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Abstract. We investigate the effect of weak disorder on the superfluid properties of two-component quasi-
two-dimensional dipolar Fermi gases. The dipole-dipole interaction amplitude is momentum dependent,
which violates the Anderson theorem claiming that the weak disorder has practically no influence on the
superfluid transition temperature in the weakly interacting regime. We find that for dipolar fermions the
transition temperature in this regime can be strongly increased by the disorder like in the purely two-
dimensional case. However, the effect becomes smaller with increasing the intercomponent fermion-fermion
interaction, and in the strongly interacting regime the superfluid transition temperature in the weak disorder
becomes very close to that in the absence of disorder.

Résumé. Nous étudions l’effet d’un désordre faible sur les propriétés superfluides des gaz de fermions
dipolaires quasi bidimensionnels à deux composantes. L’amplitude de l’interaction dipôle-dipôle dépend
de la quantité de mouvement, ce qui viole le théorème d’Anderson selon lequel un désordre faible n’a
pratiquement aucun effet sur la température de transition superfluide dans le régime d’interaction faible.
Nous trouvons que, pour les fermions dipolaires, la température de transition dans ce régime peut être
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fortement augmentée par le désordre comme dans le cas purement bidimensionnel. Cependant, l’effet se
réduit si l’interaction entre les deux composantes fermioniques augmente, et dans le régime d’interaction
forte, la température de transition superfluide en présence d’un désordre faible devient très proche de celle
en l’absence de désordre.

Keywords. Fermion systems, Effects of disorder, Superfluid phase transition, BCS theory and its develop-
ment, Ultracold gases.

Mots-clés. Systèmes de fermions, effets du désordre, transition de phase superfluide, théorie BCS et ses
développements, gaz ultrafroids.
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1. Introduction

The study of ultracold atomic Fermi gases has become a rapidly growing domain of theoretical
and experimental research [1, 2]. One of the important questions here is the interplay between
interactions and disorder (see, e.g., [3–5] and references therein), including the influence of
a random potential on the superfluid transition temperature. Anderson demonstrated that in
the case of a short-range interparticle interaction, a weak disorder practically does not change
the Bardeen–Cooper–Schrieffer (BCS) transition temperature in a weakly interacting Fermi gas
(Anderson theorem) [6]. Abrikosov and Gor’kov explored this problem within the diagrammatic
approach [7]. They showed the applicability of the Anderson theorem in the leading order of
the parameter 1/(kF l ) ≪ 1, where kF is the Fermi momentum, and l is the mean free path.
The effect of the weak disorder on the superfluid transition temperature was also evaluated
beyond the mean-field approach of Abrikosov and Gor’kov [8–15]. In this case, the Anderson
theorem does not hold, as well as it does not hold in the presence of a strong disorder (see,
e.g., [16,17]). However, this theorem can be violated even on the mean-field level, for example, by
the momentum dependence of the fermion-fermion scattering amplitude. As was pointed out in
the recent work [18], the weak disorder can have a significant effect on the superfluid transition
temperature of two-dimensional (2D) dipolar fermions with weak interactions.

The papers cited above mostly cover weakly interacting Fermi systems. However, the realiza-
tion of Feshbach resonances encouraged the investigation of Fermi gases in the strongly inter-
acting regime. In this regime, the superfluid transition in ultracold Fermi gases was identified ex-
perimentally in three-dimensional (3D) [1, 2] and in 2D [19] geometries. Theoretical description
of 3D strongly interacting Fermi gases on the mean-field level was proposed by Leggett [20, 21].
The results of this method are compatible with Monte-Carlo calculations performed in a later
stage [1,2]. An acceptable accuracy of this approach in 3D encourages its application to 2D Fermi
gases, which in the absence of disorder was started by Miyake [22]. In the 2D geometry, the mean-
field predictions also agree reasonably well with the Monte-Carlo [23] and experimental [24]
results.

In this paper, we investigate the effect of weak disorder on quasi-2D dipolar Fermi gases,
moving from the weakly to strongly interacting regime. As usual, the term quasi-2D means that in
two directions the motion of particles is free, and in the third direction it is harmonically confined
to zero point oscillations. We consider two-component ultracold dipolar fermions with dipoles
perpendicular to the plane of their translational motion and confine ourselves to the case where
the intercomponent interaction amplitude is negative (fermion-fermion attraction). This can be
magnetic atoms or polar molecules, for example, a mixture of fermionic isotopes of dysprosium
in the lowest Zeeman states. We explore the Berezinskii–Kosterlitz–Thouless (BKT) superfluid
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transition [25,26] in such systems relying on the mean-field Leggett approach [20,21] and treating
the disorder effects in the framework of the theory of Abrikosov and Gor’kov [7]1.

