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Abstract. Quantized vortices are the hallmark of superfluidity, and are often sought out as the first observable
feature in new superfluid systems. Following the recent experimental observation of vortices in Bose–
Einstein condensates comprised of atoms with inherent long-range dipole-dipole interactions [Nat. Phys. 18,
1453-1458 (2022)], we thoroughly investigate vortex properties in the three-dimensional dominantly dipolar
regime, where beyond-mean-field effects are crucial for stability, and investigate the interplay between trap
geometry and magnetic field tilt angle.

Résumé. Les vortex quantiques sont un marqueur fort de la superfluidité, et sont souvent recherchés comme
première caractéristique observable dans les nouveaux systèmes superfluides. Suite aux récentes observa-
tions de vortex dans des condensats de Bose–Einstein constitués d’atomes en interaction intrinsèquement à
longue portée [Nat. Phys. 18, 1453-1458 (2022)], nous étudions en détail les propriétés des vortex dans le ré-
gime dominé par les interactions dipolaires tridimensionnelles et dont la stabilité dépend crucialement des
effets au-delà du champ moyen, et nous étudions l’influence de la géométrie du piège et de l’angle d’incli-
naison du champ magnétique.
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1. Quantum vortices in ultracold gases

Every time a fluid starts to rotate, a vortex can form. This phenomenon is a universal property
of fluid dynamics, and has been observed in many different systems on all possible lengthscales,
from the spiral motion of galaxies, to the tornadoes in water sinks or in the atmosphere, from su-
perconductors immersed in a magnetic field to rotating superfluids, such as Helium or quantum
gases. The nature of the fluid strongly affects the motion of the particles and the properties of the
supported vortices. A special case is, in fact, represented by superfluids, which are characterized
by the absence of viscosity and are described by a continuous, single-valued wavefunction. The
latter feature leads to the quantization of circulation and to quantum vortices.

First theoretically predicted by Onsager and Feynman at the second half of the last cen-
tury [1, 2], quantum vortices were indirectly seen in superfluid liquid helium [3–6]. The advent
of experiments on dilute, weakly interacting quantum gases opened the door to an intense series
of direct observations of quantum vortices, providing proof of superfluidity in ultracold gases.
The existence of a quantum vortex in a superfluid requires it to accumulate a 2π phase wind-
ing around a line if the fluid is three-dimensional (3D) or around a point if it is confined in a
two-dimensional (2D) geometry. Typically, the gas density vanishes approaching the vortex core
following a 1/r -law on a characteristic lengthscale given by the local healing length. While the
ground state of a superfluid is described by a uniform phase, leading to the absence of super-
fluid motion, any phase-fluctuating excited configuration is accompanied by a local superfluid
motion, according to the relation vs = ħ

m ∇φ.
Phase curls, and consequently vortices, can be generated in a superfluid in many ways. The

seminal experimental work of E. Cornell and co-workers at JILA [7], J. Dalibard and co-workers at
LKB [8], and that of W. Ketterle and co-workers at MIT [9] observed the first vortices in BECs,
opening up the field of quantum vortices in ultracold atoms. Since then, many experimental
techniques have been developed, as illustrated in Fig. 1. In a nutshell, such techniques can be
divided into the following categories:

• Rotation. The most intuitive and elegant way to introduce vorticity in a quantum gas,
consists in making the gas rotate. This can be implemented by introducing an asymmetry
in the trapping potential through off-center optical beams [8, 9, 22] or anisotropic mag-
netic confinement [23, 24] and having them rotate about the symmetry axis. For increas-
ing rotation rates, more and more same-sign vortices enter the system and align their
core lines to the rotation axis. The formation of regular triangular Abrikosov lattices, with
a density proportional to the rotation rate, was observed in Refs. [8, 9, 24]. Such a vortex
crystal can be perturbed by exciting Tkachenko modes [10] and can turn into a square
lattice in the presence of two spin components in the trap [25].

• Soliton decay. Standard solitons are usually stable in one-dimensional systems, while
they are subject to decay into other topological excitations in higher dimensions. The
snake instability is a typical example of such a decay mechanism that shows how the
solitonic plane (in 3D systems) or the soliton line (in 2D systems) breaks into vortex ring
pairs or vortex dipoles. These vortical structures are, in fact, less energetic than solitons
and hence more robust. The decay mechanism and the vortices produced were studied
in 3D isotropic [11], in elongated geometries [12, 16, 26], or in flat potentials [27].

