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Abstract. The Random First Order Transition (RFOT) theory started with the pioneering work of Kirkpatrick,
Thirumalai and Wolynes. It leverages methods and advances of the theory of disordered systems. It fares
remarkably well at reproducing the salient experimental facts of super-cooled liquids. Yet, direct and
indisputable experimental validations are missing. In this short survey, we will review recent investigations
that broadly support all static aspects of RFOT, but also those for which the standard dynamical extension
of the theory appears to be struggling, in particular in relation with facilitation effects. We discuss possible
solutions and open issues.

Résumé. La théorie RFOT des verres a été initiée par les travaux de Kirkpatrick, Thirumalai & Wolynes. Elle
s’appuie sur des méthodes récentes de la théorie des systèmes désordonnés. La théorie RFOT décrit remar-
quablement bien toute la phénoménologie des liquides surfondus. Cependant, aucun résultat expérimental
n’a encore confirmé la théorie de manière directe et indiscutable. Dans ce bref article de revue, nous discu-
tons les travaux récents qui sont en accord avec tous les aspects thermodynamiques de la théorie, mais aussi
ceux pour lesquels l’extension dynamique de celle-ci semble en difficulté, en particulier concernant les effets
de facilitation. Nous proposons des voies de résolution possibles, ainsi que certains problèmes ouverts.
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1. Amorphous Order & Random First Order Transitions

As is well known, glasses are “half-liquid, half-solid”. A glass has a structure factor characteristic
of a liquid, yet glasses do not flow and respond elastically to shear deformations – at least
on time scales much shorter than the relaxation time τ of the system, which itself increases
extraordinarily fast as temperature is decreased [1]. In the case of Ortho-Terphenyl, for example,
the relaxation time increases by a factor 1010 as temperature drops by a mere 10%.

From a general point of view, a non-zero static shear modulus is necessarily associated with
a loss of ergodicity, and thus a transition into a state where the dynamics is no longer able to
probe the entire phase-space [2]. The fundamental question that has riveted theoreticians for
decades is whether the physics of glasses is indeed driven by an underlying phase transition
into an ergodicity-broken state characterized by some “amorphous long-range order” (a concept
clarified in the next section), or whether the dramatic slowdown is purely of kinetic origin, with
no particular thermodynamic signature.

The concept of “amorphous order” sounds like an oxymoron, but in fact accurately describes
the physics of spin-glasses. Indeed, below some critical temperature Tc , each spin points in a
random direction, but this direction remains fixed in time. Much as in glasses, instantaneous
snapshots of the spin configurations seem featureless both above and below Tc . But whereas
there is no long range transmission of information above Tc , the spin-glass phase is rigid, as is
the glass phase, in the sense that localised perturbations have a long range effect on the system –
much like the free-energy per particle of rigid bodies depends on the shape of its boundaries.

How much of the physics of spin-glasses, where a true thermodynamic transition takes place,
is shared by super-cooled liquids and other glassy materials? From a theoretical point of view, the
deep analogy between glasses and spin-glasses finds its roots in the landmark series of papers by
Kirkpatrick, Thirumalai and Wolynes in the mid 80’s [3–5]. Based on the solution of a family of
mean-field models of spin-glasses, these authors proposed the “Random First Order Transition”
(RFOT) theory [5–7], which appears to capture all the known phenomenology of super-cooled
liquids, in particular:

• The existence of a cross-over temperature T⋆ below which metastable states appear
that “trap” the system for some large amount of time. This leads to a plateau in the
relaxation function, associated with the appearance of local rigidity (also often called
“cage formation”) with a non-zero high frequency shear modulus Ghf.

• Such metastable states are exponentially numerous with the number of molecules, with
an associated extensive configurational entropy, Σ(T ). [The mere existence of such a
large number of metastable states allows the system to eventually decorrelate with time].

• The configurational entropy appears to vanish when the temperature is further lowered
towards the Kauzmann temperature, which would correspond to a true thermodynamic
(ideal glass) transition.

• An Adam–Gibbs-like correlation between the logarithm of the relaxation time and the
inverse of the configurational entropy, and between the fragility of the liquid and the
jump of specific heat at the glass transition.

