7 displays the compression and stretching suffered by the two stellar images in
the spherical case, which eventually explains the variation of flux observed during an occultation
(Eq. (15)). The compression of the image perpendicular to the limb (which decreases the received
flux) is due to the differential refraction that defocuses the stellar rays (Figure 3) by a factor
1+D(dω/dr ) (Eq. (20)). On the other hand, the stretching of the image along the limb (which
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Figure 7. The stellar images caused by refraction during a stellar occultation by an atmo-
sphere. Here, we consider a planet with radius ∼1200 km and an atmosphere with a scale
height H ∼ 50 km. The gray circles with a star symbol at their centers delineate the appar-
ent stellar disk projected at the planet distance, here with a radius r⋆ = 180 km. The plus
symbol marks the planet center, assumed here to be spherical. The occultation proceeds
as the star moves from right to left relative to the planet. The value of r⋆ has been greatly
exaggerated here in order to illustrate the mechanism at play. In real cases, r⋆ is at most
a few kilometers when considering occultations by solar system objects. At any moment
(for instance at points 1, 2 and 3), the stellar disk has two images. One is the primary (or
near-limb, in red) image caused by the refraction due to the nearest point of the limb. The
other is the secondary (or far-limb, in blue) image caused by the opposite point of the limb,
i.e. rays that pass by the other side of the planet before reaching the observer. The stellar
images are compressed perpendicular to the limb due to differential refraction (Eq. (14)),
and they are stretched parallel to the limb due to the focusing caused by the limb curvature
(Eq. (32)). The stellar flux caused by a particular image is then proportional to the area en-
circled in the stellar image. This latter can be calculated using the dashed lines. They show
that the stretching greatly increases as the star approaches the planet center, as projected
in the sky plane. This leads to the detection of a central flash, see Figure 8.

increases the received flux) is caused by the limb curvature that focuses the stellar rays toward the
shadow center by a factor f (Figure 7). Thus, the normalized irradiance received by the observer
from any of the two (or more) images produced by the limb is

φ=

 1

1+D
dω

dr

 f exp(−τ) =

 1

1+D
dω

dr

(
r

|z|
)

exp(−τ). (32)

The first equation above assumes that the stellar radius r⋆ projected at the planet distance4 is
small compared to the atmospheric scale height H , so that the factor dp/dz in Eq. (9) can be
considered constant across the star diameter. This is usually the case for planetary occultations,
where r⋆ is of the order of a few kilometers and H is of the order of a few tens of kilometers. If r⋆
is comparable to or larger than H (as it is the case in Figure 7), then from Clausius’ theorem, φ is
given by the surface area of the image normalized to πr 2

⋆. No analytical expression of this surface
area is available in this case, but it can be easily obtained numerically.

4This is obviously different from the actual physical size of the star.
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The second equation (32) is restricted to the case of a spherical atmosphere, for which f = r /|z|
from the examination of Figure 7. We have ignored this term so far because it is very close to
unity near the half light level. From Eq. (22), z1/2 = r1/2 − H . Thus at that level f = r1/2/|z1/2| =
r1/2/(r1/2 − H) ∼ 1 because usually H ≪ r1/2. In other words, the focusing effect due to the limb
curvature is in general noticeable only near the shadow center. Morever, the second equation (32)
is valid only if |z| is larger than a few times r⋆. We will see in the next subsection that the finite
stellar size actually prevents the singularity that occurs at |z| = 0 in Eq. (32).

We have also added in Eq. (32) a term exp(−τ) which accounts for the presence of hazes that
scatter and absorb the light, where τ denotes the optical depth of the atmosphere along the line
of sight. In several cases examined here, the atmosphere is transparent (τ= 0). However, we will
give examples on non-zero τ, which leads to a decrease of flux not only because of refraction, but
also because of scattering and absorption.

Once the irradiances of each image produced by the limb have been calculated using Eq. (32),
they are summed up to derive the synthetic light curve to be compared with the observations.
Note that in some cases, the planet is angularly large enough to distinguish the various stellar
images moving along the limb. Then, Eq. (32) can be used to produce synthetic light curves for
each of these images.

6.2. Central flashes: the spherical case

The equation (32) predicts that φ diverges to infinity at z = 0, causing a “central flash”. This is
true in the limiting case of a point-like source and geometric optics. In actual cases, the star has
a finite angular size, so that f (and φ) actually remains finite at the shadow center5.

The entire atmosphere can be seen as a lens that focuses the stellar rays toward the shadow
center, that can be seen as the focal point of that lens. More precisely, there is one layer (called the
flash layer hereafter) in the atmosphere that has the right focal length D , i.e. that causes the right
deviation of the ray so that the observer can see the central flash. Thus, the flash can be observed
for any value of D , the flash layer being located deeper and deeper as D decreases. Note that the
flash ceases to be observed if the flash layer reaches the planet surface, in which case the stellar
image vanishes behind the limb.

