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Abstract. We study the breathing (monopole) oscillations and their damping in a harmonically trapped one-
dimensional (1D) Bose gas in the quasicondensate regime using a finite-temperature classical field approach.
By characterising the oscillations via the dynamics of the density profile’s rms width over long time, we
find that the rms width displays beating of two distinct frequencies. This means that the 1D Bose gas
oscillates not at a single breathing mode frequency, as found in previous studies, but as a superposition of
two distinct breathing modes, one oscillating at frequency close to ’p

3! and the other at ’2!, where ! is
the trapping frequency. The breathing mode at »p

3! dominates the beating at lower temperatures, deep in
the quasicondensate regime, and can be attributed to the oscillations of the bulk of the density distribution
comprised of particles populating low-energy, highly-occupied states. The breathing mode at ’ 2!, on the
other hand, dominates the beating at higher temperatures, close to the nearly ideal, degenerate Bose gas
regime, and is attributed to the oscillations of the tails of the density distribution comprised of thermal
particles in higher energy states. The two breathing modes have distinct damping rates, with the damping
rate of the bulk component being approximately four times larger than that of the tails component.

Résumé. Nous étudions les oscillations de respiration (monopolaires) et leur amortissement dans un gaz de
bosons unidimensionnel (1D) harmoniquement piégé dans le régime de quasi-condensat en utilisant une
méthode de champ classique à température non nulle. En caractérisant les oscillations par le comportement
de la largeur quadratique moyenne du profil de densité sur des temps longs, nous constatons que celle-ci
présente un battement de deux fréquences distinctes. Ceci signifie que le gaz de bosons 1D n’oscille pas à
la fréquence d’un seul mode de respiration, comme l’ont trouvé les études précédentes, mais sous l’eVet de
deux modes de respiration superposés, l’un oscillant à une pulsation proche de »p

3! et l’autre à »2!, où !

est la pulsation de piégeage. Le mode de respiration à »p
3! domine le battement à basse température, dans

le régime fortement quasi-condensé, et est attribué aux oscillations de la partie centrale de la distribution
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de densité, composée de particules occupant les niveaux de basse énergie fortement peuplés. Le mode de
respiration à » 2!, en revanche, domine le battement à des températures plus élevées, proches du régime
du gaz de bosons presque parfait, et est attribué aux oscillations des ailes de la distribution de densité,
composées de particules thermiques dans des niveaux de plus haute énergie. Les deux modes de respiration
ont des taux d’amortissement distincts, celui de la composante centrale étant environ quatre fois plus grand
que celui des ailes.

Keywords. Ultracold Atoms, Dynamics of 1D Bose Gases, Classical Field Simulations, Breathing Mode Oscil-
lations, Damping of Collective Oscillations.
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tions du mode respiratoire, Amortissement des oscillations collectives.
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1. Introduction

The study of low-energy excitations and their damping is an indispensable tool for the under-
standing of collective many-body eVects in ultracold quantum gases. In particular, the temper-
ature dependence of the frequency of collective oscillations and their damping have been the
subject of scrutiny both experimentally [1–5] and theoretically [6–17] since the first experiments
in dilute gas Bose–Einstein condensates [18–20]. Depending on the temperature of the gas, the
damping of collective oscillations in harmonically trapped 3D systems has been explained either
via collisional relaxation [13, 21], where the two parts of the Bose gas (condensate and thermal
components) exchange energy and particles, or via mean-field eVects that can lead to Landau
or Beliaev mechanisms of damping [6, 7, 11, 16, 22]. The lifetime of collective oscillations in such
systems has been predicted and measured to be typically on the order of tens of milliseconds.

In contrast to 3D systems, collective oscillations in one-dimensional (1D) Bose gases damp
out on a significantly longer time scales. For example, the lifetime of breathing mode oscillations
observed in Ref. [23] in a weakly interacting 1D quasicondensate was on the order of seconds;
in the related collisional dynamics of a quantum Newton’s cradle in the opposite, strongly
interacting regime, the thermalisation time constant was estimated to be even longer (longer
than »70 seconds) [24]. The slow relaxation rates in the 1D Bose gas are related to the fact that
the underlying theoretical model—the Lieb–Liniger model [25, 26]—is integrable in the uniform
limit, which puts additional constraints on the pathways to equilibration compared to those
present in generic (non-integrable) quantum systems. More specifically, the integrable uniform
1D Bose gas is expected to relax to a generalised Gibbs ensemble rather than to the canonical
thermal state [27–33]. In inhomogeneous 1D Bose gases, such as the harmonically trapped
1D quasicondensate studied here, the integrability breaks down and provides a mechanism
for relaxation to a thermal ensemble [34]. Nevertheless, for suYciently weak confinement,
the system can be regarded as nearly-integrable and hence is expected to undergo a crossover
from transient relaxation to the generalised Gibbs state to a slow decay to the final thermal
ensemble [32]. The overall 1D damping rate is expected to be small enough to be neglected
in experiments. However, in current experiments the observed relaxation rates in quasi-1D
systems are often aVected by transverse excitations [35–38] due to the 3D nature of realistic
trapping potentials. Such transverse excitations speed up thermalisation, thus hampering the
characterisation of pure 1D damping. Because of this, pure 1D damping rates have not been
scrutinised experimentally yet, particularly in the weakly interacting, degenerate regime of the 1D
Bose gas, whereas theoretically the question of 1D thermalisation has started to attract attention
only relatively recently [39–41].
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In this paper, we study damping rates of a finite-temperature 1D Bose gas in the weakly
interacting quasicondensate regime, following an excitation of breathing mode oscillations in
a harmonic trap. The specific scenario that we consider is a sudden trap quench from the initial
trap frequency !0 to a slightly smaller frequency !, which invokes breathing oscillations; we
simulate these oscillations and their relaxation dynamics using a classical field (c-field) approach.
In doing so, we also revisit and scrutinise the question of the frequency of breathing oscillations,
which has been addressed previously both experimentally [23, 42, 43] and theoretically [44–55].