More precisely, the RFOT theory envisages the glass state as a mosaic of “glassites” (i.e.
locally frozen clusters), resulting from a competition between extensive entropy of locally stable
arrangements of molecules and mismatch energy between two such configurations [5, 8]. The
size ℓ of these glassites – also called point-to-set [9] – is then found to be inversely related to
the configurational entropy and diverges as T ↓ TK – see Eq. (1) below. Being of finite size, the
life-time τ of these glassites is also finite, but grows exponentially with ℓ and, hence, diverges
at TK . These glassites are rigid, in the sense that boundary conditions are able to lock all inside
molecules around a fixed position [8,10]. Hence, glassites respond elastically to an external shear
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for times less than τ, with a shear modulus Ghf, but start flowing for times larger than τ when the
local (amorphous) order finally unravels (i.e. evolves towards another amorphous configuration).

RFOT theory is certainly one of the theory that fares best in terms of reproducing the phe-
nomenology and salient experimental facts of super-cooled liquids, as extensively reviewed
in [7, 11]. Still, due to the relatively small length-scales at play, it is difficult for experiments to
(yet?) provide direct and very stringent tests of the theory.

On this front, numerical simulations have played a very important role in the last twenty years.
Some aspects of the RFOT theory have received full confirmation from atomistic simulations. Of
particular importance is the confirmation that metastable states with extensive configurational
entropy Σ play an important role, as revealed by the behaviour of the Franz–Parisi potential [12].
The existence of a non-trivial point-to-set length ℓ and its growth whenΣ(T ) is decreased are now
firmly established by numerical simulations [10, 13–16]. Microscopic calculations have revealed
a deep link between RFOT and the Random Field Ising Model [17–20], with original predictions
about the critical behaviour of the Franz-Parisi potential that are in surprisingly good agreement
with numerical simulations [21].

In the first part of this short survey, we will review recent investigations that broadly support
all static aspects of RFOT. Whether or not these thermodynamic features are related to the abrupt
dynamical slowdown of super-cooled liquids is still actively debated. The “elastic picture”, for
instance, proposes that the chief physical ingredient driving the glass transition is the growth of
the plateau shear modulus, Ghf, which makes even local moves progressively more difficult. The
growth of the activation barrier to flow would then simply mirror the growth of Ghf [22], without
having to invoke any growing glassites. In such a picture, a growing static lengthscale is not a
crucial ingredient to understand the dynamics of the system [23]. More generally, purely kinetic
theories of the glassy slowing down do have forceful advocates. In these theories, the progressive
logjam of super-cooled liquids is due to a rarefaction of local “defects” that act as facilitators for
structural rearrangements [24–26]. In this scenario thermodynamics only plays a minor role, or
even no role at all. The glass is just a liquid that cannot flow because of kinetic constraints, but
there is no driving force towards any kind of locally preferred structure or amorphous order.

In the second part of this paper, we will discuss some recent theoretical and numerical argu-
ments raised against the simplest dynamical version of RFOT. It has indeed become indisputable
that facilitation (i.e. a local transmission of the activity from one region of space to another) is at
play in deeply super-cooled liquids and that such an ingredient, while not in contradiction with
RFOT, needs to be incorporated in a more elaborate version of the theory. Conversely, it is diffi-
cult to imagine that the universal Adam–Gibbs correlations between static quantities (configura-
tional entropy, jump of specific heat) and dynamical quantities (super-Arrhenius relaxation time,
fragility) are only incidental. Furthermore, experimental results on the non-linear dielectric re-
sponse of glasses cannot be accounted for within thermodynamic-free Kinetically Constrained
Models (KCM) [27]. In view of the success of RFOT theory in describing the non-trivial nature
of the free-energy landscape of glasses, and in providing a general theoretical framework able
to explain the broad phenomenology of glass-forming liquids, we believe that the “final” the-
ory (if such a thing makes any sense!) will be an appropriate synthesis between RFOT ideas and
schematic models of dynamical facilitation.

Needless to say, the present paper has no ambition to be comprehensive, but rather to give a
concise and personal account of the recent successes and difficulties of RFOT theory, together
with some open issues. For more exhaustive reviews, in particular regarding the description of
the phenomenology of glass-forming liquids by RFOT theory, see [1, 7, 11].
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2. Statics: Recent Successes

The order parameter of the Random First Order Transition is the overlap (or similarity) q between
two typical configurations of the system. By comparing the spatial arrangements in different
configurations one can identify whether or not the system is developing amorphous order, even
when such arrangements look devoid of any specific ordering and random, like in the liquid state.