We find that although the weak disorder potential can strongly increase the BKT superfluid
transition temperature TBK T of a weakly interacting dipolar Fermi gas, with increasing the
interaction strength the effect of the disorder on TBK T decreases. In the strongly interacting
regime the influence of the momentum-dependent component of the dipole-dipole interaction
on TBK T is almost unaffected by the weak disorder.

The paper is organized as follows. Section 2 is devoted to general relations for superfluid
pairing in 2D Fermi systems in the presence of weak disorder. In Section 3, we discuss the
s-wave scattering amplitude in quasi-2D dipolar Fermi gases. The main equations for the BKT
superfluid transition are given in Section 4, where we present the final results for the disorder-
induced change of TBK T . Our conclusions are given in Section 5.

2. Superfluid pairing in 2D disordered Fermi gases. General relations

We first present relations for a two-component purely 2D Fermi gas in a disorder potential U (r).
The Hamiltonian is given by

Ĥ =
∫

d 2r
∑
α=↑,↓

Ψ̂†
α(r)

(
− 1

2m
∇2 −µ+U (r)

)
Ψ̂α(r)

+ 1

2

∫
d 2r d 2r′

∑
α,β=↑,↓

Ψ̂†
α(r)Ψ̂†

β
(r′)V (r− r′)Ψ̂β(r′)Ψ̂α(r), (1)

where r is the 2D coordinate, Ψ̂↑(r) and Ψ̂↓(r) are the field operators of fermionic components,
m is the particle mass, µ is the chemical potential, and we put ħ = 1. The pairing is due to an
effective attractive interaction between the fermions characterized by the interaction potential
V (r− r′).

For weakly interacting systems it is common to use the mean-field BCS theory to deal with
Hamiltonian (1). Also, it was shown that one can use the BCS-like approach to qualitatively
recover the physics in the strongly interacting regime in 3D [20, 21] and in 2D [22]. We thus use
the mean-field theory for both weakly and strongly interacting regimes. In the framework of this
theory, we reduce the Hamiltonian (1) to a bilinear form:

Ĥ =
∫

d 2r
∑
α=↑,↓

Ψ̂†
α(r)

(
− 1

2m
∇2 −µ+U (r)

)
Ψ̂α(r)+

∫
d 2r d 2r′

[
∆(r,r′)Ψ̂†

↑(r)Ψ̂†
↓(r′)+h.c.

]
, (2)

where we neglected the intra-species interaction. This neglected part results only in a weak
renormalization of the chemical potential, which does not influence the superfluid transition
temperature, and in a fairly small change of an effective mass, which only slightly depends on the
disorder, so that the influence of the disorder-dependent part of the effective mass on the critical
temperature can be omitted. The superfluid phase is characterized by the order parameter (gap)
∆(r,r′):

∆(r,r′) =V (r− r′)
〈
Ψ̂↓(r′)Ψ̂↑(r)

〉
, (3)

where the symbol 〈. . .〉 denotes the statistical average.
The superfluid properties are conveniently described by the Green functions formalism. In

the absence of disorder (U (r) = 0), we rewrite the Hamiltonian (1) in terms of annihilation and
creation operators âkα and â†

kα of fermions with 2D momentum k. We then turn to the Heisen-

berg representation with operators âkα(τ) = e Ĥτâkαe−Ĥτ and â†
kα(τ) = e Ĥτâ†

kαe−Ĥτ, where τ is

1We omit beyond mean-field weak localization effects because in the weakly interacting regime and on approach
to the strongly interacting regime they are small compared to corrections caused by the momentum-dependent dipole-
dipole interaction amplitude [18].
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an imaginary time. In this representation the normal and anomalous finite-temperature Green
functions are given by G(k,τ) =−〈Tτâkα(τ)â†

kα(0)〉 and F (k,τ) =−〈Tτâk↑(τ)â−k↓(0)〉, respectively,
where Tτ is the time-ordering operator. In uniform gases the order parameter (3) depends on the
coordinates only through the difference (r− r′). After straightforward calculations we find that
in the frequency and momentum space the anomalous Green function is related to the Fourier
transform of the superfluid order parameter ∆k by the gap equation