According to the most recent experimental study by Fang et al. [23], the frequency of such
oscillations in the root-mean-square (rms) width of the real-space density profile undergoes a
smooth transition from !B ’ p

3! deep in the quasicondensate regime to !B ’ 2! in the nearly
ideal Bose gas regime as the temperature of the gas is increased. In contrast to this, our numerical
experiment reveals the presence of both oscillation frequencies in a broad range of temperatures
within the quasicondensate regime. We refer to these frequencies as !B1 and !B2 and attribute
the breathing modes at !B1 ’ p

3! and !B2 ’ 2!, respectively, to the oscillations of the bulk
and the tail components of the density profile. The observation of two simultaneous breathing
modes is made possible by extending our dynamical simulations to significantly longer durations
than currently possible experimentally, which reveals an oscillatory pattern (in the rms width)
characteristic of beating of two frequencies. Such beating in breathing oscillations, resulting in
“collapses” and “revivals” of the rms width of the density profile, is similar to the one observed
recently in a partially condensed 3D Bose–Einstein condensate [56].

Finally, we extract the damping rates of these two distinct breathing modes from the c-field
simulations and find that the damping rate ¡1 associated with the breathing mode !B1 is on the
order of ¡1 ’ 0.04! (where we use 1/! as the timescale), whereas the damping rate ¡2 associated
with !B2 is approximately four times smaller.

2. C -field method for simulating breathing oscillations

The breathing mode oscillations of a 1D Bose gas in the quasicondensate regime are simulated
using the c-field (or classical field) approach as in Refs. [41, 55, 57]. In this approach [58, 59],
the initial thermal equilibrium state of the system is prepared by evolving the simple growth
stochastic projected Gross–Pitaevskii equation (SPGPE) for the complex c-field “C(x, t ),

d“C(x, t ) ˘ P (C)
‰

¡ i

ßL (C)
0 “C(x, t )dt ¯ ¡

kB T

‡
„¡L (C)

0

·
“C(x, t )dt ¯ dW¡(x, t )

¾
, (1)

with x and t being the position and time, respectively. Here, the projection operator P (C){¢} sets
up the high-energy cutoV Ecut between the classical c-field region, comprised of degenerate,
highly occupied low-energy modes, and the thermal region, comprised of sparsely occupied
high-energy modes. Furthermore, ¡ is the growth rate, T is the temperature of the eVective
reservoir (served by the thermal region) to which the system is coupled, and „ is the chemical
potential of the reservoir that controls the number of particles in the c-field region. In addition,
L (C)

0 is the Gross–Pitaevskii operator defined by

L (C)
0 ˘ ¡ ß2

2m

@2

@x2 ¯V (x, t ) ¯ g j“C(x, t )j2 , (2)

where V (x, t ) is the external trapping potential, which we assume is harmonic, V (x, t ) ˘
1
2 m!(t )2x2, with frequency !(t ), and g is the strength of repulsive (g ¨ 0) 1D interatomic contact
interaction potential. The last term, dW¡(x, t ), in Eq. (1) is a complex-valued stochastic white
noise satisfying the following nonzero correlation:›

dW ⁄
¡ (x, t )dW¡(x 0, t )

fi ˘ 2¡–(x ¡ x 0)d t . (3)
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Evolving the above SPGPE from an arbitrary initial state and for suYciently long time (such
that the memory of the initial state is lost) samples thermal equilibrium configurations of the
system from the grand-canonical ensemble. Averages over a large number of stochastic realisa-
tions of the c-field “C(x, t ) and its complex conjugate “⁄

C(x, t ) are then used to construct thermal
equilibrium values of physical observables that can be expressed in terms of expectation values of
standard bosonic quantum field operators b“(x, t ) and b“†(x, t ), except that their quantum com-
mutating nature is ignored. As an example, the particle number density ‰(x, t ) ˘ h b“†(x, t ) b“(x, t )i
in the c-field approach is calculated as the stochastic average ‰(x, t ) ˘ h“⁄

C(x, t )“C(x, t )i (where
the brackets h. . .i now refer to stochastic averaging over a large number of stochastic trajectories),
whereas the momentum distribution n(k, t ), where k is in wave-number units, is calculated as
n j (k, t )˘˛

d x d x 0e i k(x¡x 0)h“⁄
C(x, t )“C(x 0, t )i.

The thermal equilibrium configurations (stochastic realisations) of the c-field “C(x, t ), pre-
pared in this way via the SPGPE, form the initial (t ˘ 0) thermal equilibrium state of the sys-
tem. The subsequent dynamics of the system, following a certain excitation protocol, can then
be modelled by evolving the c-field realisations in real time according to the mean-field projected
Gross–Pitaevskii equation [59],

iß @

@t
“C(x, t ) ˘ P (C)

n
L (C)

0 “C(x, t ).
o

, (4)

The dynamical protocol that we use here to invoke the breathing mode oscillations is a sudden
quench (at time t ˘ 0) of the harmonic trap frequency from !0 to a new value !, i.e.,

V (x, t ) ˘
(

1
2 m!2

0x2, for t • 0,
1
2 m!2x2, for t ¨ 0.

(5)

The strength of such a quench can be characterised by

† ˘
‡!0

!

·2
¡ 1, (6)

which can be either negative or positive depending on the ratio !0/! being smaller or larger than
one. The numerical value of † determines the amplitude of breathing mode oscillations; for a
small-amplitude quench, with j†j ¿ 1, the amplitude of oscillations is linear in †, according to the
scaling solutions to hydrodynamic equations of Ref. [55] (see footnote [33] therein).

Breathing oscillations of a 1D quasicondensate in this particular scenario have been studied
previously experimentally and theoretically in Refs. [23,55]. The focus of those works was the un-
derstanding of the phenomenon of frequency doubling of the oscillations in momentum space.
In the present work, we instead concentrate on analysing the frequencies and damping rates of
breathing oscillations seen in Refs. [23, 55], in analogy with a recent work on thermalisation of a
1D quasicondensate in a quantum Newton’s cradle setup [41].

The simulations of the SPGPE and projected GPE performed in this work were carried out us-
ing the XMDS software package [61] in the computational basis of Hermite–Gauss polynomials.
Unlike the plane-wave basis, which necessitates additional optimisation of the computational
grid to control the eVects of the high-energy cutoV [62], the Hermite–Gauss basis is the natural
basis for harmonically trapped systems and represents the most computationally eYcient ba-
sis [59, 63, 64]. In this basis, the projection operator P (C){¢} that provides the high-energy cutoV,
with Ecut ˘ ß!0(nmax ¯ 1/2), is implemented naturally through the maximum number of basis
states nmax used in the numerical simulations.