The Figure 8 summarizes the flash process. As long as the apparent stellar disk (delineated
in gray in Figure 8) does not overlap with the planet center (the plus symbol), the primary and
secondary images are disconnected. As soon as the stellar disk covers the center, these two images
merge into a luminous ring surrounding the planet (panel (f)). This ring actually reveals the flash
layer, i.e. the layer that focuses the stellar rays towards the shadow center. This phenomenon is
akin to the “Einstein–Chwolson ring” caused by the gravitational lensing of rays coming from a
remote galaxy or star by an intervening massive object. So, although the causes of the bending
are different (refraction vs. gravitation), atmospheric occultations and gravitational lenses share
the same basic process6.

For a transparent atmosphere, the brightness of that ring is the same as the brightness of the
unocculted star (see the Clausius theorem discussed after Eq. (14)). so the flux received at perfect
alignement star-planet-observer remains finite, contrarily to what is expected from Eq. (32). From
Eq. (14) the width of the Einstein–Chwolson ring is

wEC = 2r⋆φc , (33)

5However, even for a point-like source, the flux does not diverges at z = 0 due to diffraction effects that are not
considered here.

6For massive planets like Jupiter, the ray bending caused by the gravity of the planet is not negligible compared to the
bending caused by refraction. However, its derivative dω/dr is negligible and thus does not affect significantly the stellar
flux in Eq. (32).
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(a) (b) (c)

(d) (e) (f)

Einstein-
Chwolson ring

Figure 8. The sequence leading to a central flash. This is the same as Figure 7, but for a star
that goes just behind the planet center (cross). In steps (a)–(c), the primary image is first
compressed parallel to the limb, and then stretched parallel to it due to, as illustrated by the
dashed lines. As the star aligns with the planet center, the primary and secondary images
continue to stretch, until they connect (step (e)) when the stellar limb intersects the planet
center (i.e. the cross). At this point, the two images merge into one and form a luminous
“Einstein–Chwolson ring” around the body, as illustrated in step (f).

whereφc is the stellar flux at the shadow center without the focusing term f in Eq. (32). Thus, the
total area of the ring is (2πrcf)wEC , where rcf is the radius of the flash layer. As the surface area
of the star projected at the planet is πr 2

⋆, the maximum height of the flash at shadow center is,
normalized to the unocculted stellar flux and from Clausius theorem,

φcf =
(
2πrcf

)
wEC

πr 2
⋆

= 4

(
rcf

r⋆

)
φc , (34)

where the second equations stems from Eq. (33). For order of magnitude considerations, we can
use φc ∼ H/rcf (Eq. (30)), so that

φcf ∼ 4

(
H

r⋆

)
. (35)

The height of the flash decreases as r⋆ increases because the flash gets more and more convolved
by the stellar disk. Typical values of H are ∼20–50 km depending on the planet, while r⋆ is
typically of the order of one kilometer. Thus, φcf may reach values as large as one hundred or
more at the very center of the shadow of a spherical and transparent atmosphere. This is indeed
the case for Pluto and Triton’s atmospheres, as seen later in this section.

6.3. Central flashes: the non spherical case

If the atmosphere is not spherical, the equation (32) is still valid, but the factor |z| must be
understood as the distance of the observer to the center of curvature of the flash layer.
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A simple case is when the flash layer assumes a spheroid shape, i.e. an ellipsoid with equatorial
and polar radii a and b, respectively (Figure 9). due to the flattening of the solid planet itself (as it
is the case for Mars [12]), or may be maintained by zonal winds, i.e. an atmospheric flow parallel
to the equator. These winds create a centrifugal acceleration in a reference frame rotating with the
planet. It results in a flattening of the atmosphere under the combined effect of gravity. Elliptical
shapes have been used to describe central flashes observed during occultations by Mars [12] or
Neptune [27].

x

y

a

b

Figure 9. Left: a sketch showing the stellar ray deflected perpendicular to the limb of an
oblate (here elliptical) atmosphere. The rays converge towards the centers of curvature
(or evolute) of each point of the limb. Thus the stellar rays are everywhere tangent to the
evolute. This creates a caustic (in red) where the observer detects discontinuous variations
of flux. Right: a close-in view of the left panel, showing the intensity map of the flash near
the shadow center. Note the abrupt variation of flux along the caustic.

Each stellar ray is then deflected perpendicular to the limb of the planet, and converge towards
the centers of curvature of the limb (called the evolute) to which the rays are tangent. This creates
a caustic where the stellar flux suffers a sudden increase. In the example of Figure 9, the flash layer
appears with an elliptical shape whose equation is( x

a

)2
+

( y

b

)2
= 1.