• Thermal activation in 2D systems. Systems with reduced dimensionalities are character-
ized by enhanced fluctuations. In 2D, interactions drive a continuous phase transition
from a superfluid (at low temperatures) to a normal gas (at high temperatures), called
Berezinskii–Kosterlitz–Thouless transition. As the temperature is increased, the spatial
correlations turn from algebraically to exponentially decaying and initially low-energy
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Figure 1. Examples of vortices observed in ultracold gases and created with different meth-
ods, as listed in § 1. a) Three-vortex sample [8] and large vortex lattice (from [9], reprinted
with permission from AAAS) obtained by stirring the BEC with optical potentials at dif-
ferent angular velocities. Vortex lattice obtained by rotating the magnetic trap and show-
ing Tkachenko waves [10]. b) Images of topological defects resulting from the decay of
an imprinted planar soliton [11, 12]. c) Interference between expanding 2D systems con-
taining thermally activated vortices [13] near the BKT transition. d) Interference pattern
between three [14] or many [15] BECs on a ring. e) Signature of a solitonic vortex in an elon-
gated gas [16] and interference pattern between a ring containing a vortex and a reference
BEC [17], both created through the Kibble–Zurek mechanism. f) Vortices resulting from
artificial gauge fields [18]. g) Pair of vortices [19] and turbulent vortex ensemble [20] gen-
erated by moving a barrier through the BEC at high speed. h) Spiral interference signal
between a vortexless and a 6-vortex phase pattern imprinted on an annular Fermi
gas [21]. Reproduced figures with permission from [8, 10–12, 14–17, 19, 20]. Copyright by
the American Physical Society. Reproduced figures from [13, 18], with permission from
Springer Nature.

vortex-antivortex pairs unbind toward a proliferation of free vortices. This was observed
in continuous systems [13, 28] and in lattice configurations [29].

• Merging isolated condensates. When independent condensates are released from their
traps and start to spatially overlap, they interfere, as demonstrates with pairs [30] or linear
arrays of BECs [31]. Similarly, initially isolated condensates with independent phases,
arranged in on a ring, interfere and depending on their phase distributions, they can also
show vortices in the final merged condensate. Such a mechanism was first demonstrated
using three BECs on a ring [14] and then extended to many [15].

• Quenches across phase transitions. A phase transition is usually associated to a symmetry
breaking. When the critical point of the transition is rapidly crossed, it is likely to create
domains with different phases in the system. Through such a mechanism, turbulent
phase patterns form, including the possibility to have vortices. Spin vortices have been
observed by quenching a spinor BEC across a quantum phase transition [32] and also
across the normal to BEC phase transition [33]. This lead to an intense investigation of
the Kibble–Zurek mechanism in quantum gases [17, 34–38].

• Artificial gauge fields. Vortices can also be introduced through the application of syn-
thetic magnetic fields. This possibility has been demonstrated [18] by introducing a spin-
orbit coupling potential made of a pair of Raman beams propagating along different di-
rections and having a frequency difference that matches an atomic two-level transition.
These artificial fields do not possess the limitations of real rotating systems and can po-
tentially lead to the observation of quantum Hall effects [39]. Furthermore, due to the
analogy of rotating neutral atoms and charged particles in a magnetic field, mechanical
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rotation at the trap frequency maps the Bose–Einstein condensate onto a single Landau
gauge wavefunction, allowing access to the lowest Landau levels, with the rotating system
behaving like a strongly correlated quantum Hall fluid [40, 41].

• Strong mechanical perturbations. By moving an obstacle such as a focused laser beam
across the superfluid [19, 20, 42–44], by strongly shaking the confining potential [45, 46],
or by letting two condensates collide with a large relative momentum [47], the gas can
be moved at velocities well above the local speed of sound, turning it into a turbulent
system with strong phase fluctuations and many vortices. In this case, the net vorticity is
on average zero.

• Optical phase imprinting. The spatial phase pattern characterizing vortices can be repro-
duced optically through digital micromirror devices or spatial light modulators. Illumi-
nating the gas with such a pattern, the wavefunction acquires a local phase, proportional
to the light intensity. This method was proposed in the past [48,49], but only recently im-
plemented to imprint vortices in a controllable way [21]. Optical imprinting techniques
with dynamic beams configurations [7] or static ones using Laguerre–Gauss beams [50]
successfully produced quantum vortices.

These methods have all been observed in gases with short-ranged contact interactions. In this
work, we focus on the recent developments in the vortex generation in dipolar gases, in particular
with the novel magnetostirring technique. We study the stability of the dipolar condensate for
increasing rotation frequencies, then focus on the vortex core shape as a function of the relative
angle between the rotation axis and the magnetic field, and finally extend from a single vortex to
many, with the formation of exotic ordered vortex structures, typical of dipolar gases.