Before discussing the results of our simulations, we refer the reader to Appendices A, B
and C, where we recall the classification of diVerent regimes of a weakly interacting uniform
1D Bose gas, the regimes of applicability of the c-field approach, and their extensions to a
harmonically trapped 1D Bose gas. The diVerent regimes here are identified via two dimensional
parameters: °0 ˘ mg /ß2‰0, characterising the interaction strength for a uniform system at
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Figure 1. Typical evolution of the real-space density pro�le ½(x, t ) and the momentum
distribution n(kx , t ) of a quasicondensate after a quench of the longitudinal trapping
frequency ! 0 ! ! , with a quench strength ² ' 0.563 (! / ! 0 Æ0.8). The initial thermal
equilibrium state of the system is characterised by ° 3/2

0 T Æ0.39 and N Æ1109. The
dimensionless position ( x/ aosc) and momentum ( kaosc) are introduced with respect to the
initial harmonic oscillator length aosc Æ

p
ß/ m! 0 serving as the lengthscale, whereas the

time is normalised to 1/ ! . In terms of absolute values, the relevant physical parameters
here were chosen as follows: T Æ48 nK, ! 0/2 ¼Æ10 Hz, and g ' 1.4£ 10¡ 38 J¢m, which
itself can be obtained from g ' 2ß! ? a [60], with the 3D scattering length of a Æ5.3 nm
(assuming a gas of 87Rb atoms) and the frequency of transverse harmonic con�nement of
! ? /2 ¼Æ2 kHz (with g ' 2ß! ? a away from con�nement induced resonances [60]). With
these parameter values, one obtains ° 0 Æ8.3£ 10¡ 3, T Æ517, and the resulting quoted
values of ° 3/2

0 T Æ0.39 and N Æ1109. Here and hereafter, all observables are evaluated as
averages over 2000 stochastic realisations. The dotted vertical lines in (a) are a guide to an
eye showing that the oscillation frequency in the density pro�le varies depending on the
position jxj from the trap centre (see text).

density ½0, and T Æ2ß2kBT / mg 2, characterising the temperature. Furthermore, the c-�eld
approach can, in fact, be parametrised in terms of a single dimensionless parameter, ° 3/2

0 T [41,
55, 58, 65]. For a harmonically trapped (inhomogeneous) system, the roles of ½0 and ° 0 are
taken by their respective values in the trap centre, with ° 3/2

0 T still being a relevant single
dimensionless parameter that combines interaction strength and tempeprature. However, to
completely characterise such a system, one needs to specify an additional parameter, such as the
total number of atoms N , which itself is governed (for �xed values of ° 0 and T ) by the underlying
trap frequency ! 0.

In Fig. 1, we show typical evolution of the density pro�le ½(x, t ) and the respective momentum
distribution n(kx , t ), after a sudden quench of the trap frequency as described above. In this
example, the initial state is characterised by ° 3/2

0 T Æ0.39 and a total number of atoms N Æ
1109, whereas the quench strength is ² Æ0.563 (! / ! 0 Æ0.8). We see here that both ½(x, t )
and n(kx , t ) display breathing oscillations after the quench, with n(kx , t ) showing additional
peaks occurring at twice the frequency of oscillations of ½(x, t ). This phenomenon is known as
frequency doubling [23] and can be interpreted, via a classical hydrodynamic approach [55] as a
result of a self-re�ection mechanism at the inner turning point due to the mean-�eld interaction
energy barrier. Similarly to the results of Ref. [55], we observe the frequency doubling in this
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example because the system under these parameters is the regime where the contribution of the
hydrodynamic velocity �eld dominates the contribution of the thermal velocities (which show
no frequency doubling). As the system evolves in time the oscillations in both the density and
momentum distributions can be seen to damp out, with the damping somewhat more apparent
in the momentum distribution.

The dotted vertical lines in Fig. 1(a) are shown to guide the eye in the observation that
the oscillation frequency varies depending on the position jxj; the frequency of local density
oscillations near the trap centre is seen to be lower than the local frequency in the tails of
the density distribution. Indeed, while the �rst density maximum in the trap centre and the
respective minimum in the tails are aligned to a straight vertical line, the ninth maximum in the
trap centre is ahead of the respective ninth minimum in the tails, implying that the central part
of the cloud oscillates at a lower frequency.

3. Breathing dynamics

To further characterise the dynamics and damping of the breathing oscillations, we calculate the
rms width of the density pro�le, given by

¢ xRMS(t )Æ
·

1

N

�
dx½(x, t )x2¡

³ 1

N

�
dx½(x, t )x

´2
¸ 1/2

, (7)

where N Æ
�

dx½(x) is the total number of particles.

Figure 2. Root-mean-square width ¢ xRMS(t ) of the density pro�le ½(x, t ) shown in Fig. 1(a),
normalised to harmonic oscillator length aosc Æ

p
ß/ m! 0. The black dots are data points

from c-�eld simulations, whereas the full (orange) line is a �t using Eq. (8).

In Fig. 2, we show the calculated ¢ xRMS(t ) as a function of time, for the density pro�le ½(x, t ) of
Fig. 1(a). A distinct feature of the rms width is the presence of beating of two oscillation frequen-
cies, which was already apparent in Fig. 1(a). This beating suggests that the quasicondensate,
after the quench of the trapping potential, oscillates not at a single breathing mode frequency,
but as a superposition of two dominant frequencies.

To extract the beating frequencies from the oscillations of the rms width, we �t a sum of two
cosine functions, each with its own damping term,

¢ xRMS(t ) ÆA1 cos
¡
! B1t Å Á1

¢
e¡ ¡ 1t Å A2 cos

¡
! B2t Å Á2

¢
e¡ ¡ 2t Å C. (8)
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Here, ! Bi (i Æ1,2) are the two breathing mode frequencies, Ai , ¡ i and Ái are the respective
amplitudes, damping rates, and the phases of each breathing mode, and the last term C serves as
a constant background. As can be seen from Fig. 2, Eq. (8) �ts very well to the rms width ¢ xRMS(t )
calculated from the c-�eld simulations, con�rming that the nontrivial oscillatory dynamics of the
rms width ¢ xRMS(t ) is indeed a result of beating of two components of the 1D Bose gas, breathing
at two distinct frequencies ! B1 and ! B2.

Similar beating in the rms width has been observed in 3D systems [56], where the e Vect
was referred to as “collapses” and “revivals” of the rms width due to in-phase and out-of-phase
oscillations of the condensed and noncondensed fractions of the gas.