More precisely, in the description of the glass transition underpinning RFOT theory one draws
an equilibrium configuration C0 from the Boltzmann measure at temperature T and computes
the probability that a second configuration C drawn the same measure has an overlap q with
C0. The precise definition of the overlap is not important, and several have been used in the
literature; what matters is that q measures how much the density fields of the two configurations
resemble each other. When q = 0, the two configurations are completely uncorrelated, like two
typical configurations in the liquid state.

The construction of a consistent statistical theory of the overlap fluctuations in glassy systems
has been progressing steadily since the first attempts in the late 80’s with a recent acceleration
after the exact solution of hard spheres in the limit of infinite dimension was derived [28]. It is
fair to say that the static description of the RFOT order parameter q and of its spatial fluctuations
is by now well understood, as we now briefly review.

The free-energy cost associated to an overlap q homogeneous in space is called Franz–Parisi
potential V (q) [12], and plays the same role of the Landau free-energy in standard critical
phenomena. It has different shapes depending on T , as shown in Figure 1. Within mean-
field theory, for T > T⋆, V (q) has only one minimum at q = 0, corresponding to a liquid; for
TK < T < T⋆ a secondary minimum at q⋆ appears; finally at T = TK the secondary minimum
V (q⋆) reaches the same value as that of the liquid V (q = 0). The existence of the secondary
minimum signals the emergence of metastable states, with a non-negligible probability that
configuration C resides in the same metastable state as configuration C0. In this framework,
the free-energy difference V (q⋆)−V (q = 0) is the entropic cost to enforce that C is in the same
metastable state as C0. This is the definition of the configurational entropy (or complexity) Σ(T )
– since one chooses one metastable state over many other possibilities. At TK , this free-energy
cost vanishes, and the average of q becomes different from zero: the degeneracy of amorphous
ground state becomes sub-extensive.

Figure 1. Sketch of the mean-field shape of the Franz-Parisi potential in three different
temperature regimes.

At the mean-field level, the statistical theory of overlap fluctuations is similar to the one
of a first-order transition. But physical arguments and analytical computations indicate that
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in finite dimensions the effective theory for the overlap fluctuations is more complex. One
of the main insight of Wolynes et al. [5] was indeed that in finite dimensions an extensive
configurational entropy necessarily implies the breakup of metastable states into a mosaic of
glassites of finite extension ℓ. As proposed in [7, 8], the argument leading to ℓ can be best
understood by considering a gedanken cavity of radius R where particles are free to move, when
particles outside the cavity are frozen in a typical configuration of the super-cooled liquid. The
configuration inside the cavity can be in one among exp(RdΣ) metastable states. One metastable
state (or a few of them) is “well matched” with the frozen boundaries and gains a surface energy
ΥRθ with respect to all the others, with θ ≤ d − 1. When such a pinning force is not enough to
counterbalance configurational entropy, it makes no sense (thermodynamically) to think of the
inside of the cavity as frozen in a single metastable state. This occurs when R ≳ ℓ, with

ℓ=
(
Υ(T )

TΣ(T )

) 1
d−θ

. (1)

Note that ℓ diverges whenΣ(T ) → 0. Indeed, when there is a sub-extensive number of metastable
states, it is not contradictory to assume that the whole system is trapped in one of them. The
length ℓ resembles the nucleation length in first-order phase transition, however one should not
forget that the situation is not the standard one since the system is “nucleating” a metastable
state that is statistically identical to the original one. Here, the driving force is the configurational
entropy, as there are so many choices of new metastable states to fit in.

Another important additional physical ingredient for the theory of overlap fluctuations in
finite dimensions is that one has to take into account the presence of quenched disorder. The
spatial randomness is self-generated and arises from the spatial heterogeneity of the metastable
states [17–20]. Therefore, the theory becomes that of a first-order transition in presence of
quenched disorder – akin to the one of the Random Field Ising Model (RFIM) in an external field
– with a free-energy cost associated to spatial gradients of the overlap q⋆. This mapping to the
RFIM [17–20] however only holds for static fluctuations. The dynamics associated to overlap
fluctuations is much more involved and not fully understood yet.