2. Dipolar gases and magnetostirring

Dipolar BECs comprised of highly-magnetic lanthanide atoms [51, 52] are taking the lead as a
promising platform to investigate complex quantum matter phenomena. Such systems can be
viewed as the quantum version of classical ferrofluids, where the physics is dominated by the
interplay of long-range anisotropic dipole-dipole interactions (DDIs) [53, 54] with short-range
contact interactions and trap potentials. The balance of these contributions leads to excitations
known as rotons. These low energy excitations occur at a local minimum in the dispersion rela-
tion. First predicted in liquid helium [55], they are considered as the precursor to crystallization
due to their appearance at a finite momentum, and therefore of a fixed wavelength. Predicted in
dipolar systems in 2003 [56, 57], they were observed in dipolar gases first in cigar [58, 59] then
pancake [60, 61] geometries. The transition to a stable crystal was achieved later, where trigger-
ing a roton instability [58] leads to an appearance of a density modulated state with global phase
coherence, known as a supersolid [62], with translational symmetry broken along one [63–65]
or two [66, 67] axes. Other observed phenomena in ultracold dipolar gases thus far include, but
are not limited to, lattice spin models [68, 69], extended Bose–Hubbard dynamics [70], quantum
droplets [71,72], and the quantum Rosensweig instability [73]; constituting only the tip of the ice-
berg of possibilities during this second quantum revolution [53, 54]. Equivalent phenomena are
also predicted in other systems with long-range interactions, such as ground-state heteronuclear
molecules [74, 75] and Rydberg atoms [76], and light-atom coupled systems [77–79].

In magnetic atoms, these phenomena arise due to the long-range nature of the interaction,
which for a polarized gas of ultracold atoms presents as a pseudo-potential

Udd(r) = Cdd

4π

1−3(ê · r̂)2

r 3 , (1)
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Figure 2. Illustration of magnetostirring. Dipolar BEC (red) in an azimuthally symmetric
pancake trap (gray mesh) stretches along the B-field, at an angle θ, and follows the polar-
ization orientation as it is stirred at a frequencyΩ.

characterized by the dipole strength Cdd =µ0µ
2
m for atoms with a permanent dipole moment with

magnetic moment µm and the vacuum permeability µ0, dipoles polarized along ê, and r̂ = r/r
with r = |r|.

The anisotropic nature of Eq. (1) reveals a novel method of vortex generation. Here, two
notions are important. First, the atomic magnets always align along the magnetic-field vector,
which sets the polarization axis. Second, a polarized gas stretches along the polarization axis in
a process known as magnetostriction [80], where dipoles align head-to-tail to maximize their
attraction. This can be exploited to induce asymmetry into the dipolar BEC density profile, in an
otherwise cylindrically symmetric trap, by tilting the magnetic field into the plane. Once tilted,
the magnetic field can be rotated around the trap centre producing vortices in an analogous
method to mechanical trap rotation of a non-dipolar BEC [81]. See Fig. 2 for a schematic of this
process. Recently, this method was employed to produce the first observed vortices in a dipolar
gas [82], in which the vortices exhibit remarkable properties due to the dipole-dipole interaction,
to be explored in the next section. Rapid magnetostirring is known to produce a different effect,
where the atoms remain stationary but the dipole moments rapidly rotate [83]. This leads to a
time-averaged dipole-dipole interaction that can be reversed from the bare DDI (i.e. introducing
a negative sign to Eq. (1)), known as an anti-dipolar interaction, where head-to-tail anti-dipoles
attract and side-by-side anti-dipoles repel. This was observed experimentally in 2018 [84], though
the condensate had a reduced lifetime due to destructive dynamical instabilities [85]. There
remains hope that these can be suppressed by rotating at much larger frequencies [86], and
the impact of changing the trap geometry is unexplored. Furthermore, slow magnetostirring is
also predicted to be a good probe of the stability of two-dimensional bright solitons [87] and
droplets [88], and may even produce vortices inside these intriguing self-bound objects [89, 90].
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3. Quantum vortices in dipolar gases

The long-range and anisotropic DDI also drastically modifies the now well-established superfluid
vortex properties [91]. At the single vortex level, it is the anisotropy of the interaction that in turn
produces elliptical vortex cores, observable when the vortex line and magnetic field vector are
non-parallel [92–96]. Instead, under the condition of vortex lines parallel to the external magnetic
field polarization, the presence of the roton minimum in the dispersion relation can produce
concentric alternating rings of high and low density surrounding the vortex core [92, 94–98].
These effects can be understood from a simple toy model introduced in a review by Martin et
al. [91]: decomposing the condensate density for a vortex into n(r) = n0 −nv (r), with the vortex-
free solution n0 and the vortex density nv , and calculating the dipolar energy contribution from
this solution provides the necessary insight. The dipolar interaction energy is then given by

2Edd =
∫

d3r
∫

d3r′ n(r)Udd(r− r′)n(r′)

2Edd =
∫

d3r
∫

d3r′ n0Udd(r− r′)n0 +
∫

d3r
∫

d3r′ nv (r)Udd(r− r′)nv (r′)

−2
∫

d3r
∫

d3r′ n0Udd(r− r′)nv (r′) .

