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Abstract. We investigate the loss of spatial coherence of one-dimensional bosonic gases in optical lattices
illuminated by a near-resonant excitation laser. Because the atoms recoil in a random direction after each
spontaneous emission, the atomic momentum distribution progressively broadens. Equivalently, the spatial
correlation function (the Fourier-conjugate quantity of the momentum distribution) progressively narrows
down as more photons are scattered. Here we measure the correlation function of the matter field for fixed
distances corresponding to nearest-neighbor (n-n) and next-nearest-neighbor (n-n-n) sites of the optical
lattice as a function of time, hereafter called n-n and n-n-n correlators. For strongly interacting lattice gases,
we find that the n-n correlator C1 decays as a power-law at long times, C1 ∝ 1/tα, in stark contrast with the
exponential decay expected for independent particles. The power-law decay reflects a non-trivial dissipative
many-body dynamics, where interactions change drastically the interplay between fluorescence destroying
spatial coherence, and coherent tunnelling between neighboring sites restoring spatial coherence at short
distances. The observed decay exponent α ≈ 0.54(6) is in good agreement with the prediction α = 1/2 from
a dissipative Bose–Hubbard model accounting for the fluorescence-induced decoherence. Furthermore,
we find that the n-n correlator C1 controls the n-n-n correlator C2 through the relation C2 ≈ C 2

1 , also in
accordance with the dissipative Bose–Hubbard model.

Résumé. Nous étudions la disparition de la cohérence spatiale quand un gaz quantique d’atomes bosoniques
est illuminé par un laser quasi-résonant. La distribution en impulsion du gaz s’élargit à cause de la diffusion
en impulsion due au caractère aléatoire de l’émission spontanée. De manière équivalente, la fonction de
corrélation spatiale qui permet de caractériser la cohérence en phase (et qui n’est rien d’autre que la
transformée de Fourier de la distribution en impulsion) devient de plus en plus étroite. Dans ce travail,
nous mesurons cette fonction de corrélation pour un gaz unidimensionnel dans un réseau optique et pour
des distances correspondant à des sites plus proches voisins (ppv) et second plus proches voisins (sppv).

∗Corresponding author.

ISSN (electronic) : 1878-1535 https://comptes-rendus.academie-sciences.fr/physique/

https://doi.org/10.5802/crphys.166
mailto:remy.vatre@gmail.com
mailto:raphael.bouganne@gmail.com
mailto:mbosch.ag@gmail.com
mailto:alexis.ghermaoui@gmail.com
mailto:beugnon@lkb.ens.fr
mailto:raphael.lopes@lkb.ens.fr
mailto:fabrice.gerbier@lkb.ens.fr
https://comptes-rendus.academie-sciences.fr/physique/


2 Rémy Vatré et al.

Pour des gaz en interaction, nous observons que la fonction de corrélation ppv C1 décroît comme une
loi de puissance, C1 ∝ 1/tα, beaucoup plus lente que la décroissance exponentielle attendue pour des
atomes indépendants. Cette loi algébrique reflète une dynamique à N corps sous-jacente où les interactions
modifient complètement la compétition entre effet tunnel ppv (qui tend à préserver ou restaurer la cohérence
spatiale) et émission spontanée (qui détruit cette cohérence). Nous mesurons un exposant de décroissance
algébrique α ≈ 0.54(6), en bon accord avec la prédiction α = 1/2 déduite d’un modèle de Bose–Hubbard
avec une partie dissipative décrivant la décoherence induite par les photons de fluorescence. Enfin, nous
observons que le corrélateur ppv C1 contrôle le corrélateur sppv C2 à travers la relation C2 ≈C 2

1 , également
prédite par le modèle de Bose–Hubbard dissipatif.

Keywords. ultracold atoms, quantum gases, optical lattices, decoherence.