The evolute of the ellipse has then the following equation (see e.g. [28, see p. 319]),

(ax)2/3 + (
by

)2/3 = (
a2 −b2)2/3

,

which is shown in red in Figure 9.
This said, there is no reason why the simple elliptical shape applies in all circumstances. For

instance, at its solstice, Titan has weak zonal wind regime in its summer hemisphere (which
is then essentially spherical), and a strong jet in the winter hemisphere around the latitude 60
degrees [23, 24]. The resulting shape of the atmosphere is delineated in red in the left panel of
Figure 10, with an expansion factor of twenty applied for a better viewing. The resulting intensity
map (right panel) is then quite different from the elliptical case shown in Figure 9.

An observer who is far away from the shadow center receives the flux from the two classi-
cal stellar images (primary and secondary) moving in opposite directions (the blue arrows in
panel (a) of Figure 11). The crossing of the caustic causes the sudden appearance of two bright
stellar images that moves in opposite directions (red arrows in panel (b)), so that four images are
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Figure 10. Left: Titan’s central flash layer (as observed in November 2003) is delineated in
black. It has a non-circular shape (red line) that is made more visible by expanding by a
factor of twenty its departure from circularity. While Titan’s southern hemisphere is very
close to spherical, its northern hemisphere is flattened by a strong zonal wind of about
200 m·s−1 near latitude 60 deg north. The limb evolute is plotted in red near the shadow
center. Right: A close-in view of the central flash, with Titan’s center marked by a gray cross.

now seen. As the observer proceeds towards the other side of the caustic, the two top-most im-
ages approaches each other (blue and red arrows in panel (c)). They coalesce into a bright im-
age at the crossing of the caustic, before disappearing suddenly. As the observer recedes away
from the caustic, only the two classical primary and secondary images remain (panel (d)). The
right panel of Figure 11) illustrates how the positions of the four images can be determined at any
moment from the shape of the caustic in the case (b).

6.4. Einstein–Chwolson ring and Einstein cross

In the case of stellar occultations by bodies such as Titan, Pluto or Triton, the angular resolution
of classical imaging is usually not sufficient to resolve the disk of these objects (that are at the
level of one arcsec or less) and thus see the stellar images moving along the limb.

As mentioned earlier, gravitational lenses act on objects like galaxies that are much more
extended angularly than the planetary bodies mentioned above. It is then possible to resolve the
images and obtain a direct illustration of the Einstein–Chwolson ring. If the source is a point-like
object (like a quasar), it is even possible to see the various images provided by the foreground
lens, for instance the four images seen in panels (b) and (c) of Figure 11, often dumbed as the
“Einstein cross”. An example of Einstein cross is provided in the left panel of Figure 12. The right
panel displays an image where both the Einstein cross and the Einstein–Chwolson ring are seen.

6.5. Effect of atmospheric waves

The left panel of Figure 13 displays the intensity map of the Titan’s flash already shown in
Figure 10. It stems from a flash layer which has a smooth profile. Observations of various
occultations by giant planets or Titan, however, reveal irregular structures of the flash. More
precisely, rapid fluctuations of the stellar flux (or “spikes”) are superimposed to the general
smooth increase of signal observe during the flash episode, see an example in Figure 14.

These fluctuations are caused by internal gravity waves that propagate in Titan’s upper atmo-
sphere. They create small “corrugations” of the central flash layer that break down the smoothing
varying centers of curvature of the limb into many centers of curvature. This results into a blur-
ring of the central flash intensity map. In the case of Titan, these corrugations amount to some
hundreds meters and cause the blurring illustrated in Figure 13 [24].



230 Bruno Sicardy

(a) (b)

(c) (d)

abcd

Figure 11. Left: the motion of the stellar images during an occultation by Titan, observed
from Gifberg (Republic of South Africa) on 14 November 2008 [24]. These stellar images
are reconstructed from the observations of the flash. They could not be seen individually in
the data, as Titan was too small (about one arcsec) to be resolved by the instruments used
during this campaign. As long as the observer is outside the region delimited by the caustic
(see right panel), only the two classical primary and secondary stellar images are detected.
When the observer is inside this region, four images contribute to the total flux. They move
rapidly along the limb, eventually leading to the coalescence and disappearance of two of
them as the observer leaves the caustic domain. Right: A close in view of the shadow center.
It shows the position of the observer relative to the caustic, at each steps (a), (b), (c) and (d)
illustrated at left. The straight arrows point to the stellar images seen by the observer at
step (b). Those straight lines are the four solutions that pass through the point b, while
being tangent to the caustic.