Elaborating on such a theoretical framework leads to several specific predictions. The first one
is that by adding an external “field” ϵ that favours configurations C with a large overlap with C0,
i.e. adding a linear term −ϵq to the free energy, one can tilt the curves in Figure 1 and induce a
genuine transition towards a non-zero q phase even when T > TK . The theoretical analysis also
indicates that by applying the field ϵ the induced transition changes nature from its ϵ= 0,T = TK

counterpart, and becomes a bona fide first-order transition also from a dynamical point of view.
These and other results offer a highly non-trivial set of predictions, in which the phase diagram

acquire an additional ϵ-axis, with new critical behaviours. Thanks to the advance in equilibration
techniques of atomistic model of glass-forming liquids, these predictions can nowadays be
quantitatively tested. Several such investigations have been performed in the last decade. By and
large, numerical results have fully confirmed the theoretical predictions, including the mapping
to the RFIM [21,29–31]. As an example, we reproduce in Figure 2 the ϵ−T phase diagram and the
corresponding Franz–Parisi potential obtained in [21], which has indeed the shape expected from
mean-field theory in the high and in the intermediate temperature regimes. In the latter regime,
one finds that the shape of V (q) precisely corresponds to the Maxwell construction applied to the
mean-field result, as expected due to finite dimensional fluctuations. In this temperature regime,
the left panel shows the predicted first order transition line in the ϵ−T plane between a high q
and a low q phase. All in all this is quite a remarkable confirmation of the main thermodynamical
tenets of RFOT theory.

Another rather non-trivial test of the theory can be carried out, by pinning a random fraction
c of particles in an otherwise equilibrated configuration. The theoretical results of [32], based
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Figure 2. Left panel: Phase diagram of the glass-forming liquid studied in Ref. [21] in
the (ϵ,T ) plane. A critical point (full yellow square) terminates the line of first-order
transition (full line) and above it a Widom line is displayed as a dashed line. The authors
of Ref. [21] define several characteristic temperatures: the onset temperature of glassy
behaviour (green disk), the mode-coupling crossover temperature (pink up triangle), the
extrapolated calorimetric glass transition temperature Tg (orange down triangle). Right
panel: Franz–Parisi (FP) potential of the glass-forming liquid studied in Ref. [21] rescaled
by the temperature at several temperatures T . The potential is convex at high temperatures,
whereas at lower temperature it tends (for large system sizes) to the Maxwell construction
of the middle panel of Figure 1. See [21] for more details.

on RFOT theory, predict that the liquid formed by the remaining free particles has a lower
configurational entropy than its c = 0 counterpart. As a consequence one can induce an
equilibrium glass transition by increasing the fraction c of pinned particles instead of lowering
temperature T ; the configurational entropy is predicted to vanish at a certain pinning fraction
cK (T ), which increases with T (cK (TK ) = 0). Moreover, it can be shown that the configuration
formed by the unpinned particles remains an equilibrium configuration of the unpinned system,
thus allowing one to obtain equilibrated configurations even very close to the glass transition
temperature. This opens the way to the study of equilibrium properties very close to cK (T ).

Several numerical and some experimental studies have investigated the behaviour of pinned
glass-forming liquids [33–35]. Again, theoretical predictions are broadly confirmed, bolstering
even further the thermodynamical underpinnings of RFOT theory for finite dimensional glass-
forming liquids. As an example, we show two results from the thorough studies performed
in Ref. [34]. In the left panel of Figure 3 we show the average overlap q as a function of the
pinning fraction c for different temperatures. Below a certain temperature the increase of q with
c is compatible with the existence of an ideal glass phase transition (see [34] for more details).
In the right panel, the configurational entropy is shown as a function of c for the same range
of temperatures, demonstrating that indeed Σ vanishes at cK (T ), where cK (T ) increases with
temperatures.

Finally, let us mention the long-standing numerical and experimental efforts to characterize
the point-to-set length ℓ which measures the spatial extent of amorphous order [8, 9]. The first
direct numerical evidence of its growth was obtained in 2008 in Refs. [10, 36]. Thanks to the
recent advance in numerical simulations [37], the point-to-set length growth and its relation
to the decrease of the configurational entropy Σ, as suggested by Eq. (1), were fully confirmed
and quantified in two and three dimensional glass-forming liquids [38, 39], with an estimate
of exponent θ around 1 for d = 2 and 1.5 for d = 3, not far from the early predictions of [5].



Giulio Biroli and Jean-Philippe Bouchaud 15

Figure 3. Left panel: Average overlap as a function of c for different temperatures in the
glass-forming liquid studied in [34]. Right panel: Configurational entropy as a function of c
for different temperatures for the same system. See [34] for more details.