We further note that the same �tting formula, Eq. (8), works very well when applied to the
rms width of the density distribution evaluated for single stochastic realisations of the SPGPE
and projected GPE, albeit with slightly di Verent (�uctuating) values of the oscillation amplitudes
A1,2 and the background constant C. This implies that the decay of oscillations in time is indeed
consistent with exponential damping, rather than is a seeming decay due to blurring or averaging
over many stochastic realisations with varying relative phase o Vsets.

3.1. Beating frequencies

To understand the emergence of two distinct frequencies in the breathing oscillations of a 1D
quasicondensate, we recall the results of Ref. [55], in which the breathing dynamics were studied
within the classical hydrodynamic approach. The relevant regimes considered in Ref. [55] were: a
weakly interacting 1D Bose gas deep in the quasicondensate regime, ° ¡ 1

0 ¿ T ¿ ° ¡ 3/2
0 (or g½0 ¿

kBT ¿
p

° 0ß2½2
0/2 m), characterised by suppressed density �uctuations and a �uctuating phase;

and (b) nearly ideal but highly degenerate 1D Bose gas, ° ¡ 3/2
0 ¿ T ¿ ° ¡ 2

0 (or
p

° 0ß2½2
0/2 m ¿

kBT ¿ ß 2½2
0/2 m), in which both the density and phase �uctuate (see also Appendices A, B and C).

According to Refs. [55], the frequencies of breathing mode oscillations in the quasicondensate
and nearly ideal degenerate Bose gas regimes, found from hydrodynamic scaling solutions, are
given by ! B Æ

p
3! and ! B Æ2! , respectively. We further note here, that the breathing frequency

! B Æ2! extends into the nearly ideal but nondegenerate (classical) gas regime [51, 53–55],
corresponding to T À ° ¡ 2

0 , however, this regime is beyond the applicability of the c-�eld
approach (see Appendices B and C) that we use in this work.

Other theoretical and experimental studies of harmonically trapped 1D Bose gas [23, 42, 43,
45, 47–54], have predicted and observed breathing mode oscillation frequencies close to 2 ! andp

3! . Furthermore, the breathing mode dynamics was predicted [49, 51, 52] to display the so-
called reentrant behaviour, wherein the frequency of oscillations was shown to undergo a smooth
crossover from the ideal Bose gas value of 2 ! down to

p
3! in the weakly interacting gas, and then

back to 2! in the strongly interacting regime.
However, as we have seen from our c-�eld simulations of the previous section, the breathing

oscillations in a �nite temperature quasicondensate display a beating of two distinct frequencies.
This suggests that in a weakly interacting 1D Bose gas, the bulk of the quasicondensate density
near the trap centre, where the interactions are more important, oscillates at the frequency close
to

p
3! , whereas the tails of the density distribution, behaving more like an ideal (noninteracting)

Bose gas, oscillate at the frequency closer to 2 ! . To con�rm this hypothesis, we now simulate the
dynamics of breathing oscillations for di Verent values of the dimensionless parameter ° 3/2

0 T ,
varying it in the range 0.39 · ° 3/2

0 T · 1 (with T Æ517, ° 0 Æ8.3£ 10¡ 3, and N Æ1109 at the lower
bound, and T Æ517, ° 0Æ1.5£ 10¡ 2, and N Æ609 at the upper bound). This scans the conditions
of our system in the trap centre from the thermal quasicondensate regime towards the crossover
boundary with the nearly ideal degenerate Bose gas. Upon doing so, we extract the breathing
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Figure 3. Breathing mode frequencies ! B1 and ! B2 as a function of ° 3/2
0 T extracted from c-

�eld simulations by using the �tting equation Eq. (8). The error bars account for �tting error
only and indicate a 95% con�dence interval. Two di Verent sets of data points correspond to
two values of the trap quench strength ² : ² ' 0.235 (! / ! 0 Æ0.9) and ² ' 0.563 (! / ! 0 Æ0.8).
The �rst data point here, which is for the smallest value of ° 3/2

0 T Æ0.39 and N Æ1109, is
the same as in Fig. 1. The subsequent, increasingly larger values of ° 3/2

0 T were achieved
by keeping the temperature T and the initial trap frequency ! 0 the same and scanning the
chemical potential of the system, which then determines the total number of atoms N (as
well as the peak density ½0 and ° 0). The respective values of N as a function of ° 3/2

0 T for
all data points are shown in Fig. 7 below.

mode frequencies ! Bi (i Æ1,2) and the respective damping rates ¡ i by �tting the rms width of the
density distribution to Eq. (8) for each value of ° 3/2

0 T .
In Fig. 3, we show the extracted frequencies as a function of ° 3/2

0 T , for two di Verent values of
the quench strength ² . As we see, in both cases, and for the smallest values of ° 3/2

0 T , the extracted
breathing mode frequency ! B1 is indeed close to the value of ! B1 Æ

p
3! , whereas ! B2 is closer

to ! B2 Æ2! . As the dimensionless parameter ° 3/2
0 T is increased towards the degenerate ideal

Bose gas regime,° 3/2
0 T ' 1, the frequencies of both components increase too, with ! B1 deviating

further away from the value of
p

3! and both ! B1 and ! B2 tending towards 2 ! .
One can identify the frequencies ! B1 and ! B2, respectively, with the breathing mode oscil-

lations of the bulk of the quasicondensate near the trap centre (dominated by higher occu-
pancy, low-energy states) and the tails of the density pro�le (dominated by lower occupancy,
high-energy states). Indeed, particles near the trap centre have the local value of ° 3/2

x T Ç1 (with
° x Æmg / ß2½(x)) and hence are deeper in the quasicondensate regime, whereas particles in the
tails of the density distribution have the local value of ° 3/2

x T È 1 and can be approximated as an
ideal degenerate Bose gas.