Mots-clés. atomes ultrafroids, gaz quantiques, réseaux optiques, décohérence.
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1. Introduction

Interference is a central phenomenon in quantum mechanics [1]. In the early days of its devel-
opment, the realization that the mechanical properties of a quantum particle can display inter-
ference phenomena led to the discovery of wave-particle duality, often presented in introductory
textbooks as the first example of the counter-intuitive features of quantum theory. Today, matter
wave interferences are routinely observed experimentally and used in high-precision gravity or
rotation sensors.

The textbook picture of a perfectly coherent matter wave is usually far from experimental
realities. In a real system, phase coherence is usually maintained only in a coherence volume lD

c ,
with lc the characteristic coherence length and D the dimensionality. More formally, the degree
of spatial phase coherence of a quantum system can be quantified by the first-order correlation
function of the quantized matter field Ψ̂ (also called single-particle density matrix–SPDM) [2],

ρ(1)(s) =
∫

dDR
〈
Ψ̂†(R + s/2)Ψ̂(R − s/2)

〉
. (1)

Here and in the following, the brackets 〈·〉 denote the expectation value. Physically, the SPDM
ρ(1)(s) quantifies the contrast of a matter wave interferometer with an arm separation s. Besides
interferometry, the SPDM is also key to the description of degenerate quantum fluids. Long-
range spatial phase coherence where lc is comparable to the size of the system is the hallmark of
Bose–Einstein condensation in an ultracold gas of bosonic atoms [2–8].

Position measurements erase the spatial phase coherence present before the measurement,
at least on spatial scales comparable or greater than the measurement resolution. The dynamics
of the associated decoherence process is an important question that also emerged during the
development of quantum mechanics, e.g. in the celebrated Heisenberg microscope thought
experiment [1], and has been revisited many times (see, e.g., Refs. [9–12] for recent discussions
and experiments). A simple but experimentally relevant example is a single atom illuminated
by near-resonant light of wavelength λ0. Here, light scattering from the incident mode to an
initially empty mode can be interpreted as a weak, continuous measurement of the position of
the atom [13–17]. Indeed, collecting the scattered photons with a suitable imaging system allows
one (at least in principle) to infer the location of the source, i.e. the atom. As more photons
are scattered as a single realization of the experiment unravels, the position distribution of the
atom (initially completely uncertain if the atom starts in a momentum eigenstate) progressively
narrows down to a particular random location. Upon averaging over many realizations of the
experiment, one retrieves a uniform average position distribution. In terms of the SPDM, the
pinning of the particle position erases the spatial coherence of the initial state, leading to an
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exponential damping of ρ(1)(s) as long as |s|≫λ0. In this elementary example, the damping rate
is simply given by the rate of spontaneous emission γsp (or equivalently, the photon scattering
rate).

Instead of interferometry, the spatial coherence of a quantum system can also be character-
ized by measuring its momentum distribution n(p) [2], since n(p) is the Fourier transform of the
SPDM and therefore carries the same information [2, 5, 7]. A single photon scattering event cor-
responds to the absorption of an incident photon with wavevector kL and the subsequent emis-
sion of another photon with wavevector k0u, where k0 ≃ kL and where the unit vector u is ran-
dom. Due to momentum conservation of the combined atom-light system, the atomic momen-
tum changes from p0 to p0+ħ(kL−k0u). When many photons are scattered, the atomic state un-
dergoes a random walk in momentum space, a phenomenon often called momentum diffusion.
The characteristic width of the momentum distribution increases diffusively as∆k ∝p

t for long
times. Momentum diffusion plays an essential role in the theory of laser cooling, where it limits
the achievable temperatures [18,19]. In this context, the momentum diffusion of a single particle
has been thoroughly studied.