6.6. Opacity

In Eq. (32), we mentioned the existence of the factor exp(−τ) which stems from the possible
presence of an absorbing material in the atmosphere. In fact, depending on the body, this term
may become dominant compared to the effect of refraction.

An example of haze absorption is given in the upper panel of Figure 14. A clear difference
between the two flashes is observed, due to the differential extinction between the I (visible) and
the K (near infrared) bands7. More precisely, the chromatic dependence of τ vs. wavelength is
such that the atmosphere is essentially transparent in the infrared, while being quite absorbant
in the visible.

Since the flash strongly increases the flux when the star is deeply immersed in the atmosphere,
it is a useful tool to probe haze properties, and in particular its chromatic dependence. As the zero
stellar flux is usually ill-defined (due to the contribution of the occulting body), it is difficult to
assess the haze optical depth outside the flash region, where the residual stellar flux is small.

The other example of Figure 14 is a flash observed during an occultation by Triton. Contrarily
to Titan, Triton’s flash is completely explained (to within the noise in the data) by a spherical and
transparent atmosphere: in that sense, Triton’s atmosphere appears as a “perfect lens”.

7A difference also stems from the chromatic dependence of the refraction index, but this effect is too small to be
relevant here.
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Figure 12. Left: An example of a quadruple image (or Einstein cross) caused by a gravita-
tional lensing of a remote quasar by the foreground galaxy UZC J224030.2 032131, the dif-
fuse object seen inside the four quasar images. This is similar to the quadruple images seen
in the images (b) and (c) Figure 11 (left panel). Right: the same where the lens is now a dou-
ble galaxy (the diffuse objects at the center). Again an Einstein cross is visible, with four im-
ages of the quasar 2M1310-1714, but also an Einstein–Chwolson ring, which is the image
by the lens of the extended galaxy which hosts the quasar. Credit: ESA/Hubble and NASA.

7. Transits

7.1. Principle

We now turn to the case where the occulted background star is angularly much larger than the
foreground occulting body. As mentioned in the Introduction, this situation is described as a
transit (instead of an occultation). This occurs for instance when a exo-planet passes in front
of its star, or when the planet Venus is seen transiting in front of the solar disk.

As an example, the geometry of a Venus transit is sketched in Figure 15, where D and D ′ are
the distance of Venus to the Earth and to the Sun, respectively. Without refraction by Venus’
atmosphere, an observer would receive a ray from a point S on the Sun that intersects the plane
perpendicular to the line of sight passing through Venus’ center at ordinate yi . Due to refraction,

Figure 13. Left: The same as the right panel of Figure 10. Right: The effect of small vertical
corrugations of the order of 100 m have been added to the general smooth shape of the
flash layer (left panel of Figure 10). In the case of Titan, these corrugations are caused by
fluctuations induced by atmospheric gravity waves. They cause many streaks in the flash
region that result in flux fluctuations, or spikes, in the light curves (Figure 14).
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Titan occultation
14 November 2003
Sutherland, South Africa

Triton occultation
5 October 2017
Constância, Portugal
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Figure 14. Upper panel: the occultation by Titan’s atmosphere observed on 14 November
2003 at the Sutherland in South Africa. The lower curve shows the event as observed in the
visible (0.89 µm), while the upper curve shows the same event in the near infrared (2.2 µm,
shifted vertically by +0.5 for a better viewing). Conspicuous flux variations (or “spikes”)
are seen everywhere during the occultation, including in the central flash. The spikes are
caused by gravity waves that propagate in Titan’s atmosphere, creating in particular the
streaks in the flash region (Figure 13). Note that the flash observed in the visible light is
much weaker than its counterpart observed in the infrared. This difference stems from
absorption by hazes that are more opaque at 0.89 µm than at 2.2 µm [24]. Lower panel:
the occultation by Triton observed on 5 October 2017 at Constância in Portugal. This
station passed at a mere 6-km distance to Triton’s shadow center. The red line is a fit
to the data assuming a spherical and transparent atmosphere. The height of the flash
represents more than three times the flux of the unocculted star, a current record for this
kind of observations. The flux fluctuations seen in the light curve are caused by the Earth
atmosphere, not by Triton’s atmospheric waves that are much weaker than for Titan. This
observation shows that, contrarily to Titan, Triton’s atmosphere is essentially spherical and
transparent [25].

however, the ray is deflected and appears to come from another ordinate y . In other words, the
point S that should be seen at yi has an image that is seen at y .
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Figure 15. The geometry of a transit phenomenon, with the definitions of the angles and
other quantities used in the text. The case examined here is the transit of Venus in front of
the Sun.

Taking by convention ω negative (as in Figure 1) and α and β positive, we have ω = −(α+β).
In the limit of small angles, we have α= (y − yi )/D ′ and β= (y − yi )/D , thus

ω=−D +D ′

DD ′
(
y − yi

)
.