This conclusion can be further veri�ed if we inspect the local dynamics of the momentum
distribution of the gas, n(kx , t ). In Fig. 4, we can see the di Verence in the behaviour of the
momentum distribution at kx Æ0 and at kx Æ16/ aosc. While the oscillations at kx Æ0 display
frequency doubling ( ! (k ) Æ2! B1) [23, 55], which is a property of a 1D Bose gas deep in the
quasicondensate regime, the momentum distribution at kx Æ16/ aosc does not display frequency
doubling and oscillates at frequency ! (k ) close to ! B2. The oscillation frequencies extracted from
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Figure 4. Evolution of the momentum distribution n(kx , t ) at kx Æ0 and at kx Æ16/ aosc,
for ° 3/2

0 T Æ0.39, N Æ1109, and ² Æ0.563 (! / ! 0 Æ0.8). The momentum distribution at
kx Æ0 displays frequency doubling, with ! (k ) Æ2! B1, which is characteristic of a system
deep in the quasicondensate regime. On the other hand, the momentum distribution at
kx Æ16/ aosc does not display frequency doubling and oscillates at ! (k ) Æ! B2, which is
characteristic of an ideal Bose gas regime.

the two curves in Fig. 4 yield ! B1 ¼1.79! for n(kx Æ0,t ) and ! B2 ¼1.92! for n(kx Æ16/ aosc, t ).
These frequencies are close to the breathing mode frequencies in Fig. 3, extracted from the rms
width of the respective density distribution. Thus, from this point onwards, we will refer to the
component with breathing frequency ! B1 as the bulk component, whereas the component with
breathing frequency ! B2 will be referred to as the tail component.

As we will show below—after introducing (see Sec. 3.2) and analysing the relative weight of the
bulk and tail components—the same conclusion regarding the oscillation frequencies of the bulk
and tail components can be arrived at by inspecting the local dynamics of the density distribution
½(x, t ) near the trap centre and in the tails of the distribution.

We pause here momentarily to emphasise the key di Verences between our �ndings and those
reported in previous studies of breathing mode oscillations in a weakly interacting 1D Bose gas.
While previous studies have also predicted a smooth crossover of the oscillation frequency from
»

p
3! towards 2! as the temperature is increased, the frequency in question has always been

what we refer here to as the frequency of oscillations of the bulk component ! B1. While we
observe the same crossover for the ! B1 component, our simulations indicate that: ( i ) there
is a second distinct breathing frequency ! B2, which is for the tail component, and ( ii ) ! B2

undergoes a similar crossover from the value ¼1.9! towards 2! as ° 3/2
0 T is increased within

0.39· ° 3/2
0 T · 1.

Apart from exciting the breathing oscillations via a sudden change of the trap frequency,
we have also considered a weak sinusoidal modulation of the trap strength, V (x, t ) Æ [1 Å
0.05sin(! B t )]V (x,0), and of the trap frequency, ! (t ) Æ[1 Å 0.05sin(! B t )]! 0, for four oscilla-
tion periods, with three di Verent values of the modulation frequency ! B Æ{

p
3! 0, 1

2 (
p

3! 0 Å
2! 0),2! 0}. In these alternative protocols, we have observed no qualitative changes in the en-
suing breathing oscillations. Namely, the sinusoidal modulation would still excite oscillations at
two distinct frequencies displaying beating. This is again similar to the observations reported in
Ref. [56] for a partially condensed 3D Bose–Einstein condensate. Because of this, we will continue
our analysis of breathing oscillations for the sudden quench protocol only, Eq. (5).
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Finally, we comment on a weak dependence of our results on the choice of the cuto V energy
Ecut , or equivalently the maximum number of harmonic oscillator basis states nmax used in our
simulations, with Ecut Æ ß! 0(nmax Å 1/2). All results presented so far and hereafter are obtained
for an optimal choice of Ecut that results from nmax Æ250. As we show in Appendix D, this choice
is justi�ed by the best match of the initial thermal equilibrium density distribution ½(x, t Æ0)
with the density pro�le obtained from the solution to the exact Yang–Yang thermodynamic
equations [66], combined with the local density approximation [67]. Finding such a match,
particularly in the tails of the distribution, is a subtle problem as it is in competition with the
applicability of the c-�eld approximation requiring an energy cuto V via the projector operator in
Eqs. (1) and (4). Moreover, the cuto V dependency depends strongly on the observable of interest
that is being calculated [41, 55, 57, 68–70]. For the breathing mode oscillations frequencies, the
cutoV dependency is weak; for example, changing nmax from nmax Æ250 to 300 and 200 results
in less than § 2.2% change in the extracted frequencies ! B1 and ! B2 (see Fig. 12 in Appendix D).
Thus, while the quantitative details of our main �ndings have a weak cuto V dependence, the
respective qualitative aspects and ensuing conclusions are essentially cuto V independent.

3.2. Relative weight of breathing components

To quantify the relative contribution of the beating components (bulk and tail components) to
the total breathing oscillations, we introduce the relative weight of the bulk component,

K Æ
A2

1

A2
1 Å A2

2

. (9)

The relative contribution of the tail component is then given by 1 ¡ K , and Eq. (8) for the rms
width can be rewritten as

¢ xRMS(t ) ÆA
hp

K cos
¡
! B1t Å Á1

¢
e¡ ¡ 1t Å

p
1¡ K cos

¡
! B2t Å Á2

¢
e¡ ¡ 2t

i
Å C, (10)

where A Æ
q

A2
1 Å A2

2.

In Fig. 5, we plot the relative weight K as a function of ° 3/2
0 T , for two di Verent values of

the quench strengths ² as in Fig. 3. As we see, the weight of the bulk component K , behaving
predominantly as a quasicondensate with suppressed density �uctuation, but a �uctuating
phase, has its maximum value for the smallest ° 3/2

0 T and it decreases with ° 3/2
0 T . Conversely,

the contribution of the tail component 1 ¡ K , behaving as a nearly ideal degenerate Bose gas,
increases with ° 3/2

0 T . With this observation at hand, we can now return to the results of Fig. 3
and interpret them as follows. For system parameters deep in the quasicondensate regime
(° 3/2

0 T Ç1), a large fraction of particles occupy the low-energy states, and the bulk of the system
exhibits collective breathing oscillations ( ! B1) close to the pure mean-�eld behaviour of a zero-
temperature system. As we go to higher values of ° 3/2

0 T (by, e.g., increasing the temperature
of the system, or reducing the peak density ½0 and hence increasing ° 0), a larger fraction of
particles begin to thermally populate higher-energy states. As a result, a second breathing
mode ( ! B2) becomes more pronounced, with the behaviour closer to that of a degenerate ideal
Bose gas. Then, as we reach the boundary with the nearly ideal degenerate Bose gas regime
(° 3/2

0 T » 1), almost all of the particles occupy high-energy modes. The collective breathing
mode, characteristic of low-energy particles, begin to disappear (with K going down) and the
whole system now exhibits breathing oscillations with frequency ! B2.