In a recent work [20], we have investigated the decay of spatial coherence of bosonic gases
in optical lattices when illuminated by a near-resonant excitation laser. Our main observation
is a power-law decay of the coherence of strongly interacting systems at long times, rather
than the exponential decay expected for an ensemble of non-interacting atoms undergoing
momentum diffusion. Our observations are in quantitative agreement with the theoretical
predictions of Poletti et al. [21, 22] based on a minimal model describing light scattering by
a quantum gas, hereafter denoted by “dissipative Bose–Hubbard model” (see Section 4 for
precise definitions). This model explains the power-law decay of coherence as the signature
of a non-trivial dissipative many-body dynamics, where the interplay between fluorescence
(destroying spatial coherence), and coherent tunnelling between neighboring sites (restoring
spatial coherence at short distances) is drastically modified by interactions. In the present article,
we extend our previous work in two respects. First, we focus on one-dimensional systems,
as opposed to the two-dimensional systems studied in [20]. Second, we measure the spatial
coherence between nearest-neighbor (n-n) sites of the optical lattice (as in [20]) but also between
next-nearest-neighbor (n-n-n) sites.

The article is organized as follows. In Section 2, we describe the experimental setup and
protocols and review the essential features of a theoretical description of light scattering by atoms
trapped in optical lattices, ignoring many-body effects for the time being. In Section 3, we present
our main experimental results concerning the measurement of n-n and n-n-n correlators in one-
dimensional lattice gases. In Section 4, we review the solution of the dissipative Bose–Hubbard
model proposed by Poletti et al. In Section 5, we apply these results to the computation of n-n
and n-n-n correlators measured experimentally. Finally, we conclude in Section 6.

2. Experimental system

2.1. Experimental setup

We start with a brief description of the experimental apparatus and methods (more details are
given in [23, 24]). We prepare a quantum gas of bosonic 174Yb atoms in a three-dimensional
cubic optical lattice. We start from a nearly pure (more than 80 % condensed fraction) Bose–
Einstein condensate (BEC) prepared in a crossed optical dipole trap [23]. We then ramp up the
depth of the optical lattice potential along the vertical direction to a fixed value Vz = 27ER. Here
ER = h2/(2mYbλ

2
lat) ≈ h ×1.8kHz is the recoil energy at the lattice wavelength λlat ≃ 759.8nm and

d = λlat/2 is the lattice spacing. Simultaneously, we ramp down the depth of the crossed dipole
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Figure 1. a: Sketch of the experimental geometry. Here kL and εL denote the wave and
polarization vectors characterizing the mode of the excitation laser. b: Simplified atomic
level structure of 174Yb highlighting the two relevant energy levels g and e. The level
splitting is ħω0, the natural linewidth of the excited state is Γ, and the Rabi frequency
controlling the strength of the interaction between the atom and the excitation laser isΩL.
The laser detuning from the resonance is defined as δL =ωL −ω0.

trap to a negligible value and then switch it off once the ramp is completed. This sequence creates
a stack of two-dimensional bulk Bose gases with negligible tunnelling between adjacent planes.
In a second step, we increase the depths Vx,y of the two horizontal lattices to their final values. In
this work, we prepare arrays of independent one-dimensional (1d) lattice gases, as illustrated in
Fig. 1a. We thus choose Vx ≪Vy ≈Vz to enable tunnelling only in the x direction.

The density profile of the initial condensate is not uniform [7] and the Gaussian envelopes
of the lattice lasers result in an auxiliary harmonic confinement in the x − y plane [8]. Both
effects lead to an inhomogeneous distribution of atoms across all individual 1d gases [25, 26].
Varying the total atom number changes the peak density and the sizes of the initial Thomas–
Fermi condensate, thereby allowing us to tune the peak density of our system and prepare a wide
range of density profiles [24]. Experiments presented in this article are performed with gases
containing N ≈ 5−6·104 atoms, where unit-, double- and triple-occupations coexist in the regime
of deep lattices [24].