Interestingly, in the d = 2 case it was found that TK ≃ 0, i.e. the divergence of the point-to-set
length does not seem to take place at finite temperature in agreement with theoretical results
suggesting that no glass transition should take place in d < 3 [19, 20]. Attempts to measure static
heterogeneities in point-to-set lengths and configurational entropies, and using those to infer the
properties of the “surface tension” Υ(T ) in Eq. (1), are reported in [40].

As far as experiments are concerned, direct measurement of ℓ in molecular glass formers is
obviously very difficult, see e.g. [35, 41, 42]. An indirect method, based on the idea that frozen
glassites respond collectively to an oscillating field, relies on non-linear dielectric susceptibili-
ties [43]. If such glassites are compact, theory predicts that the kth-order dielectric susceptibility
χk should peak at a value proportional to1 ℓ3(k−1)/2, i.e. ℓ3 for the third-order non-linear suscep-
tibility and ℓ6 for the fifth-order susceptibility, both of which having between measured by two
experimental groups [44] (see also O. Dauchot, F. Ladieu, P. Royall this volume, and references
therein). The peak is expected to be located at a frequency ω ∼ τ−1, since at higher frequencies
only small clusters can follow the field and at lower frequencies glassites have relaxed and the
collective response of frozen dipoles is lost. These predictions agree quantitatively with experi-
ments [44], which can be seen as the best indirect experimental evidence to date of the growth of
a static length scale in super-cooled liquids close to the glass transition. Note that purely kinetic
theories of the glass transition, where thermodynamics is trivial or plays no role, cannot explain
such anomalous non-linear effects – see [27] for a more detailed discussion, and [45] for a dis-
senting view. Of course, the possibility that the RFOT picture explains well all static effects but
completely misses the key ingredient that slows down the dynamics is still an open possibility, as
we expand on in the next section.

3. Dynamics: Recent Difficulties

As reviewed in the previous section, many static predictions of RFOT are confirmed, sometimes
in a non-trivial way, by recent numerical simulations. In particular, the appearance of locally
metastable states (“glassites”) of size ℓ limited by configurational entropy is now well established.
However, the role played by such a static length scale in the dramatic slowing down of super-
cooled liquids have recently been the subject of renewed qualms.

1Note that the linear dielectric susceptibility (k = 1) is therefore expected not to show any anomalous increase, as in
spin-glasses and in agreement with experiments.
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Let us first recall the argument relating ℓ to the relaxation time of the liquid. Consider the
situation of particles confined in a cavity with frozen amorphous boundary conditions. When
the cavity radius R is less than ℓ, the liquid inside the cavity is frozen too, in the sense that only
a small subset of configurations has a significant weight in the Boltzmann measure. When R > ℓ,
on the other hand, the number of metastable configurations becomes so large that even when
most of them are incongruous with the boundary conditions, the cavity is driven by entropy into
the liquid state. In other words, relaxation of the density field cannot occur unless the radius of
the cavity is of the order of, or larger than ℓ. Note that this statement is independent of the actual
dynamics driving the system (provided of course it obeys detailed balance).

Within the RFOT scenario, the free-energy barrier B for rearrangements in such a cavity of size
ℓ is argued to grow as

B ∼∆(T )ℓψ (2)

where ∆(T ) is a temperature dependent energy scale and ψ is a certain exponent. Associating
the relaxation time τ of the liquid with such a minimal barrier for decorrelation, one finds, using
Eq. (1)

logτ∼ ∆(T )

T

(
Υ(T )

TΣ(T )

)α
, α= ψ

d −θ . (3)

Such an argument is the main claim to fame of RFOT, since it naturally accounts for both (a) the
empirically observed Adam–Gibbs correlation between configurational entropy and relaxation
time and (b) the strongly non-Arrhenius, Vogel–Fulcher-type increase of τ in fragile liquids.
Experimental and numerical data suggest that in d = 3, the exponent θ is around 3/2, as
mentioned in the previous section, whereas the exponent ψ is surprisingly small, ψ ≲ 1 [46].
Ozawa et al., in particular, have revisited experimental data and suggest α ≈ 0.5 ± 0.2 for a
broad range a materials and model glasses [47]. Even if not a smoking gun proof, a compelling
numerical study of L. Berthier [48] suggests that the Adam–Gibbs correlation holds even locally,
therefore establishing a strong link between static and dynamical properties of glasses.