On the other hand, we can express ω as a function of y (Eq. (25)), so that the equation above
can be re-written

y = yi + g H exp
[
−

( y − r1/2

H

)]
, (36)

which defines r1/2 and where g is the dimensionless geometric factor8

g = D ′

D +D ′ .

Eq. (36) provides implicitly y as a function of yi , that, is the position of the image of S as seen
in Venus’ atmosphere by the observer. This equation can be solved numerically. Alternatively,
we can introduce the quantity φ used before (but now as in auxiliary variable) by defining it as
(1/φ)−1 = exp[−(y − r1/2)/H ] in analogy to (Eq. (26)). From y − yi = y − r1/2 + r1/2 − yi , we finally
obtain

g

(
1

φ
−1

)
+ ln

(
1

φ
−1

)
=− yi − r1/2

H
. (37)

This is similar to the Baum and Code equation (27), except from the appearance of the geometri-
cal factor g and from the fact that the term (1/φ−2) has been replaced by (1/φ−1). We will refer
to this equation as the “modified Baum and Code equation”. For a given yi , the inversion of the
modified Baum and Code equation provides φ, which in turn yields y through

y = yi + g H

(
1

φ
−1

)
. (38)

In this equation, we can choose without loss of generality y > 0. In this case, yi > 0 (resp. yi < 0)
corresponds to the primary (resp. secondary) image of S. More generally, this equation can be
used to relate the vector position r⃗i of S projected at Venus to the vector position r⃗ of its image
(Figure 16). Denoting ri = ∥⃗ri∥, we can re-write Eq. (38) in a vectorial form. We can encapsulate

8 Not to be confounded with the acceleration of gravity g (r ) of the planet, see e.g. Eq. (12).
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in the same equations the cases of the primary images and secondary images. This is done by
defining a parameter ϵ=+1 (resp. ϵ=−1) for primary (resp. secondary) images. Then we pose

∆r = ϵri − r1/2 and u = 1

φ
−1, (39)

so that the equations relating r⃗ and r⃗i are
g u + ln(u) =−∆r

H

r⃗ =
(
1+ g Hu

ϵri

)
r⃗i ,

(40)

In numerical schemes, one can get rid of the factor ϵ in Eqs. (39) and (40) by adopting ri > 0
for primary images and ri < 0 for secondary images. This trick must be used with care, however,
as ri classically denotes the modulus of r⃗i and thus, is in principle always positive.

For a given ri , the first equation of the system (40) (i.e. the modified Baum and Code equation)
provides u. Once this is done, the second equation provides the vector position r⃗ of the image
of the point S located at r⃗i . For D ′ →+∞, we have g = 1, and the second equation of the system
above reduces to Eq. (28), as expected.

It is instructive to consider the asymptotic behavior of r⃗ for ∆r /H approaching −∞, corre-
sponding to φ approaching zero (or equivalently, u approaching +∞), i.e. images of S that are
deeply immersed into the atmosphere, referred to as the “deep image regime” hereafter.

The modified Baum and Code equation provides a first estimation u ∼−∆r /(gH) by neglecting
ln(u) with respect to u. Introducing this expression of u back into the modified Baum and Code
equation, we obtain g Hu ∼ −∆r − H ln(−∆r /(gH)). Finally, using this approximation of g Hu in
the second equation of the system (40), we see that in the deep image regime, the image is located
at distance

r ∼ r1/2 −H ln

(−∆r

g H

)
(41)

from the planet center.
Because of the weak logarithmic dependence, even for large negative values of ∆r , the deep

image of S probes atmospheric layers that are only a few scale heights below the half light
radius r1/2, At this point, other effects can dominate the aspect of the image. For instance, if
the atmosphere is tenuous enough, the image may hit at some point the surface of the planet
and merely disappears. In some other cases, the deep atmosphere may be hazy or cloudy, and
the image may enter opaque regions, causing also its disappearance. This point is now discussed
further in the particular case of Venus transits.

7.2. The Lomonossov effect

The discovery of Venus’ atmosphere is traditionally attributed to Mikhail Lomonossov, who
observed the Venus transit of 6 June 1761 from St Petersburg Observatory [30]. The credit of this
original discovery by Lomonossov is debated, though [29, 31–33]. However, Lomonossov’s basic
interpretation was correct, that is, the luminous ring appearing along Venus’ limb as the planet
emerges from the apparent solar disk is caused by atmospheric refraction. A complementary
and extensive discussion of the Lomonossov arc and Venus atmosphere is also presented in this
special issue [34].