∆k =−T
∑
ω j

∫
d 2k′

(2π)2 V (k′−k)F
(
k′,ω j

)
, (4)

where ω j =πT (2 j +1), j = 0,±1, . . . are the fermion Matsubara frequencies.
In the presence of weak disorder (such that kF l ≫ 1), we modify the main equations, including

the gap equation (4), within the mean-field Abrikosov and Gor’kov method [7]. According to this
approach, one should use Green functions 〈G(k,ω j )〉dis ≡ Ḡ(k,ω j ) and 〈F (k,ω j )〉dis ≡ F̄ (k,ω j )
averaged over the disorder instead of usual ones and take into consideration only self-energies
due to the disorder scattering ΣG (k,ω j ) and ΣF (k,ω j ) in averaged Green functions. We consider
the short-range disorder potential U (r) with the correlation function 〈U (r)U (r′)〉dis = γδ(r− r′).
With such short-range potential, in the frequency and momentum space the self-energies ΣG

and ΣF are momentum independent and given by

ΣG (ω j ) = γ
∫

d 2k

(2π)2 Ḡ
(
k,ω j

)
, (5)

ΣF (ω j ) = γ
∫

d 2k

(2π)2 F̄ † (
k,ω j

)
. (6)

Taking into account the disorder contribution, we arrive at Gor’kov equations [27] in the form(
iω j −ξk −ΣG

)
Ḡ + (∆k +ΣF ) F̄ † = 1, (7)(

iω j +ξk −ΣG
)

F̄ † + (∆k +ΣF )Ḡ = 0, (8)

where we omitted arguments (k,ω j ) for brevity, assumed that∆k =∆∗
k , and put ξk = k2/(2m)−µ.

The solutions of equations (7) and (8) are

Ḡ
(
k,ω j

)=− iω j −ΣG +ξk

−(
iω j −ΣG

)2 +ξ2
k + (∆k +ΣF )2

, (9)

F̄ † (
k,ω j

)= ∆k +ΣF

−(
iω j −ΣG

)2 +ξ2
k + (∆k +ΣF )2

. (10)

Expressing the order parameter ∆k in terms of the states with orbital quantum numbers m̃, we
have ∆k = ∑∞−∞∆m̃(k) e i m̃φk . At ultralow energies we confine ourselves to the s-wave scattering.
Hence, ∆k =∆(k) (where we denote ∆(k) ≡∆m̃=0(k)), and the Green functions do not depend on
the polar angle.

We then substitute Eqs. (9) and (10) into the relations for self-energies (5) and (6). The
main contribution to the integrals comes from k close to kµ = √

2mµ and, hence, we can put
∆k = ∆(kµ) under the integrals. We notice that there is a constant term arising in the self-
energy ΣG . It can be considered as a renormalization of the chemical potential, and it is given
by δµ= 1

2πτe
ln(Λ/µ), where we put a finite upper boundΛ∼µ in the integral over ξk because this

integral is logarithmically divergent. The quantity τe is the time between disorder-induced elastic
collisions in the Born approximation, and 1/τe = 2πνγ with ν = m/(2π) being the 2D density of
states.

Subtracting the constant term δµ from the self-energy ΣG , we thus find

ΣG (ω j ) =− i

2τe

ω j√
ω2

j +∆2
, (11)
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ΣF (ω j ) = 1

2τe

∆√
ω2

j +∆2
, (12)

where ∆≡∆(kµ). Substituting the self-energies into Eqs. (9) and (10), we obtain relations for the
Green functions averaged over the disorder:

Ḡ
(
k,ω j

)=− i ω̃ j +ξk

ω̃2
j +ξ2

k + ∆̃2
k

, (13)

F̄
(
k,ω j

)= ∆̃k

ω̃2
j +ξ2

k + ∆̃2
k

, (14)

where ω̃ j and ∆̃k are related to the fermionic Matsubara frequency ω j and the gap ∆(k) as

ω̃ j =ω j

1+ 1

2τe

√
ω2

j +∆2

 , (15)

∆̃k =∆(k)+ ∆

2τe

√
ω2

j +∆2
. (16)

Thus, according to the Abrikosov–Gor’kov approach, in the presence of weak disorder, the gap
equation is given by Eq. (4), but with F (k,ω j ) replaced by F̄ (k,ω j ) (14).