However, the whole RFOT picture has been challenged by the efficiency of SWAP algorithms
to speed up the dynamics [23, 37]. If local swaps of particles of different radii can decrease the
relaxation time by orders of magnitude, doesn’t this suggest that kinetic constraints, rather than
thermodynamical barriers, dominate the dynamics of glasses at low temperatures? 2 A related
argument concerns the Stokes–Einstein decoupling between self-diffusion and collective relax-
ation, which should be much stronger than experimentally observed if local kinetic constraints
were not the dominant effect.3

Furthermore, facilitation effects have been evidenced and quantified in numerical simula-
tions [26,50,51], in particular see Ref. [52] which explores low temperatures and long-time scales.
These numerical studies have clearly established that activity in a certain region of space induces
(or “facilitates”) activity in neighbouring regions. Since this effect is the key ingredient of Kinet-
ically Constrained Model, but is essentially absent from the RFOT description, one is entitled to
question the thermodynamic origin of the glass transition.

Although these arguments cannot be brushed aside lightly, we tend to believe that RFOT can
indeed be extended to accommodate all these apparent contradictions. First, let us note that
RFOT relies on the existence and proliferation of local metastable states below some temper-
ature T⋆, which is often identified with the Mode-Coupling temperature. In mean-field, such

2An important assumption here is that the atomistic liquids for which the swap algorithm works are representative of
glass-forming liquids. In fact, it is certainly possible to construct non-realistic models for which a swap-like algorithms
work but that do not have the phenomenology of glass-forming liquids, and to which one should therefore not apply
RFOT theory. There are no indication so far that this is the case for the atomistic models studied by swap.

3The self-diffusion constant is ∼ 103 larger than inferred from the value of τ at T = Tg . If particles where individually

free to move but collectively trapped, this enhancement factor should be closer to 1015 [23, 49].
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“metastable” states can be defined unambiguously, independently of the dynamics, because en-
ergy barriers separating them are infinite. But the chief theoretical difficulty posed by the glass
transition precisely lies in correctly handling the concept of metastability in non-mean-field sit-
uations. The fact that a collection of micro-states forms a metastable state now depends both
on the dynamical rules and on a timescale. This timescale should be long enough to allow equi-
libration among the given set of micro-states and yet be short enough for not allowing the sys-
tem to escape from that set. Importantly, such a separation of timescales may hold for one set of
dynamical rules and not for another.

Now, one can only speak about activation barriers and slow dynamics if the system is locally
stable, i.e. if some local rigidity sets in and prevents free flow (on this topic see e.g. [53]). A
minimum requirement for local metastability is that the Hessian of the configuration energy
computed inside a cavity of size ℓ should be definite positive. Now, the SWAP algorithm
effectively allows the radius of the particles to fluctuate, thereby increasing the number of degrees
of freedom and the dimension of the Hessian matrix. Some unstable directions can therefore
appear, that would not exist without swaps. Hence, states that are metastable without swaps can
lose their local rigidity when swaps are allowed. A signature of this “crumbling metastability” [49]
can be seen in Figure 4: the two-step relaxation curve, signalling the formation of local cages, is
completely wiped out by swaps.

ϕ = 0.630

Normal

SWAP

t

F
s
(q
,t
)

1010108106104102100
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Figure 4. Self-intermediate scattering function for a three dimensional polydisperse hard-
sphere system, with or without SWAP dynamics. This clearly illustrates the idea of “crum-
bling” metastability: the plateau corresponding to local rigidity – that extends over more
than 4 decades in time without swaps – completely disappears in the presence of swaps.
From [49].

The excess of unstable directions means that the appearance of local metastability is pushed
to lower temperatures, i.e. T⋆

swap < T⋆. Even when the point-to-set length ℓ is independent of the
dynamics and therefore still exists between T⋆

swap and T⋆, there is no collective activation barrier
in this regime, i.e. ∆(T ) = 0 (see Eq. (2)). Below T⋆

swap and for large enough ℓ, one expects that
the (free-) energy barriers given by Eq. (2) are independent of the dynamics. Hence the relaxation
time τswap(T ) should in fact massively increase below T⋆

swap to catch up the no-swap value τ(T ). A
consequence of this picture is that swap dynamics should lead to anomalously fragile behaviour
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at low temperature.4 Hints of such an increased fragility can be seen in Ref. [49, Figure 2], bottom
graph. The above scenario, which explains the success of the SWAP algorithm in terms of a
downward shift of the Mode-Coupling temperature, has been proposed in different incarnations
in Refs. [49, 54–56].