Having introduced the relative weights of the bulk ( K ) and tail (1 ¡ K ) components, we can
now also analyse the local dynamics of the density distribution ½(x, t ) in the trap centre (at
x Æ0) and in the tails (at x/ aosc À 1) of the distribution with the aim to further reassert that the
breathing frequency ! B1 can be attributed to low-energy atoms populating primarily the bulk
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Figure 5. Relative weight K of the bulk component in the breathing oscillations of a 1D
quasicondensate as a function of ° 3/2

0 T for two di Verent quench strengths ² . The error
bars account for the �tting error only and indicate a 95% con�dence interval.

component, whereas the breathing frequency ! B2 can be associated with high-energy atoms
populating primarily the tails of the density distribution. In Fig. 6 we show an example of local
evolution of the density distribution near the trap centre x Æ0 and in the tails around x Æ20aosc.
As we see, both curves still display beating of two frequencies; the two frequencies can be �tted

Figure 6. Local evolution of the density distribution near the trap centre, ½(x Æ0,t ) (a),
and in the tails, ½(x Æ20aosc, t ) (b), for ° 3/2

0 T Æ0.39 and a quench strength of ² Æ0.563
(! / ! 0 Æ0.8). The black dots are data points from c-�eld simulations, whereas the full
(orange) line is a �t using the right-hand-side of Eq. (10). To reduce the statistical noise, we
averaged the densities over a small region x/ aosc 2 [¡ 1,1] and x/ aosc 2 [19,21], respectively.
The dynamical �t to the central density ½(x Æ0,t ) yields an oscillation frequency ! B1 Æ
1.77! with the relative weight of K Æ0.96, and ! B2 Æ1.90! with the respective relative
weight of 1 ¡ K Æ0.04. On the other hand, the �t applied to the tails, ½(x Æ20aosc, t ), yields
an oscillation frequency ! B1 Æ1.80! with the relative weight of K Æ0.23, with the other
frequency being ! B2 Æ1.91! and 1 ¡ K Æ0.77. In both cases, the oscillation frequencies are
close to those extracted from the evolution of the rms width, whereas the relative weight K
extracted from the tails is very di Verent (see text).
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Figure 7. Computed condensate fraction N0/ N (full circles, left vertical axis) and the
respective total N (open circles, right vertical axis) of the initial state of the 1D Bose gas
as a function of ° 3/2

0 T , for a quench strength ² ' 0.563.

with the same formula as the right-hand-side of Eq. (10); and both frequencies are approximately
the same as those extracted from the rms width as in Fig. 2. At the same time, we �nd that the
relative weight of the ! B1 component in the trap centre is K Æ0.96. This is signi�cantly larger
than the value of K extracted from the rms width. On the other hand, the relative weight on the
same ! B1 component, but in the tails of the distribution, drops down to a much smaller value of
K Æ0.23. Reciprocally, the relative weight (1 ¡ K ) of the ! B2 component dominates the beating in
the tails of the distribution, with 1 ¡ K Æ1¡ 0.23Æ0.77, but is much smaller in the trap centre.

A further insight into the composition of the bulk and tail components of the 1D Bose gas can
be gained by computing the condensate fraction N0/ N of the initial state of the system as per
Penrose–Onsager criterion [71]. The condensate fraction N0/ N is plotted in Fig. 7 as a function
of ° 3/2

0 T (for a quench strength ² ' 0.563), together with the respective total number of atoms in
the system N , where we note that the dimensionless parameter ° 3/2

0 T was scanned by changing
the total number of particles N (hence changing the peak density ½0 and ° 0) while maintaining
the same absolute temperature T (and hence the same value of T ). As we see, the maximum
condensate fraction, that is attained here, is approximately 0.14 at the lowest value of ° 3/2

0 T ,
whereas the minimum condensate fraction is ' 0.07 at the largest ° 3/2

0 T . For the maximum
condensate fraction of only 0.14, the corresponding relative weight K of the bulk component
is noticeably larger ( K ' 0.33, from Fig. 5). This implies that the bulk component is composed not
only of the particles in the condensate mode, but also of particles in highly-occupied, low-energy
states above the condensate mode.
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Figure 8. Computed thermal coherence length of the initial state of the 1D Bose gas at
diVerent values of ° 3/2

0 T , for a quench strength ² ' 0.563. The error bars account for the
�tting error only and indicate a 95% con�dence interval.

The same conclusion can be arrived at by analysing an alternative quantity—the initial ther-
mal phase coherence length l Á in the trap centre—which, unlike the condensate fraction, is an
intensive quantity. For a uniform quasicondensate at density ½and temperature T , this is given
by l Á Æ2ß2½/ mk BT [65,72,73]. For a harmonically trapped system, we compute the initial ( t Æ0)
thermal phase coherence length in the trap centre by �tting the initial normalised �rst-order cor-
relation function g(1)(x,x0; t Æ0) Æ hª ¤

C(x,0)ª C(x0,0)i /
p

½(x,0)½(x0,0) at x0Æ0 with an exponen-
tial g(1)(x,x0; t Æ0) Æexp(¡j x ¡ x0j/2 l Á) [65, 72–74]. Here, the local phase coherence length is ex-
pected to be equal to l Á Æ2ß2½0/ mk BT , in the local density approximation, and our �tted val-
ues are indeed very close to this analytic result. The �tted values of l Á as a function ° 3/2

0 T are
plotted in Fig. 8, where we see qualitatively the same trend as for the condensate fraction N0/ N .
For example, for the lowest value of ° 3/2

0 T sampled in Fig. 8, the thermal phase coherence length
is only a very small fraction ( » 0.045) of the full-width-at-half-maximum (FWHM) of the initial
density distribution, yet the relative weight K of the bulk component is K ' 0.33. This again im-
plies that the bulk component is composed not only of the particles in the locally phase coherent
region, physically similar to the condensate fraction, but extends beyond this region.

4. Damping of breathing oscillations

Having identi�ed that the breathing oscillations of a 1D quasicondensate involve beating of two
distinct frequencies, corresponding to the oscillations of the bulk and tail components, we now
characterise the respective damping rates, ¡ 1 and ¡ 2, observed in Fig. 2 and extracted from �tting
the results of c-�eld simulations to Eq. (10). The damping rates extracted in this way are shown
in Fig. 9 as a function of ° 3/2

0 T , for two di Verent quench strengths ² . Similarly to the frequencies
! B1 and ! B2, the damping rates ¡ 1 and ¡ 2 are diVerent from each other and weakly depend on
the quench strength ² .