(2)

The negative sign of the last term in this expansion can be interpreted such that the vortex
acts as a giant anti-dipole sitting inside the (normal) dipolar BEC. For dipoles aligned parallel
to the vortex line, this means that the density is pulled towards the vortex core, causing the
ripple structure. For dipoles tilted into the plane, the antidipolar interaction causes head-to-
tail repulsion, hence the vortex core repels atoms along the B-field and stretches elliptically,
analogously to magnetostriction. Anisotropic vortex cores have also been observed in vortices
in superconductors due to the same effect [99].

The same line of thought elucidates the properties of vortex-vortex interactions. In a non-
dipolar condensate confined to a quasi-2D geometry, vortex-vortex interactions are also long-
ranged (scaling as 1/r ) but are isotropic, and the nature of the interaction (attractive/repulsive)
is set by the sign of the circulation. Same sign vortices repel and rotate around one another at a
fixed distance, whereas opposite sign vortices attract one another and annihilate. In 3D, there are
also interesting recombination and rebounding effects between vortex filaments, depending also
on the relative angle of approach and speed [100]. The isotropy of the vortex-vortex interaction
leads to the triangular Abrikosov vortex lattice. In the dipolar system, we can see from Eq. (2) that
the inter-vortex interaction behaves like a bare dipole-dipole interaction. Two dipolar vortices
sat in a side-by-side configuration (with respect to the B-field angle) will repel one another,
and attract head-to-tail. Thus, there are predictions that there can be suppression of vortex-
antivortex annihilation [96] and an elliptic precession of two same-sign vortices [96,101]. Beyond
vortex pairs, long-range dipolar interactions also alter the bulk lattice structure. Dipoles pointing
out of the plane–i.e. interacting isotropically within the plane–give rise to a triangular lattice
structure when the contact interaction is repulsive [92, 98], but this can be square or rectangular
for attractive or zero contact interactions [102–104]. Breaking the isotropy by tilting the dipoles,
breaks the symmetry of the lattice, where instead the vortices align in stripes, preferring to
maximize head-to-tail configurations as much as possible [81, 92, 105]. There are open questions
pertaining to finite temperature effects on dipolar vortices, such as Kibble–Zurek physics and
the Berezinskii–Kosterlitz–Thouless transition, though in the absence of external driving there
is evidence of anisotropic and polarized turbulent decay [106]. To our knowledge, the impact of
quantum fluctuations on these predictions is unknown.

In spite of 20 years of theoretical and experimental endeavour, the first experimental evi-
dence of vortices in a dipolar Bose–Einstein condensate was only observed in an experiment last
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year [82]. Vortices in a dipolar BEC are predicted to be generated through all the aforementioned
methods at the beginning of this article [91]. However, Klaus et al. utilized the magnetostirring
protocol of Fig. 2. Turbulent clouds of vortices were generated, and ordering into a stripe config-
uration was observed. This experiment was inspired by earlier theoretical works that predicted
the formation of vortex lattices under continuous magnetostirring at magnetic fields tilted at an
arbitrary angle from the trap geometry [81,107]. In future experiments, it will be interesting to see
single vortex properties, and to generate ground state lattices under continuous rotation [81].

There are open questions on how quantum fluctuations change the predictions made thus far,
though in the superfluid phase their effect is expected to be minimal. In the supersolid phase,
however, they play the crucial role of stabilizing the gas against collapse, and the observation of
vortices could provide an unambiguous smoking gun of superfluidity in supersolid states [108–
112]. In this special issue, we analyze the effect of varying the scattering length and dipolar angle
on the predicted vortex properties–including single vortex properties and the resulting lattice
formation–focussing on the experimentally relevant regime, and including beyond-mean-field
effects.

4. Theoretical model

We focus our investigations on parameter regimes relevant to the recent experimental observa-
tion of vortices in a dipolar BEC [82]. We use an extended Gross–Pitaevskii formalism for the
wavefunctionΨ, where the time-dependent equation reads [71, 72, 113, 114]

iħ∂Ψ(r, t )

∂t
=[

−ħ2∇2

2m
+ 1

2
m

[
ω2

r (x2 + y2)+ω2
z z2]+∫

d3r′U (r− r′)
∣∣Ψ(r′, t )

∣∣2 +γQF|Ψ(r, t )|3
]
Ψ(r, t ) , (3)

for atoms of particle mass m confined in a harmonic trap with frequency f j =ω j /2π and aspect
ratio γ=ωz /ωr , reduced Planck’s constant ħ, and the wavefunction Ψ is normalized to the total
atom number N = ∫

d3x|Ψ|2. The last two terms of Eq. (3) describes the interparticle interactions,
determined by the pseudo-potential,