Let us now turn to dynamical facilitation. The basic ingredient of all Kinetically Constrained
models is that local motion is only possible if a point defect (“facilitator”) passes by. The
concentration of these point defects is assumed to be given by ρ ∼ e−J/T where J is a large
activation energy. Furthermore, these point defects slowly propagate in space, with a distance
travelled growing like r ∼ t 1/z where z is a temperature dependent dynamical exponent. When
z > d , exploration of space is compact. Therefore, all regions have had a chance to decorrelate
when ρr d ∼ 1, which translates into a relaxation time τkcm given by [24, 26]

τkcm ∼ e
J z(T )

dT . (4)

In some models, like the “East” model, the temperature dependence of the dynamical exponent is
given by z(T ) = T0/T , which in turn leads to a super-Arrhenius growth of the relaxation time [26].
In this picture, there is no thermodynamical correlations between particles (i.e. no “amorphous
order”), nor any static inhomogeneities. Glassy slowing down is the result of two effects: the
rarefaction of facilitators, and their more and more sluggish progression in space. Such a picture
accounts for the growth of dynamical heterogeneities when the temperature is reduced: the size
of the regions that relax in a correlated way is given by the typical equilibrium distance between
defects, i.e. ξdyn ∼ e J/dT .

Although facilitation is not a key ingredient explaining glassy slowdown in the context of RFOT,
it has always been assumed that some kind of facilitation is implied by the “mosaic” picture of
glassites (see, e.g. [49, 57, 58]). Indeed, the thermodynamic argument balancing configurational
entropy and boundary mismatch energy only makes sense, strictly speaking, when the particles
outside the cavity are frozen. However, in a bulk liquid, boundary conditions acting on this
gedanken cavity are evolving on the very same timescales as the cavity itself. It is clear that the
rearrangements of the nearby glassites, by affecting those boundary conditions, can increase or
decrease the energy barrier of the central glassite. Hence, through these boundary conditions,
some activity is transferred from one region of size ℓ to the neighbouring regions. A concrete
mechanism for this kind of facilitation, based on elastic interactions, has been put forward and
observed in numerical simulations [51].

The naive RFOT argument leading to Eq. (3) should therefore be made self-consistent to
account for facilitation. This bootstrap effect is presumably responsible for (a) some dynamical
correlations extending over regions much larger than ℓ; (b) some acceleration of the dynamics
compared to the case of frozen boundary conditions. In fact, as we have argued in [49], the
effective barrier energy ∆(T ) could even renormalise to zero in a certain range of temperatures
for large enough coupling between different regions.

Be that as it may, the relaxation timeline suggested by RFOT + facilitation is the following: glas-
sites with exceptionally low local energy barriers (but still scaling as Eq. (2)) start being activated.
The activity is progressively transferred to neighbouring regions through local facilitation. Once
these coarsening domains have met and invaded the whole system, full relaxation is achieved.
Such a scenario, also suggested in [59], seems quite compatible with the recent numerical re-
sults of [52]. Although superficially similar, we note several important differences with the KCM
scenario: (a) the analogue point defects (which we would like to call “activons”) are not con-
served but can spontaneously appear, branch off or disappear; (b) these activons propagate in a

4Conversely, adding extra constraints on the dynamics, as proposed by Brito, Kurchan & Wyart, should reduce the
fragility of the glass former.



Giulio Biroli and Jean-Philippe Bouchaud 19

strongly heterogeneous environment: glassites with particularly high barriers may act as obsta-
cles hampering their progression; (c) the super-Arrhenius growth of the relaxation time still pri-
marily comes from the growth of the local energy barriers Eq. (2), and not from the anomalously
slow propagation of point defects, as is the case in e.g. the East model.

Of course the impressionist picture outlined above needs to be made more quantitative, and
time will tell whether one can indeed reconcile the dynamical predictions of RFOT with all recent
numerical results that have allowed one to get an unprecedented level of information about
how the dynamics of deeply super-cooled liquids unfolds “in the first 30 milliseconds” [52]. In
particular, the relative importance of local activation vs. sluggish facilitation is more than ever a
key issue.