2.2. Controlled spontaneous emission

In the absence of near-resonant laser light, the coherence of the gas is long-lived. Spontaneous
emission induced by the far-detuned lattice lasers [27] corresponds to heating times of several
seconds [28, 29], making spontaneous emission hardly distinguishable from other heating pro-
cesses, e.g. due to intensity fluctuations of the lattice lasers. To study the impact of spontaneous
emission in a controlled way, we use an additional excitation laser tuned near the 1S0 −3 P1 reso-
nance at λ0 ≈ 556nm (see Fig. 1b). The actual detuning of the laser from the atomic resonance,
δL = ωL −ω0 ≈ (2π)×2.7MHz with ω0 = ck0 the resonance frequency and k0 = 2π/λ0, is one or-
der of magnitude larger than the spontaneous linewidth Γ≈ (2π)×180kHz. We thus work in the
regime of weak optical saturation, where the spontaneous emission rate is given by [30]

γsp ≃ Γ
2

Ω2
L

2δ2
L + Γ2

2

≪ Γ. (2)

We choose the dipolar electric coupling strengthΩL (controlled by the excitation laser intensity)
such that γsp ≈ 520s−1 for the experiments presented in this article.
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We now discuss how the motional quantum state of a single atom (or, equivalently, of a non-
interacting gas of atoms) trapped in an optical lattice is modified by spontaneous emission
when the gas is exposed to near-resonant laser light. The periodic optical lattice potential Vlat

is created by a set of far-off-resonance laser beams distinct from the excitation laser [8, 31].
Because of the periodic potential, the motional levels cluster in allowed energy bands labeled
by a band index ν, with Bloch energy eigenstates within each band also labeled by their quasi-
momentum q restricted to the first Brillouin zone (BZ). In typical quantum gases experiments,
only the fundamental energy band is occupied before exposing the atoms to near-resonant light.
Once dissipation is enabled, light scattering leads to either intra-band or inter-band transitions
depending on whether or not the band index ν changes. After a fluorescence cycle, the quasi-
momentum is conserved up to an arbitrary reciprocal lattice vector Q , i.e. q → q +kL −k0u +Q .
With this minor modification, the phenomenon of momentum diffusion as described in the
Introduction generalizes almost directly to the lattice case [29].

Position
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band

1st exc.

band

1 2

2′

1′
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y

Γ

x

y

γtot ̸= 9Γ
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a b1 b2

c

Figure 2. a: Sketch of several possible transition processes after an absorption-
spontaneous emission cycle. Elastic scattering where atoms end up in the same band and
site is denoted by (1). Same-site, band-changing processes such as the one labelled (2) are
less frequent but not necessarily negligible for typical lattice depths ranging from a few ER

to a few tens of ER. In contrast, processes labelled (1’),(2’) that involve tunnelling to a dif-
ferent site are exponentially suppressed due to the reduced overlap between adjacent Wan-
nier states. b1-2: Illustration of a single radiating atom (b1) and of collective radiation of
an ensemble of nine atoms forming a cartoon Mott insulator state with one atom per site
(b2). c: Illustration of energy shifts due to on-site (U 0

dd) and nearest-neighbor (U 1
dd) dipole-

dipole interactions.

For deep lattices and in the presence of interactions, it is often useful to use spatially localized
Wannier states instead of (spatially delocalized) Bloch energy eigenstates [8]. The various types
of transitions between Wannier states are illustrated in Fig. 2a. By far the dominant process
is elastic scattering denoted by (1), where atoms end up in the same band and site, whereas
same-site band-changing processes such as the one labelled (2) are much less frequent. Let
us consider for concreteness interband transitions from the fundamental band to one of the
first excited bands labeled by α = x, y, z in a cubic lattice. The transition rates scale as γspη

2
α,

where the so-called Lamb-Dicke parameter ηα ≈ kLσα (with σα the harmonic oscillator width
approximating the exact Wannier functions [8]) decreases slowly with increasing lattice depth. In
contrast, processes involving tunnelling to a different site – such as the ones marked (1’),(2’) in 2a
– are exponentially suppressed due to the reduced overlap between adjacent Wannier states, and
thus negligible in practice. A single-band description neglecting all bands but the fundamental
one corresponds to the idealized limit where ηα → 0 (which occurs for infinite lattice depths).
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Lamb-Dicke parameters in our experiments are in the range ηy/z ∼ 0.1 and ηx ∼ 0.2−0.4. As a
result, one expects that interband transitions take place on a time scale ∼ 10γ−1

sp , as confirmed by
experiments [20].