U (r) = 4πħ2as

m
δ(r)+ 3ħ2add

m

1−3(ê(t ) · r̂)2

r 3 , (4)

where the first term derives from short-range interactions with strength given by the s-wave scat-
tering length as . The second term is the anisotropic and long-ranged dipole-dipole interaction
given by Eq. (1), characterized by dipole length add = Cddm/12πħ2. We always consider 162Dy,
such that add = 129.2 a0, where a0 is the Bohr radius. The time dependent polarization ê(t ) gives
us the ability to model magnetostirring, with the dipoles polarized instantaneously along a time-
dependent axis, given by

ê(t ) = (
sinθ(t )cosφ(t ), sinθ(t )sinφ(t ), cosθ(t )

)
, (5)

with time dependent polarization angle θ(t ) and φ(t ) = ∫ t
0 dt ′Ω(t ′), for rotation frequency pro-

tocolΩ(t ). Finally, beyond-mean-field effects are treated through the inclusion of a Lee–Huang–
Yang correction term [115–117]

γQF = 128ħ2

3m

√
πa5

s Re{Q5(ϵdd)} , (6)

with the auxiliary function Q5(ϵdd) = ∫ 1
0 du (1− ϵdd +3u2ϵdd)5/2, and the relative dipole strength

ϵdd = add/as. We identify two regimes that are used throughout this work: the contact dominated
regime ϵdd < 1 and the dipole dominated regime ϵdd > 1. The initial state Ψ(r,0) of the real-time
simulations is obtained by first solving Eq. (3) in imaginary time, giving Ψ0(r), and then adding
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non-interacting noise to this state. This noise is generated through single-particle eigenstates
φn and the complex Gaussian random variables αn sampled with 〈|αn |2〉 = (eϵn /kB T − 1)−1 + 1

2
for a temperature T = 20 nK, such that the total initial state can be described as Ψ(r,0) =
Ψ0(r) +∑′

nαnφn(r), where the sum is restricted only to the modes with ϵn ≤ 2kB T [118]. The
simulations are performed with a split-step Fourier method, in a 1923 box of equal lengths
L = 40µm, imposing a spherical cut-off for the dipolar potential to avoid contamination of our
results with phantom simulation copies [119].

5. Stability of the condensate under magnetostirring

The stability of a non-dipolar condensate under mechanical rotation is well understood from
a hydrodynamic formalism [120, 121]. This approach tells us that, in spite of the energetic
favorability of generating vortices for rotation frequencies exceeding Ω∼ 0.3ωr , with symmetric
radial trap frequency ωr , a dynamical instability is required to nucleate the vortices into the
system. This phenomenon was first observed by the LKB group led by J. Dabilard in a non-dipolar
BEC [8]. Typically, this dynamical instability occurs at Ω ∼ 0.7ωr , where low-lying collective
modes are seeded and become unstable [8,122]–associated with a resonance with the quadrupole
mode atΩ∼ωr /

p
2–providing the necessary avenue for vortex creation.

This same phenomenon has been thoroughly investigated in dipolar gases, where in spite of
the complexity of the underlying integro-differential equation there are analytic solutions in the
Thomas–Fermi regime [123, 124]. A key feature of the non-dipolar analysis is that there exists
three solutions for the stationary elliptic parabolic density profile at large rotation frequencies:
one stretched parallel to the trap deformation, and two stretched perpendicularly. Of the solu-
tions aligned perpendicularly to the trap deformation, one is weakly deformed and highly stable,
and the other is highly unstable and strongly deformed. In the dipolar system, under weak trap
ellipticity and dipoles pointing out of the plane, all three solutions have been shown to exist, and
possess similar features [125–127]. For stronger dipole-dipole interactions, both the critical value
ofΩ at which these three solutions exist can be reduced from the non-dipolar result, and the criti-
cal frequency of the dynamical instability is similarly decreased [127]. In these works, ellipticity is
induced by breaking the radial trap symmetry, however when dipoles are pointing into the plane
elliptic deformation is instead provided by magnetostriction, and angular momentum is induced
through magnetostirring. Crucially, this method exhibits the same features from the mechani-
cally rotating Thomas–Fermi analysis, following a series of earlier theoretical predictions from
Prasad et al. [81, 85], work that was also extended to arbitrary rotation angles [107]. Rotation at
an arbitrary angle is known to present unique features due to centrifugal forces pushing the con-
densate orientation towards the plane, tilted with respect to the trap or magnetic field angle, and
can facilitate stable solutions for rotation frequencies greater than the radial frequency [107,128].