This effect should not be confused with the extension of Venus’ crescent near inferior con-
junction, caused by the quasi forward-scattering of light by hazes, another evidence that Venus
does possess an atmosphere. This point is discussed in the next subsection, and we will see that
forward-scattering plays a negligible role during Venus transits, when compared to refraction.
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Figure 16. Left: the point S of the solar limb has two images after being refracted by the
planet’s atmosphere, assumed here to be spherical. The primary (resp. secondary) image
is located at r⃗p (resp. r⃗s ). Right:552176 the case shown here is the transit of Venus in front
of the Sun, using here a radius of 6130 km for the opaque atmosphere [29]. The quantity
h denotes the position of Venus’ center (cross) relative the solar limb. By convention, h is
positive (resp. negative) if Venus’ center is above (resp. below) the solar limb. Two edgings
appears along Venus’ limb, an upper bright one (the “aureole”) and a lower dark one (the
“anti-aureole”). They are obtained by using Eq. (40) to calculate the primary and secondary
images of the solar limb. If Venus’ center were below the projected solar limb (as it is in
the left panel), then the primary and secondary nature of the images would be swapped.
Assuming a transparent atmosphere, the conservation of radiance implies that the aureole
has the same brightness as the Sun. Likewise, the anti-aureole has the same brightness as
the background sky, in black color here. For a better viewing of the aureole and the anti-
aureole, the scale height H of Venus’ atmosphere used here has been largely exagerated
(100 km) compared to the actual value of about 4 km [29]. Also, Venus’ disk is plotted here
in gray for better visibility, but it is by no way luminous in actual observations. It has actually
the same brightness as the background sky.

The Lomonossov effect is visualized by calculating the primary and secondary images of the
point S as this point is moved along the solar limb (Figure 16). The time series of Figure 17 shows
in more details the evolution of the two “edgings” resulting from the Lomonossov effect. The
bright edging (called the “aureole” for short hereafter) is always outside the solar limb, while the
dark edging (called the “anti-aureole”) is always inside the solar limb. In practice, the anti-aureole
goes unnoticed in the case of Venus, as it is confounded with the planet dark side. However, it
must be accounted for when simulating transit light curves involving exo-planets. For instance,
the panel (c) of Figure 17 shows that when the planet center projects itself on the solar limb, the
contributions of the aureole and the anti-aureole cancel out. Then, the flux taken away by the
planet just corresponds to the flux blocked by its own disk.

The visibilities of the aureole and anti-aureole depend on the value of ropa, the radius of the
opaque atmosphere. The image of a given point S on the solar limb is located at a distance r of
Venus’ center which is given by Eq. (41), i.e. r ∼ r1/2 − H ln(−∆r /(gH)). This image is effectively
observed if r > ropa. Using the definition of ∆r (Eq. (39)), the condition of visibility is

ϵri > r1/2 − g H exp
( r1/2 − ropa

H

)
. (42)
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(b)(a) (c)

(e)(d) (f)

Figure 17. A sequence of images showing the evolution of the aureole and anti-aureole as
Venus emerges from the apparent solar disk. In the various images, the projected Venus’
center is respectively located at 6000 and 3000 km below the solar limb (panels (a) and (b)),
and at 100, 3000, 5000 and 8000 km above the solar limb (panels (c), (d), (e) and (f)). Note
that the aureole and the anti-aureole have the same width when Venus’ center is aligned
with the solar limb (panel (c)). When Venus is far down in front of the Sun, the anti-aureole
disappears behind the opaque Venus’ atmosphere. The same occurs with the aureole when
Venus is far up in front of the background sky.

We can consider two cases, depending on the sign of h, the height of Venus’ center above the
solar limb, see Figure 18. For h < 0 (left panel of Figure 18), the aureole is the primary image of
the limb, so that ϵ=+1, and the condition of visibility of the aureole is

ri > rcut = r1/2 − g H exp
( r1/2 − ropa

H

)
, (43)

where we define the cutoff value rcut.
Geometrical considerations based on the examination of Figure 18 (left panel) show that the

aureole is visible if its angle with the vertical is larger than the cutoff angle

θcut = arccos

( |h|
rcut

)
,

As ropa decreases, rcut decreases as well, until it reaches the value of |h|. At this point, and for all
values of rcut between 0 and h, we have θcut = 0 and the aureole is uninterrupted along the upper
limb of Venus, as illustrated for instance in panel (b) of Figure 17.

For rcut = 0, the aureole is complete when h = 0 and extends over π radians, a situation
illustrated in panel (c) of Figure 17. A new regime sets in for h > 0, as the aureole now corresponds
to secondary images of the solar limb (ϵ=−1), so that Eq. (42) reads

ri < rcut =−r1/2 + g H exp
( r1/2 − ropa

H

)
. (44)

This situation is depicted in the right panel of Figure 18. The aureole now extends over an angle
2θcut, where again we have θcut = arccos(|h|/rcut).