2.3. Analysis of momentum profiles
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Figure 3. Extraction of nearest- and next-nearest-neighbors correlators C1 and C2 from
the measured momentum distributions (here for a lattice depth Vx = 7.3ER and t =
0.1,0.5,2ms). The first Brillouin zone corresponds to [−kL,+kL[. The blue solid lines in the
left panels a1-3 show the experimental data for the normalized momentum distribution
π(kx ), the black solid lines the best fit using Eq. (6), and the orange lines the fit residuals. In
the middle panels b1-3, the blue dots show the contribution of the fundamental band π0 =
π(kx )− fexc obtained by subtracting from the measured π the content fexc of the fit function
describing the excited bands [Eq. (6)]. The dashed lines in the left and middle panels show
the “incoherent” part of the fundamental band contribution, i.e. the calculated Wannier
envelope weighted by the band population p0W0(kx ). In the right panels c1-3, the blue
dots show π0 −p0W0(kx ), the black dots (offset vertically for clarity) show π0 −p0W0(kx )−
2C1 cos(kx d), and the red solid line is the fitted curve 2W0(kx )

(
C1 cos(kx d)+C2 cos(2kx d)

)
.

The left and middle panels use the same (arbitrary) vertical scales. The vertical scales of the
rightmost panels are enlarged by the factors indicated in the plots to make the details more
visible.

All measurements in this article are done using absorption imaging of the atomic gas. We
record the images after releasing the gas from the optical lattice trap and letting it expand for
20 ms. Such absorption images allow one to infer the atomic momentum distribution integrated
along the probe line of sight,

∫
n(k , t )dkz . As in our previous work [20], we use a model function

to fit the experimental momentum distributions. We first recall, for completeness and to motivate
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our fit model, a few key notions concerning the momentum distribution of a lattice gas, before
discussing our fitting model in details.

Definitions of single-particle correlators and quasi-momentum distribution

For a one-dimensional quantum gas occupying the fundamental Bloch band n = 0, the
discrete single-particle correlator [31–33]

Cs = 1

N

∑
i

〈
â†

i+s âi

〉
(3)

plays the same role as the SPDM ρ(1) for a gas in the continuum. Here âi is the operator
annihilating an atom at site i with position xi = i ·d , s is the relative distance in units of the lattice
spacing d , and N is the total atom number. In the case of a uniform system with Ns sites and
filling factor n̄ = N /Ns , the general definition (3) simply amounts to a normalization such that
C0 = 1, i.e. Cs = 〈â†

i+s âi 〉/n̄. The definition (3) is more general and applies in particular to systems
with a non-uniform density, as realized in experiments. The one-dimensional momentum
distribution [8, 31, 33]

n0(kx ) =W0(kx )

(
1+ ∑

s∈N∗
2Cs cos(skx d)

)
(4)

is proportional to the product of a “structure factor”, the discrete Fourier transform of Cs , by
an envelope function W0(kx ). The latter is the square of the Fourier transform of the real-space
Wannier function in the fundamental band and reflects the momentum distribution of a single
atom confined at one lattice site. The structure factor can also be interpreted as a normalized
quasi-momentum distribution. When taking excited bands into account, Eq. (4) is generalized
as n(kx ) = n0(kx )+nexc(kx ), with nexc(kx ) = ∑

exc. bands n Wn(kx )(1+ ·· · ) the contribution of the
excited bands.