The damping rate ¡ 2 associated with the frequency ! B2 of the tail component is smaller than
the damping rate ¡ 1 associated with the frequency ! B1 of the bulk component. This is consistent
with our earlier observation that the particles comprising the tail component behave as a nearly
ideal Bose gas which is expected to have very little to no damping. The damping rate ¡ 1 is
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Figure 9. Damping rates ¡ i (i Æ1,2) of the breathing oscillations in a 1D quasicondensate
as a function of the dimensionless parameter ° 3/2

0 T , for two di Verent quench strengths
² . The error bars on data points account for the �tting error only, which indicates a 95%
con�dence interval.

approximately 3 ¡ 4 times larger than ¡ 2; it increases initially with ° 3/2
0 T , before saturating to a

value of ¡ 1 ' 0.045! at ° 3/2
0 T ' 0.6 (for a quench strength ² Æ0.563) and then decreasing slightly as

we approach the upper boundary of the quasicondensate regime, ° 3/2
0 T » 1. For experimentally

typical values of ! 0/2 ¼Æ10 Hz (and hence ! /2 ¼Æ8 Hz for ² Æ0.563), the damping rate of
¡ 1 ' 0.04! corresponds to ¡ 1 ' 2 s¡ 1 (or a damping time constant of ¿1 Æ1/ ¡ 1 ' 0.5 s), whereas
the damping rate ¡ 2 is four times smaller ( ¿2Æ1/ ¡ 2 ' 2 s).

Similarly to damping of low-energy collective excitations in a harmonically trapped and par-
tially Bose-condensed 3D systems at �nite temperatures [6, 7, 11, 16, 75], the dominant damping
mechanism of the bulk component in our 1D quasicondensate can be expected to be Landau
damping. In Landau damping, a low-energy collective excitation of energy ß! B1 and a thermal
excitation of energy Ei are annihilated (created) and another thermal excitation of energy E j is
created (annihilated). Within the c-�eld approach employed in our numerical simulations, this
damping mechanism is implicitly present through the interaction term in the GPE for the c-�eld
ª C(x, t ) as the “classical region” incorporates not only the condensate mode but also many low-
lying excited modes that have a relatively high thermal occupation.

Even though the damping rate of low-energy excitations due to Landau mechanism for a 1D
uniform quasicondensate has been calculated in Ref. [76], we defer a critical analysis of this work
and its possible application to our trapped system to a future study. We nevertheless note here
that any possible comparison of the damping rate ¡ 1 from c-�eld simulations and that obtained
from Landau mechanism should take into account the fact that in the c-�eld approximation the
“classical region” includes only a fraction of thermal particles (that belong to highly occupied
modes) and hence the extracted value of ¡ 1 is likely to underestimate the damping rate compared
to alternative predictions that take into account all thermal particles. At the same time, the theory
of Landau damping conventionally assumes that the thermal excitations are always in thermal
equilibrium, whereas this assumption does not apply to our system because quenching the trap
frequency also excited a collective breathing oscillation of the tail component, which acts as a
dynamical (rather than a static) bath of thermal excitations.
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In an equivalent quench scenario in a 3D system, these questions can, in principle, be ad-
dressed using, e.g., the Zaremba–Nikuni–Gri Y n (ZNG) formalism [21,77], where the condensate
part of the system is described by the generalised Gross–Pitaevskii equation, whereas the non-
condensate (thermal) part is described by the quantum Boltzmann equation. However, the ZNG
formalism cannot be directly applied to 1D quasicondensate due the fact that the fractional occu-
pancy of the ground-state condensate mode in 1D does not dominate the occupancies of excited
modes as it does in 3D. Accordingly, a simple separation into a condensate and thermal excita-
tions is not justi�ed here. For the same reasons, our observation of two excitation modes cannot
be simply interpreted as a consequence of a standard two-�uid model applicable to 3D systems,
where the two �uids are represented by the super�uid (condensate) and the normal (thermal)
components of the gas and where such a phenomenon would be common [2,56]. Apart from this,
we note that the two-�uid model is applicable in the strongly collisional regime (when the damp-
ing rate is much larger than the angular frequency of excitation modes), whereas the breathing
mode excitations studied in this work are in the opposite weakly collisional regime. Overall, our
�nding call for a further study beyond the classical �eld approximation, which could perhaps be
accomplished by generalising the GNZ formalism to 1D systems, wherein the evolution of the
entire c-�eld would be coupled to a quantum Boltzmann equation.

5. Summary

In conclusion, we have studied the breathing oscillations of a harmonically trapped 1D Bose gas
in the quasicondensate regime, invoked after a sudden quench of the trap frequency. Using the c-
�eld approach for sampling the initial thermal equilibrium state and simulating the subsequent
post-quench dynamics, we observed beating of two breathing modes. The two breathing modes
oscillate at two distinct frequencies ! Bi (i Æ1,2) and have their own damping rates ¡ i . Further-
more, they can respectively be attributed to low-energy particles in the bulk and high-energy par-
ticles in the tails of the density distribution of the gas. The bulk component breathes with the fre-
quency close to the expected breathing mode frequency of a zero temperature system, ! B1 '

p
3!

for most of the quasicondensate region, whereas the breathing mode frequency of the tail com-
ponent is closer to that of an ideal Bose gas, ! B2 ' 2! . The damping rates ¡ 1 and ¡ 2, extracted
from the c-�eld simulations for typical experimental parameters, have the associated damping
time constants on the order of 0.5 s and 2 s, respectively, for most of the values of ° 3/2

0 T consid-
ered.

In order to experimentally observe the predicted beating of two breathing modes, one needs to
ensure that the breathing dynamics is monitored for su Y ciently long time as to detect reduction
and subsequent revival of the amplitude of oscillations due to beating. One has to also ensure
that the system is deep in the 1D regime as to eliminate additional damping mechanisms due
to transverse excitations, which can prevent the revivals. Taking the beat frequency ! beat Æ
! B2 ¡ ! B1 as simply ! beat Æ2! ¡

p
3! , and assuming ! /2 ¼Æ8 Hz, one obtains the beat period of

the order of 0.5 seconds. This is well within the reach of the current 1D Bose gas experiments.
Note added. After completing this work and submitting the manuscript, we became aware of