We now rewrite the gap equation averaged over the disorder in the form

∆k =−
∫

d 2k′

(2π)2 V (k′−k)∆k′K (k ′), (17)

where the function K (k ′) comes from the anomalous Green function F̄ (k,ω j ) (14) and is given by

K (k ′) = T
∑
ω j

∆̃k ′

∆(k ′)
(
ω̃2

j +ξ2
k ′ + ∆̃2

k ′
) . (18)

Eq. (17) should be renormalized to circumvent the divergence. The renormalized gap equation
can be found with the help of the relation between the fermion-fermion scattering amplitude
f (k′,k) and the Fourier transform of the interaction potential V (k′−k) [28]:

f (k′,k) =V (k′−k)+
∫

d 2q

(2π)2

V (k′−q) f (q,k)

2(Ek −Eq − i 0)
, (19)

with Ek = k2/(2m). We then multiply this relation by K (k ′)∆k′ and integrate over d 2k′. Taking into
account Eq. (17), we find

∆(k) =−P
∫

k ′dk ′

2π
f (k ′,k)∆(k ′)

[
K (k ′)− 1

2(Ek ′ −Ek )

]
, (20)

where f (k′,k) is replaced by its s-wave part f (k ′,k), and the symbol P denotes the principal value.
The main conclusions of this section, such as the form of Green functions (13)-(16) and the

renormalized gap equation averaged over the disorder (20), are also valid for quasi-2D Fermi
gases, but with the quasi-2D attractive scattering amplitude f (k′,k) discussed in the next section.

3. Scattering in quasi-2D dipolar Fermi gases

We now consider a quasi-2D dipolar Fermi gas tightly confined in the z direction by the harmonic
potential VH (z) = mω2

0z2/4. The gas is called tightly confined if the characteristic transverse size
l0 = p

1/(mω0), is much smaller than the mean interparticle separation n−1/2, where n is the
particle density. This requirement results in the condition kF l0 ≪ 1 with the Fermi momentum
kF =p

2πn.
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In the case of a quasi-2D Fermi gas with a short-range contact and long-range dipole-dipole
interactions an effective 2D s-wave scattering amplitude consists of two terms:

f (k ′,k) = F0 + fdd (k ′,k). (21)

The local term of the scattering amplitude F0 can be put momentum independent [18] and can
be varied by an external magnetic field due to Feshbach resonances. The nonlocal (dipole-dipole)
term fdd (k ′,k) depends on the momentum, which violates the Anderson theorem. The dipole-
dipole part of the scattering amplitude in the Born approximation is given by

fdd (k′,k) =
∫

d 2r d z
{
exp

[
i r(k′−k)

]−1
}

Vdd (r, z)φ2(z). (22)

The second term in the curly brackets comes from the fact that the local part of the dipole-dipole
scattering amplitude is already included in F0. When the particle dipoles are perpendicular to
the plane of their translational motion, and the dipole moments d0 of different components are
equal to each other, the dipole-dipole interaction potential Vdd (r, z) reads

Vdd (r, z) = d 2
0

(
1(

r 2 + z2
)3/2

− 3z2(
r 2 + z2

)5/2

)
. (23)

The ground state wavefunction φ(z) for the harmonic confining potential VH (z) is

φ(z) = 1(
2πl 2

0

)1/4
exp

(
− z2

4l 2
0

)
. (24)

Integrating Eq. (22) over z and keeping only the s-wave part, we find

fdd (k ′,k) =
∫ ∞

0

d 2
0

r 3

(
J0(kr )J0(k ′r )−1

)
Φ(r )2πr dr, (25)

with J0 being the Bessel function. The functionΦ(r ) is given by

Φ(r ) = r

2
p

2l0

[
2U

(
1

2
,0,

r 2

2l 2
0

)
−3U

(
3

2
,0,

r 2

2l 2
0

)]
, (26)

where U is the Tricomi confluent hypergeometric function. In the limit l0 → 0, we have Φ(r ) = 1
and, hence, Eq. (25) recovers the known expression for the purely 2D case [18]. The validity
of Eq. (25) requires the condition kF r∗ ≪ 1 with r∗ = md 2

0 being the so-called dipole-dipole
distance.