4. Discussion & Open Issues

As reviewed in Section 2, many rather non-trivial predictions of RFOT theory about the statics of
super-cooled liquids have been confirmed by analytical calculations or numerical simulations in
the last decade (see e.g. [21, 28]). Still, some aspects would be well worth further investigations.
An experimental confirmation that super-cooled liquids can become glasses by confining them
in small enough frozen cavities formed by the same liquid and/or when pinning a high enough
fraction of particles would be a vindication of the basic premises of RFOT. Although challenging
(see e.g. [35, 41, 42]), such experiments would provide a direct measure of the point-to-set length
ℓ, for which we only have indirect evidence, for example from the behaviour of non-linear
dielectric susceptibilities.

On another front, there are still very detailed RFOT predictions concerning the RFIM effective
theory for static overlap fluctuations that remain to be tested. One is about the fluctuations of the
interfaces separating glassites. It was theoretically shown in [60] that these fluctuations coincide
with the one of domain walls in the Random Field Ising Model, as anticipated in [5]. This leads to
the appearance of an additional length-scale ℓ⊥ ∼ Σ(T )−1/2 associated to the wandering of such
interfaces. Such a prediction could be tested by focusing on a pinning set-up in which all particles
on one side of a plane are pinned, and the fluctuations of the overlap field on the other side
are studied numerically. Another important step is measuring the key observables that would
allow one to identify quantitatively the effective RFIM-like theory of the overlap fluctuations.
First measurements of the “surface tension” Υ(T ) were obtained in [40]. But another important
piece of information that is currently missing is about the nature of the Franz–Parisi potential
fluctuations. The spatial covariance of these fluctuations would allow one to obtain the strength
of the random field term in the effective RFIM description. This is a crucial aspect, since too
large a random field could destroy the transition (as it is known for the RFIM), thus predicting
the absence of any RFOT in some glass-forming liquids [17,19,20], which would then have a very
different phenomenology.

Concerning dynamics, the situation is more subtle. Whereas the RFOT scenario accounts for
most of the phenomenology of the glass transition and is ruled out by no experiment or numerical
simulation, there are a number of loose ends that we feel need to be tied up before victory can
be declared. A major aspect is facilitation, as emphasized in Section 3. Is the growth of the
relaxation time fully explained by the growth of the point-to-set length and the corresponding
energy barriers of elementary glassites, or is the slowdown the result of a subtle interplay between
local events (“activons”) and spatial propagation of activity? Why is the growth of relaxation time
so closely related to the increase of the high frequency shear modulus Ghf, as indeed predicted
by elastic theories [22, 23]? If we believe in glassite activation, why is the barrier exponent ψ
extracted from numerical simulations [46] and experiments [47] systematically on the low side
(ψ≲ 1) when one would naively expect ψ≥ θ, with θ≳ 3/2 in three dimensions?
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From an experimental standpoint, we wish to suggest two possibly interesting directions:

• One is to try to interpret the high-frequency power-law behaviour of the non-linear sus-
ceptibilities χ3(ω), χ5(ω) measured in [44], in the regime corresponding to the “excess
wing” for linear susceptibilities (see also [61]). If we follow the interpretation of [52], the
excess wing is due to the early activation sites that then grow and propagate through fa-
cilitation. The corresponding behaviour of χ3(ω), χ5(ω) could provide some information
about the spatial structure of those “activons”. Experimental measurements of (third har-
monic) non-linear mechanical response would also be highly interesting [62, 63].

• The second concerns rheology and fracture. As we pointed out in ref. [7], RFOT theory
suggests a strong crossover from a high viscosity regime at low shear stress σ to a low
viscosity regime at higher shear stress, when the elastic energy Ghfσ

2ℓ3 stored in a glassite
exceeds the energy barrier B given by Eq. (2). Interestingly, the cross-over stress should
decrease as temperature decreases [7]. Similarly, when a fracture propagates inside a
super-cooled liquid close to the glass transition, one may also expect a brittle-ductile
transition when concentrated stresses at the tip of the crack are able to “liquify” the
glass ahead of the fracture front, with possibly hysteretic effects – see Ref. [64]. The
fracture surface left behind should correspondingly reveal an interesting crossover length
between two roughness exponents [65].

In conclusion, we hope that this short review will spur further theoretical discussions and
more experimental/numerical investigations that will help shed light on a long-standing conun-
drum: in the end, why don’t glasses flow?
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