As ropa decreases, rcut increases until it is larger than the planet diameter. Then, the aureole
remains visible even if the planet disk is completely detached from the solar disk. This is indeed
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Figure 18. Left: condition of visibility for the aureole for h < 0, i.e. when Venus’ center
is below the solar limb (Eq. (43)). The aureole disappears behind the opaque atmosphere
if its angle with the vertical is less than θcut. Right: the reversed situation for h > 0. Now
the aureole is visible when its angle with the vertical is less than θcut. In both cases,
θcut = arccos(|h|/rcut), see text for details.

the case for Venus. During the 8 June 2004 transit, estimates of the various quantities entering
the expression of rcut were derived [29]: H ∼ 4 km, r1/2 ∼ 6170 km and ropa ∼ 6130 km. Using the
geometrical factor g = 0.716 relevant to that event, we obtain rcut ∼ 57,000 km. This means that
the aureole could be observed even in Venus’ disk is completely detached from the solar disk, a
situation illustrated in panel (f) of Figure 17.

Beyond the distance of 57,000 km, the aureole disappears behind Venus’ opaque atmosphere.
As Venus is at ∼ 0.3 au from Earth under these circumstances, this corresponds to an angular
separation of a mere 4 arcmin between Venus and the solar limb.

The equation θcut = arccos(|h|/rcut) shows that for rcut very large, θcut approaches π/2, but it
cannot goes beyond this value. In other words, the aureole can be observed only along the Venus
limb opposite to the Sun, and cannot exceed an angular extension of π radians. This is expected
from the fact that solar rays passing near the lower limb of Venus (panel (f) of Figure 17) cannot be
refracted back to Earth, as the curvature of the ray is always pointing to the direction of increasing
refractive index (Eq. (2)).

Another aspect, however, limits the observation of the aureole. Even though the brightness of
the luminous arc is very high (it is actually the brightness of the solar surface), it becomes very
narrow for large values of ri . The maximum width w of the aureole is reached at the top of Venus’
limb (Figure 18), where ri = h. Thus, the maximum width reached by the aureole is w = r − ropa,
where r is given by Eq. (41), with ∆r =−h − r1/2, so that

w ∼ r1/2 − ropa −H ln

(
h + r1/2

g H

)
, (45)

where we recall that here h > 0. As an example, we take h = ropa, corresponding to the situation
where Venus’ disk is tangent to the solar limb (called the first and fourth contacts in the terminol-
ogy of Venus’ transits). Adopting the numerical values mentioned before, we obtain w ∼ 6.5 km.
This width cannot be resolved using any imaging technique from Earth. Under usual seeing con-
ditions, the Point Spread Function (PSF) due to our atmosphere of typically one arcsec. This cor-
responds to about 210 km projected at the planet, which was at 0.288 au from Earth on 8 June
2004. In the example taken above, the PSF dilutes the apparent brightness of the aureole by a fac-
tor of 210/6.5 ∼ 30. As Venus’ disk recesses away from the solar disk, the width w of te aureole de-
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Figure 19. Left: The Lomonossov aureole observed from Tradate (Italy) during the Venus
transit of 8 June 2004, see www.astrosurf.com/comolli/cong5e.htm (copyright Lorenzo
Comolli). It can be compared to the synthetic time series displayed in Figure 17. Right:
The passage of Venus in front on the solar limb during the transit of 5/6 June 2012,
observed from Lowell Observatory in Arizona, USA (copyright Paolo Tanga). One can note
the irregular aspect of the aureole, possibly due to the varying altitude of the cloud deck in
Venus’ atmosphere. See text for discussion.

creases and the dilution factor increases. At some point, the aureole, although intrisincally very
bright, becomes too narrow, and thus too faint, to be detected.

In the particular case of Venus’ transits observed from Earth, the particular values of r1/2, ropa

and H are such that w in Eq. (45) is (coincidentally) quite small. Thus, a small variation of ropa

induces a large relative variation of w . This creates a patchy aspect of the aureole (Figure 19) and
is a way to map the altitude of the cloud deck along Venus’ limb.

The same kind of behaviors occur symmetrically for the anti-aureole. In particular, if Venus’
disk is deep inside the solar disk, it disappears behind the opaque layer. Then, it is very difficult by
direct imaging to know that the planet has an atmosphere, since the brightness of the Sun, even
when observed through the atmosphere, remains unchanged. In this case, the only way to detect
the atmosphere is to observe the passage of Venus in front of a sunspot. The image of the spot
will be distorted in the same as a stellar disk is distorted when observed through the atmosphere
(Figure 7). This would be an alternative to study Venus’ atmosphere. However, such an event has a
low probability to occur. Note that another way to detect Venus’ atmosphere would be to perform
spectroscopic transit observations to detect the gaseous CO2.