In a recent experiment, Klaus et al. [82] fixed the tilt angle of the magnetic field at θ = 35◦

and investigated the consequences of magnetostirring a dipolar BEC. In what follows, we inves-
tigate the significance of this choice of angle. We explore the stability of a dipolar BEC in the
dominantly dipolar regime (ϵdd > 1) with fixed scattering length as = 110 a0 under increased ro-
tation frequencies, increasing at a rate of 2π×50 Hz s−1, and different B-field tilt angles. The mea-
sured aspect ratio from the column density is shown in Fig. 3. As expected, increasing the initial
tilt angle the state is stretched due to magnetostriction, and we clearly observe the extension of
the aspect ratio at low rotation frequencies. However, the stability of the state at fast rotations is
angle-dependent and can be categorized into one of three groups:

(i) 0 ≤ θ < 20◦ (green): At shallow tilt angles the condensate density remains parabolic
throughout the simulation, and although the aspect ratio initially increases, it finally
decreases to ∼ 0.85, indicating that the stationary solution follows the middle branch
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Figure 3. Aspect ratio of a 162Dy dipolar gas under accelerated magnetostirring. Each curve
shows the aspect ratio evolution for increasing B-field tilt θ, in steps of 10◦. Colors indicate
which category the solutions fall under with (i) green, (ii) orange, and (iii) magenta (see
text). The orange circles are the experimental data of Ref. [82] (Figure 1(c)) taken with
the same system parameters at θ = 35◦. Insets show column densities for fixed time and
increasing θ, indicated by border color, and rotated to the same B-field angle given by the
arrow. Each panel is 20µm× 20µm. Parameters: N = 15000, as = 110 a0, f⃗ = (50,130) Hz,
i.e. γ= 2.6.

from the Thomas–Fermi analysis. This branch is known to be highly stable, hence, no
vortices are formed here.

(ii) 20◦ ≤ θ < 50◦ (orange): At intermediate angles the condensate density undergoes a
dynamical instability (at Ω ∼ 0.8ωr ), and vortices begin to penetrate the condensate
surface.

(iii) 50◦ ≤ θ ≤ 90◦ (magenta): At deeper angles, as the condensate elongates, more atoms align
in a head-to-tail configuration, and the attractive dipolar interaction holds the atoms
together, suppressing a dynamical instability.

The demarcating value of θ between each one of these categories will depend on the choice of
scattering length and trap geometry. Remarkably, the solution for θ = 90◦ is a BEC for Ω = 0,
but due to elongation of the state and increased head-to-tail attraction becomes a rotating trap-
bound droplet state as Ω→ ωr , stable due to the quantum fluctuations. We have verified that
after another second of continuous driving at Ω = ωr the droplet continues to rotate without a
growing collective mode amplitude. As the scattering length is increased, and the relative dipolar
effects are reduced, the range of stable solutions for large θ (iii) will be decreased. Furthermore,
the effect of magnetostriction will be diminished, such that increasing the scattering length plays
a similar role as reducing the trap ellipticity in non-dipolar condensates, where this is known to
aid stability. This, in turn, will also increase the θ range of stable solutions at small tilt angles
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(i). There, the ramp procedure is non-adiabatic compared to the timescales required to generate
a dynamical instability, hence it is possible for the condensate to remain stable on the central
stable branch predicted from Thomas–Fermi theory [81, 107].

For this ramp procedure, however, there exists the Goldilocks range of angles (ii) where a
dynamical instability occurs on a short timescale observable in experiments. After a collective
mode goes unstable, vortices flood the condensate surface and the aspect ratio (obtained by a fit
to a 2D Gaussian profile) no longer accurately captures the condensate density. Also overlaid on
Fig. 3 are the data from [82, Fig. 1], obtained with the same protocol but with θ = 35◦ (orange
points). At short times the data agree perfectly, it is only at late times, where the condensate
undergoes a much earlier dynamical instability, that the results diverge. The time at which the
instability happens will be sensitive to finite temperature effects and small inhomogeneities in
the rotation procedure, which we attribute to the earlier onset of instability. The precise role of
the trap aspect ratio γ in the dipole dominated regime remains an open question, noting that
previous studies have shown in the contact dominated regime that there exist trap aspect ratios
where the dipolar interaction can fully suppress dynamical instabilities [124].

6. Single vortex in an oblate geometry

Vortices in a dipolar BEC are known to have unique features compared to their non-dipolar
counterparts [129]. For θ = 0◦ and scattering lengths close to a roton instability, the vortex core
exhibits a high density ring around high density ring around it, and the core size tends to the inter-
droplet distance as the scattering length is crossed into the supersolid phase. In tighter quasi-2D
geometries, roton effects are more prominent prior to mean-field instability, and instead there are
many concentric rings decreasing in amplitude radially. Tilting the B-field into the plane causes
magnetostriction of the vortex core itself, and this has intriguing consequences on the resulting
vortex lattice structure, that we will explore later.