Ref. [78] which analyses phonon decay in 1D quasicondensates via the Landau-Beliaev damping
mechanism. The analysis of Ref. [78] goes beyond that of Ref. [76] in terms of underlying
assumptions and considerations, however, their analytic prediction for the damping rate appears
to be applicable to a di Verent regime than the low-energy breathing excitations studied in the
present work. Accordingly, a direct comparison of our numerical results with the said analytic
prediction is not possible at the moment. This in turn highlights the need for either revisiting and
extending the theory of Landau–Beliaev damping of trapped 1D Bose gases, or else developing an
analytic understanding of the decay of 1D breathing oscillations via an alternative mechanism.
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Appendix A. Regimes of a weakly interacting uniform 1D Bose gas

For a uniform 1D Bose gas at linear density ½, the di Verent thermal equilibrium regimes have
been identi�ed in Refs. [67, 79] through the analysis of local density-density correlation func-
tion. They can be characterised by just two parameters, the dimensionless interaction strength
° Æmg / ß2½ and dimensionless temperature T ÆkBT /( mg 2/2 ß2). An alternative choice for
the dimensionless temperature is to de�ne it via the temperature of quantum degeneracy,
Td Æ ß2½2/2 mk B, via ¿ ÆT / Td [79], where we note that the two temperatures are related by
¿ ÆT ° 2. However, as was shown in Ref. [67], the temperature T (unlike ¿) is more conve-
nient to also characterise an inhomogeneous system within the local density approximation as
it can serve as the global temperature of the system that does not depend on the local density.
The phase diagram in the ( ° ,T ) parameter space [79], for a weakly interacting system, ° ¿ 1,
is shown in Fig. 10, where we note that the di Verent sub-regimes are smooth crossovers. In this
diagram, the di Verent sub-regimes that can be treated analytically using approximate theoretical
approaches are �rst introduced at the level of a quasicondensate, characterised by suppressed
density �uctuations (similar to a true condensate) but �uctuating phase [80], and a nearly ideal
Bose gas in which both the density and phase �uctuate.

In terms of the underlying theoretical approaches, the quasicondensate regime can be de-
scribed by the Bogoliubov theory [74,79,81], in which one can further distinguish the sub-regimes
dominated by quantum (region I) or thermal (region II) �uctuations, corresponding, respectively
to kBT ¿ g½(or T ¿ ° ¡ 1) and g½¿ kBT ¿

p
° ß2½2/2 m (or ° ¡ 1 ¿ T ¿ ° ¡ 3/2 ). In Ref. [79],

these sub-regimes were referred to as GPa and GPb regimes, respectively.
The nearly ideal Bose gas, on the other hand, can be treated using the perturbation theory

with respect to ° around the ideal (noninteracting) Bose gas [74,79,81]. Here, we can further dis-
tinguish between a highly degeneratenearly ideal Bose gas (¿¿ 1, region III) and a nondegener-
ate, nearly classical ideal gas (¿À 1, region IV). These two sub-regimes, correspond, respectively,
to

p
° ß2½2/2 m ¿ kBT ¿ ß 2½2/2 m (or ° ¡ 3/2 ¿ T ¿ ° ¡ 2) and ß2½2/2 m ¿ kBT (or ° ¡ 2 ¿ T ).

In Ref. [79], these sub-regimes were referred to as “decoherent quantum” (DQ) and “decoherent
classical” (DC) regimes, respectively.

Appendix B. Regime of applicability of the c-�eld approach

Turning now to the region of applicability of the c-�eld approach, we note that it is adequate for
describing thermal (rather than quantum) �uctuations in highly degenerate Bose gases. As such,
in the phase diagram of Fig. 10, it spans the sub-regimes II and III.

More explicitly, the condition of applicability of the c-�eld approach, j¹ j ¿ kBT [58], where
¹ is the chemical potential, can be rewritten as g½¿ kBT in the thermal quasicondensate sub-
regime II, where ¹ ' g½. In dimensionless from, this coincides with the temperature lower bound
on the thermal quasicondensate regime, ° ¡ 1 ¿ T .
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Figure 10. Crossover phase diagram of a weakly interacting ( ° ¿ 1) uniform 1D Bose gas,
showing the classi�cation of di Verent sub-regimes in the parameter space ( ° ,T ), and the
region of applicability of the c-�eld approach (see text).

On the other hand, in the degenerate ideal Bose gas sub-regime III, the absolute value of
the chemical potential ( ¹ Ç 0) can be approximated by j¹ j ' m (kBT )2/2 ß2½2 [58, 82]. Hence,
the condition of applicability of the c-�eld approach here can be rewritten as kBT ¿ 2ß2½2/ m ,
which we note agrees (ignoring numerical factors of the order of one) with the upper bound on
the dimensionless temperature T in the degenerate nearly ideal Bose gas regime, T ¿ ° ¡ 2.
Combining the two sub-regions, ° ¡ 1 ¿ T and T ¿ ° ¡ 2, gives ° ¡ 1 ¿ T ¿ ° ¡ 2 for the regime
of applicability of the c-�eld approach, which is shown as the shaded area in Fig. 10.

Furthermore, a remarkable property of the c-�eld approach is that one can show (after
introducing appropriately de�ned time-, length-, and energy-scales; see Refs. [41, 55, 58, 65]
for details) that the corresponding equations of motion can be rewritten in a dimensionless
form in such a way that they depend only on a single dimensionless parameter ° 3/2 T (with
° 3/2 T ´ 2kBT /

p
g½(ß2½2/ m ), rather than on two independent dimensionless parameters ° and

T . In terms of this single parameter, the two relevant regimes of the weakly interacting 1D
Bose gas can be rewritten as ° 1/2 ¿ ° 3/2 T ¿ 1 (region II), and 1 ¿ ° 3/2 T ¿ ° ¡ 1/2 (region III),
whereas the overall region of applicability of the c-�eld approach is obtained by combining the
two, ° 1/2 ¿ ° 3/2 T ¿ ° ¡ 1/2 .

As a further remark, we note here that the crossover boundaries between the di Verent regimes
of a weakly interacting 1D Bose gas, that are dominated by thermal rather than quantum �uc-
tuations, were identi�ed here through the properties of short-range density-density or second-
order correlation functions. If, however, one is concerned with the behaviour of the �rst-order or
phase correlation function at large relative distances, or equivalently the momentum distribution
at low momenta, then the lower bound on the temperature, in which the physics is dominated by
thermal �uctuations, is reduced from g½¿ kBT down to g½e¡ 2¼/

p
° ¿ kBT ; for further details,

see footnotes [59] and [63] in Ref. [65].
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