As a final remark, we note that the general formalism developed here can be applied to
exoplanets transiting in front of their stars. Some detailed calculations and applications to
exoplanetary atmospheres are given in [35].

7.3. Refraction vs. forward-scattering

Near inferior conjunction, Venus’ crescent extends beyond 180 degrees, the value expected for
an opaque, airless planet. This was first reported by Johann Schröter in 1790, three decades after
Lomonossov’s observations [36], and then by various observers during the nineteenth century,
see the review by Henry Norris Russell in 1899 [37]9 and the example displayed in Figure 20.

9This was the first paper published by Russell, at the age of twenty-two, well before he became famous for his work on
stellar classification, which led to the Hertzsprung–Russell diagram.
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Sun
Venus

observer

Figure 20. Left: The geometry of light scattered by Venus back to Earth. See text for details.
Right: The extension of Venus’ crescent caused by haze forward-scattering. This picture
was taken on 2 June 2020, as Venus was at about two degrees of the Sun within one degree
of the Sun during inferior conjunction (Copyright Thierry Legault).

Russell considered refraction and haze scattering as a possible causes for the extension of
Venus’ crescent. He then inferred (rightly) that such extension was likely caused by haze scat-
tering rather than refraction. This is in line with the results obtained in the previous subsection:
as soon as Venus projects itself at more than a few arcmin from the solar limb, the “refractive au-
reole” disappears due to the presence of an opaque layers in the atmosphere, leaving only a “haze
aureole”.

However, during a transit the aureole is largely dominated by refraction, not by haze scattering.
Let us consider for this the solar disk with radius RS and apparent surface area S =πR2

S , emitting
rays with radiances (or intensities) IS towards an observer at distance rS , who receives the solar
flux over a surface area σ (Figure 20). Ignoring factors of order unity that account for the angles
of emission or reception, the luminous power received from the Sun at σ is ΦS = IS Sσ/r 2

s , so the
solar flux fS (also called the solar constant) is fS = ΦS /σ = IS S/r 2

s . Let us denote fV the solar
constant at Venus, at distance rV from the Sun. Then, Venus’ lit hemisphere re-emits towards
σ rays with radiance IV = pΦ(α) fV /π. Here, p is the geometric albedo and Φ(α) is the phase
function of the atmosphere, where α is the angle Sun-Venus-observer. Consequently, the ratio
IV /IS is

IV

IS
= pΦ(α)

(
RS

rV

)2

. (46)

As RS ∼ 700,000 km and rV ∼ 0.7 au ∼ 108 km, and because pΦ(α) is of order unity, we obtain
IV /IS < 10−2 ≪ 1. As mentioned before, IS is also the brightness of the refractive aureole, while
IV is the brightness of the lit side of Venus, as seen from the surface element σ. The radiance (or
brightness) on the rays forward-scattered by hazes to Earth is itself much less than IV , so that the
brightness of the haze aureole is several orders of magnitude fainter than the brightness of the
refractive aureole. This makes impossible the detection of the haze aureole, for instance along
the limb that is nearest to the Sun when Venus’ disk is completely outside the solar disk (panel (f)
of Figure 17).

More discussion on the respective roles of refraction and scattering in the case of exoplanet
transits is provided in [35]. In particular, we note that in exoplanetary cases, the solar radius
RS and Venus heliocentric distance rV in Eq. (46) are replaced by the stellar radius R⋆ and the
planet distance rP , respectively. As R⋆ and rP may be comparable, the contribution of forward-
scattering relative to refraction may be not overwhelmingly small, and thus should be considered
when generating synthetic transit light curves.
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8. Conclusion

The various aspects of refraction during stellar occultations and transits described in this chapter
illustrate the long-standing interest of the astronomical community in refraction phenomena.
Transits permitted to discover Venus’ atmosphere in the eighteenth century, and occultations
revealed Pluto’s atmosphere in the years 1980’s, thus paving the way to the NASA New Horizons
flyby of the dwarf planet in 2015.

Meanwhile, occultations and transits still continue to raise great interest. They are used to
monitor long-term seasonal evolutions of the atmospheres of Titan, Triton and Pluto, among
others. They also probe subtle dynamical effects such as gravity waves that are just impossible
to track using any other Earth-based methods.

Occultations and transits have a bright future in store for us. The discovery of tenuous atmo-
spheres around remote Trans-Neptunian Objects will only be possible by observing stellar occul-
tations, to a sensitivity as good as a few nanobars. Also, time series such the one displayed in Fig-
ure 17 can be applied to the study of atmospheres of exoplanets. By comparing transit photomet-
ric light-curves with models, one can constrain key parameters such as the scale height, cloud
altitude and density profiles of the atmospheres of these remote worlds.
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