For our system parameters we assess how the ellipticity and core size depend on both the
scattering length and dipole angle, paying particular heed to the results in the range 20◦ < θ < 50◦,
which we have seen can generate vortices within a reasonable experimentally feasible timescale
(< 1s). In Fig. 4, we show the column densities for a single vortex, for three tilt angles and three
values of the scattering length. These stationary solutions are obtained through generating an
initial condition with a 2π phase winding in the x y-plane and evolving Eq. (3) in imaginary time.
For θ = 0◦, the core is cylindrically symmetric, increasing in radial size as the scattering length
is lowered. At first glance, this contrasts the energy argument given around Eq. (2). However,
as the scattering length is reduced the healing length increases, setting a wider vortex core
size. In this trap geometry, the effect of the roton is present, but subtle, appearing as a slightly
increased density around the core, and also widening the core size to be comparable to the
roton wavelength [109]. For any non-zero tilt angle the vortex core is stretched into an ellipse. We

measure the core eccentricity as ϵ =
√

1−R2
x /R2

y , for major axis Ry along the B-field and minor

axis Rx perpendicular to the B-field, taken at an arbitrary low isodensity 3× 1019 m−3. We see
that the core eccentricity exceeds 0.5 for all considered scattering lengths when the tilt angle
exceeds ∼ 20◦. Therefore, in the angle regime of interest (20◦ < θ < 50◦) the effect of the dipolar
interactions should be visible from the column density.

At deeper angles than 25◦, and small scattering lengths, the increased head-to-tail attraction
triggers a roton instability, and the stationary state is a pair of droplets. Note that the ground state
with these parameters is a single droplet with no vortex. Here, a vortex is imprinted between two
droplets, though not visible in the density profile, highlighting the challenge of observing vortices
in the density profile in the supersolid phase [108–112]. One recent proposal [111] has suggested
quenching the scattering length into the BEC phase after creating the vortex through rotation of
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Figure 4. Column densities of a single vortex in a dipolar BEC, for varying tilt angle θ

and scattering length as . For 90a0 the condensate undergoes a roton instability at 25°
(red crosses), and the stationary state is instead two tilted droplets. The core eccentricity,
measured at an arbitrary low isodensity 3×1019m−3, tends to 1 for increasing θ in all cases.
The inset shows the width of the minor axis. Other parameters the same as Fig. 3.

the supersolid state. In this way, the vortex remains after the quench and would be visible in the
density profile. One other method could be to create a persistent current in a ring supersolid, and
observe the circulation through the interference pattern in time-of-flight imaging [130, 131].

7. From one to many vortices in a dipolar gas

We have seen that the recipe to generate vortices through magnetostirring in a dipolar gas re-
quires careful tuning of the dipolar parameters. Choosing an angle in the intermediate regime
(20◦ < θ < 50◦) is ideal for triggering the dynamical instability required to induce vortices. More-
over, individual vortices induced have an eccentricity >0.5, and dipolar effects are observable in
the in situ density.

Rather than increasing Ω linearly from 0, as in Fig. 3, previous experiments have investigated
the formation of vortex lattices either through jumping to the target value of Ω ∼ 0.7ωr after
generation of the BEC, or by cooling across the thermal cloud-to-BEC phase transition under
continuous rotation at this value [23]. Here, we continuously stir a dipolar BEC jumping from
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Figure 5. Generation of vortex stripes in a dipolar BEC. Top row: Time series of real-time
simulation snapshots at (16, 164, 542, 1200)ms using the experimental parameters. Bottom
row: Time series of the corresponding experimental snapshots at (20, 127, 314, 447) ms.
For the last image of each series we applied the vortex detection algorithm [82] and show
the calculated residuals, with the detected vortices marked with crosses. Used parameters:
θ = 35◦,Ω= 0.7ωr , as = 109a0, N = 10000, f⃗ = (50,130) Hz.

Ω = 0 to Ω = 0.7ωr at t = 0 with fixed θ = 35◦ to observe rapid dynamical instability and
vortex lattice nucleation. In Fig. 5 (top row) we show four simulation snapshots taken at; t = 0, a
static BEC; after 164 ms showing the formation of spiral arms, a hallmark feature of the growing
dynamical instability; post instability at 542 ms with vortices flooding the condensate density;
after 1200 ms of continuous rotation where the system is settling towards a static vortex stripe
lattice. Vortex stripes—rows of vortices aligned along the magnetic field direction—were one of
the first predicted consequences of the dipole-dipole interaction on vortex structure [92]. We
also show snapshots of the same process taken from the experimental data from Ref. [82] [Fig. 5
(bottom row)]. Remarkably, similar features are observed, such as the appearance of spiral arms
and the eventual production of vortices inside the density profile. In this experiment, due to
atom losses, it was not possible to continuously stir until a lattice has formed, however vortex
stripes were observed for the first time. These effects are readily observed in the residual images,
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Figure 6. Vortex lattice solutions of a dipolar BEC. Light blue points mark vortex positions.
Parameters:Ω= 0.7ωr , other parameters are the same as Fig. 3.

where the average density from many experimental runs–which is smooth due to the random
distribution of vortices–is subtracted from the single experimental image (see Ref. [82] for more
details) leaving behind peaks at the vortex positions and troughs along the high density stripes.
From our simulations, we have found that larger atom numbers facilitate a faster reorganization
into the lattice, and there is hope that future experiments will be able to observe this exciting
prediction.