4. BKT transition in the weakly and strongly interacting regimes

We assume that the interaction is weak if the parameter λ = | f (kF ,kF )|m/(2π) ≪ 1, and the
interaction is strong ifλ approaches unity, where the attractive scattering amplitude f (kF ,kF ) < 0
is given by Eqs. (21) and (25). It should be mentioned that for zero local part of the amplitude, F0,
we have λ≈ 4

πkF r∗. Our approach for calculating the dipole-dipole part requires small values of
kF r∗. Therefore, it is not reasonable to consider λ larger than unity.

In the theory of superfluidity in ultracold quantum Fermi gases the main processes usually
take place in the vicinity of the Fermi surface. Thus, for further calculations, we use an approxi-
mate ansatz for the order parameter ∆(k ′) =∆(kµ). For k = kµ we get the gap equation (20) in the
form

1 =−P
∫

k ′dk ′

2π
f (k ′,kµ)

[
K (k ′)− 1

2
(
Ek ′ −µ)]

. (27)

This equation allows finding the critical BCS transition temperature Tc determined by the con-
dition ∆ = 0. However, in 2D as well as in quasi-2D the temperature for the onset of superfluid-
ity differs from the BCS Tc , and we need to consider the BKT superfluid transition at TBK T < Tc .
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At TBK T the superfluid density ns jumps from zero to the value given by the Nelson-Kosterlitz
relation [29]

ns = 8m

π
TBK T . (28)

In the clean case the superfluid density at a given temperature reads (see, e.g., Ref [30])

ns (T ) = 2

m
T

∑
ω j

∫
d 2k

(2π)2 k2 ∣∣F (
k,ω j

)∣∣2 . (29)

In the presence of weak disorder, according to the Abrikosov–Gor’kov theory, we modify the
expression for ns by replacing the anomalous Green function F (k,ω j ) with the averaged one
F̄ (k,ω j ) (14):

ns (T ) = 2

m
T

∑
ω j

∫
kdk

2π

k2∆̃2
k(

ω̃2
j +ξ2

k + ∆̃2
k

)2 . (30)

Complementing equations (27), (28) and (30) with the condition µ= εF (with εF being the Fermi
energy) and the anzatz ∆(k) = ∆(kF ) we obtain self-consistent equations for ∆ and TBK T in the
weakly interacting regime. We have solved them numerically (see Figures 2, 3 and discussion
below).

In the intermediate and strongly interacting regimes, we can not assume that the chemical
potential µ is equal to the Fermi energy. Equations (27), (28) and (30) for ∆ and TBK T should be
complemented with the normalization condition to determine the value of µ. In the frequency-
momentum representation and in the presence of disorder the normalization condition is given
by

n = 2T
∑
ω j

∫
d 2k

(2π)2 Ḡ
(
k,ω j

)
e iω j ε

∣∣∣
ε→+0

. (31)

Taking into account the relation for the averaged Green function Ḡ(k,ω j ) (13) with the ansatz
∆(k) = ∆(kµ) we, as usual, change the frequency sum in Eq. (31) to a contour integral in the
complex plane w : ∫

d w

2πi

w(1+ 1
2τe g (w) )+ξk

[g (w)+1/(2τe )]2 +ξ2
k

nF (w)ewε

∣∣∣∣∣
ε→+0

, (32)

with nF (w) = (exp(w/T )+ 1)−1. The branch of the function g (w) =
p
∆2 −w2 is determined by

the branch cuts w ∈ (−∞,−∆), w ∈ (∆,∞) and the condition g (0) =∆. Deforming the integration
contour as shown in Figure 1 in order to exclude the branch cuts we find

n = m

2π

∫ Λ

−µ
dξk

∫ ∞

∆

d x

π

[
B−(x,k)+Tanh

x

2T
B+(x,k)

]
, (33)

where x =Re(w), B±(x,k) = Im(B(−x,k)±B(x,k)) and

B(x,k) =
x

(
1+ 1

2τe i
p

x2−∆2

)
+ξk(

i
p

x2 −∆2 +1/(2τe )
)2 +ξ2

k

. (34)

Strictly speaking, in the presence of disorder the integral over ξk in Eq. (33) is logarithmically
divergent. To deal with this problem, we should put a finite upper bound Λ ∼ εF in the integral
over ξk . We verified numerically that the value of Λ practically has no influence on TBK T in the
intermediate and strongly interacting regimes. The difference between the values of TBK T with
Λ= 2εF and withΛ= 5εF is less than 5 percent for all considered values of kF l0.