8. Vortex lattices

Finally, for our system parameters, we investigate the transition from triangular to stripe vortex
lattice, and the fate of the vortices across the BEC-to-supersolid transition. In Fig. 6, we present
the stationary state lattice solutions found through imaginary time propagation of Eq. (3) with
Ω= 0.7ωr . When θ = 0◦ the lattice is triangular, as in non-dipolar BECs. We note, however, that a
square lattice here is only 0.03% larger in energy, and we do not rule out that a square lattice would
be possible in this geometry, similar to the results of Refs. [102–104] but with positive scattering
length. Already at θ = 30◦ we find that the vortex lattice takes on the stripe structure, with the
stripes more prominent at lower scattering lengths. This is consistent with the findings of Klaus
et al., who observed vortex stripes at smaller scattering lengths (approx. 105 a0). At deeper angles
still, the number of stripes is reduced as the magnetostriction stretches the condensate along the
magnetic field direction, until the condensate becomes a single rotating droplet and the energy
cost of adding a vortex exceeds that obtained from maintaining an irrotational flow. The critical
rotation frequency to induce a vortex across the BEC-to-droplet transition is an open question,
and would be an interesting future study.

Vortices in the supersolid regime are known to possess intriguing properties, taking on the
core size of the inter-droplet spacing [109], and snaking between the droplets in order to interact
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with one another [110]. Typically, the crystal structure of two-dimensional supersolids are known
to be triangular lattices, with some evidence of the possibility of square lattices [132], and
predictions for exotic labyrinthine-like and honeycomb crystal solutions at high densities [133–
135], resembling the nuclear pasta states of neutron stars. The energy minimum position of a
vortex is in the centre of each triangle, however there is a metastable minimum between each
droplet pair [110], and vortices fill all of these minima forming the supersolid vortex lattice
at fast rotation frequencies [109]. Rotating high density honeycomb structure supersolids is
predicted to break apart the crystal [112]. In our system, the stationary state with as = 90a0 is
a supersolid for all angles and Ω = 0.7ωr , however is an unmodulated BEC at Ω = 0, hinting
at the intriguing possibility of triggering the unmodulated-to-modulated transition through
rotation. This behaviour has been predicted previously [130], due to the two competing avenues
for angular momentum production in a supersolid: either a vortex can enter contributing to
the superfluid angular momentum, a contribution proportional to the superfluid fraction fs ,
or the classical angular momentum Ωm〈x2 + y2〉 can be increased by reducing the superfluid
fraction, i.e. inducing supersolidity. Intermediate tilt angles display a complex interplay between
maintaining a fixed interdroplet spacing and the vortices attempting to align in stripes, until at
deeper tilt angles where the droplet number reduces to one droplet without vortices.

9. Conclusion and outlook

In conclusion, we have shown that rotation at intermediate tilt angles are ideal for generating
vortices in a short timescale, delicately balancing the increase of ellipticity with deeper tilt angles
against the increased head-to-tail attraction suppressing the necessary dynamical instability. We
have shown that the predictions for the shape and size of dipolar vortices in the absence of
beyond-mean-field corrections remain present in the dominantly dipolar regime, where these
corrections are necessary for stability. Whereas previous studies, that have neglected beyond-
mean-field effects, required θ ≈ 70◦ in order to see the transition from triangular to square
lattice [105], we are able to access the dominantly dipolar regime where this transition occurs as
low as 30◦. Recent experimental results only present the first steps to observe a large quantity of
intriguing properties. At finite temperatures, the impact of the dipolar interaction on universal
scaling laws for Kibble–Zurek physics and the nature of the BKT transition in dipolar gases
remains unknown. Future research directions may investigate the properties of dipolar vortices
in binary condensates, such as dipolar spin mixtures between two spin states of a single species,
multispecies mixtures such as erbium-dysprosium [136], or dipolar non-dipolar mixtures such
as dysprosium-potassium [137] and erbium-ytterbium [138]. Works thus have have investigated
the interplay between roton immiscibility–the two species separating at the roton wavelength–
and vortex lattices [139–143]. Recent theoretical investigations into binary systems have revealed
novel interweaving supersolid states [144, 145] and miscible supersolid states [146]. In liquid
helium, a second component was utilized in order to directly image the vortices from the
bulk component [147], and the same ideas may be brought to binary supersolidity as an ideal
platform to image vortices in supersolids, for example extending the work of Ref. [148] to dipolar
gases. Prospects for rotating an unmodulated BEC into the supersolid regime [130], and tests of
superfluidity of the supersolid, are currently a hotly debated topic in the field [149–151].
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