Figure 2 compares the exact transition temperature TBK T with the critical BCS temperature Tc

moving from the weakly to strongly interacting regime for kF l = 20, kF r∗ = 0.1 and kF l0 = 0.01.
We see that in the weakly interacting regime the BKT temperature TBK T is very close to the
BCS Tc . Numerical calculations have shown that for λ≲ 0.15 the difference between these two
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Figure 1. Deformed integration contour in the complex plane w employed in calculating
the sum in Eq. (31).

Figure 2. Critical BCS temperature Tc (black dashed line) and the BKT temperature TBK T

(red solid line) in the presence of weak disorder versus λ for kF l = 20, kF r∗ = 0.1 and
kF l0 = 0.01.

temperatures is less than 1 percent in the absence of disorder (such that kF l →∞) and less than
6 percent in the presence of weak disorder (such that kF l = 20) for all considered values of kF l0.
Hence, in this limit we can put TBK T ≈ Tc , which is in agreement with Ref. [22]. Moving away from
the limit λ≪ 1 the approximate BCS temperature can no longer be interpreted as the transition
temperature from the normal to superfluid state, and we should consider the exact value of TBK T .

As shown in Figure 2, for λ = 0.3 the ratio TBK T /εF can reach 0.03. For typical 2D densities
n ∼ 109 cm−2 the Fermi energy of dysprosium isotopes is of the order of 100 nK. Thus, the
superfluid transition temperature for λ = 0.3 can reach 10 nK and higher, which is realistic for
current experiments with ultracold Fermi gases [31]. With increasing λ the BKT temperature
monotonically increases, and, hence, can also be achieved in experiments.
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Figure 3. Disorder-induced change of the BKT temperature TBK T versusλwith T 0
BK T being

the BKT temperature in the absence of disorder. kF l = 20 and kF r∗ = 0.1.

Figure 3 shows the ratio of the BKT transition temperature in the presence of disorder to that
temperature in the clean case TBK T /T 0

BK T versus λ for kF l = 20, kF r∗ = 0.1 and for various values
of kF l0. In the limit λ ≪ 1 and in the case of the strong confinement (such that kF l0 = 0.01)
the interplay between the dipole-dipole interaction and the weak disorder leads to a significant
increase of TBK T like in the purely 2D case [18]. For weaker confinement the effect of the disorder
becomes smaller but is still significant. With an increase in the interaction strength the influence
of weak disorder on TBK T decreases and practically vanishes in the strongly interacting regime
even in the case of the strong confinement.

5. Concluding remarks

In this paper, we analyzed the effect of weak disorder on the BKT superfluid transition temper-
ature of weakly and strongly interacting quasi-2D dipolar Fermi gases. We obtained within the
mean-field theory that the disorder-induced corrections to TBK T strongly depend on the inter-
action strength. In the weakly interacting regime the superfluid transition temperature in weak
disorder can significantly increase compared to T 0

BK T in the clean case. In the strongly interact-
ing regime TBK T in the weak disorder is very close to T 0

BK T without disorder. Also, in the weakly
interacting regime the disorder-induced corrections depend on the confinement, namely, the in-
fluence of the disorder increases with increasing the confinement.

Our results for the intermediate and strongly interacting regimes can be tested in experiments,
for example, with a two-component gas of dysprosium isotopes, 161Dy and 163Dy, in the lowest
Zeeman sublevels and with equal concentrations of the components. Their magnetic moments
can be oriented perpendicularly to the plane of the translational motion, and one can neglect a
small difference in masses of the isotopes. The superfluid transition temperature of such system
can be of the order of 10 nK for realistic parameters. Such temperatures have already been
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achieved in experiments with ultracold dipolar [32–34] and non-dipolar [31] Fermi gases. For
example, for the density of dysprosium isotopes n = 8×108 cm−2 we find the Fermi momentum
kF ≈ 7 × 104 cm−1 and the Fermi energy εF = πn/m ≈ 80 nK. The magnetic moment of the
dysprosium isotopes is equal to 10µB , and the dipole-dipole distance is r∗ ≈ 200 angstroms, so
that kF r∗ ≈ 0.1. The strong confinement can be realized by a trapping frequency ω0 = 2π×100
kHz, for which kF l0 ≈ 0.2. Selecting the mean free path l = 3×10−4 cm, we obtain kF l ≈ 20. For
these parameters in the strongly interacting regime, the BKT temperature is TBK T ≈ 0.12εF ≈ 10
nK. Increasing the density to n = 4×109 cm−2 we find TBK T ≈ 50 nK.
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