Model function

We integrate the atomic distributions
∫

n(k , t )dkz inferred from the absorption images over
the irrelevant direction ky , and normalize them to the total atom number,

π(kx , t ) = 1

Ntot(t )

∫
n(k , t )dky dkz . (5)

Experiments presented in this article are performed with one-dimensional systems characterized
by short-ranged spatial coherence even in the equilibrium state, due to the central role played by
fluctuations in one-dimensional systems [34]. As a result, the Fourier expansion in Eq. (4) can
be truncated to the first few terms. We fit the distribution π with f (kx , t ) = f0(kx , t )+ fexc(kx , t ),
where the contribution of atoms in the fundamental band and excited bands are respectively

f0(kx , t ) =W0(kx )

(
p0 +2

3∑
s=1

Cs (t )cos(skx d)

)
, fexc(kx , t ) =

nmax∑
n=1

Wn(kx )pn , (6)

with pn the fractional population of band n. The fundamental band correlators Cs are the same
as in Eq. (3). The definitions are such that

∫
π(kx , t )dkx = 1,

∑
n pn = 1. In the excited bands

contribution, we neglect all correlators and use a cutoff nmax = 3. We calculate the Wannier
envelope functions Wn(kx ) at the lattice depths of interest, and use them as input to the fitting
procedure. The free parameters in the fit are thus the fundamental band correlators {Cs }s=1, ··· ,3

and the band populations {pn}s=0, ··· ,3.
We show in Fig. 3a1-3 three illustrative momentum profiles along with the best fit and the

fit residuals. Comparing the measured distribution with the lowest band Wannier enveloppe
(shown as dashed lines) at various times, the broadening of the overall distribution reflects the
gradual population of the excited bands due to the excitation laser, as discussed in Section 2.2.
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The fit residuals are featureless and the amplitude of the residual deviations is comparable to the
detection noise. We conclude that the fit function is able to capture the relevant features of the
measured momentum distribution, and in particular to subtract efficiently the contribution of
the higher bands. To appreciate the importance of the various terms, we show the contribution
π− fexc of the fundamental band in Fig. 3b1-3. This quantity can be compared to the momentum
distribution of a band with the same overall population but no coherence, shown as dashed lines.
Fig. 3c1-3 shows the extracted interference pattern from atoms in the fundamental band. When
C1 ̸= 0, the probability to find atoms near kx = 0,±2kL increases due to constructive interference,
while the probability near kx = kL decreases due to destructive interference. Note that the
Wannier enveloppe suppresses the visibility when kx ̸= 0. Subtracting the n-n contribution from
the interference pattern, we obtain the black dotted lines where the additional modulation with
period kL comes from n-n-n coherence.

3. Observation of anomalous decay of coherence in one dimension

3.1. Observation of algebraic decay at long times

Fig. 4 shows the evolution of the nearest- (circles) and next-nearest (squares) neighbors correla-
tors C1 and C2 as a function of the dissipation time for several values of the lattice depth Vx , that
decay as expected. Values of Cs below a threshold of roughly 10−2 are dominated by noise, mostly
due to the optical shot noise of the probe laser, and therefore not indicative of atomic coherence.
We use a conservative threshold value Cs ≥ 0.02, excluding data points with lower coherence from
the fits. The dashed gray areas in Fig. 4 show the excluded regions. Even at short times, the fit-
ted third-nearest neighbor coherence C3 are typically barely distinguishable from the detection
noise. We have thus omitted C3 from the figures to improve their readability. Furthermore, the
detection noise restricts the observation times to γspt ≲ 5 to maintain a sufficient signal-to-noise
ratio for C1/2 for all lattice depths.

With suitable approximations, the quantum optical theory of relaxation can be used to predict
the evolution of the momentum distribution [21, 22, 29, 35]. The simplest model neglects all
correlations from interatomic interactions or collective effects in the radiation of the atomic
ensemble: Each atom interacts with the excitation laser and the vacuum field independently
from the presence of others. Assuming that only the fundamental Bloch band is relevant, this
model predicts that the initial coherences decay exponentially (see [29, 35] and Appendix A),

Cs (t ) ≃Cs (0)exp
(−γspt

)
. (7)

This prediction is in poor agreement with the experimental results. Although the initial decay
of the measured coherences is well described by an exponential function (dotted lines in Fig. 4),
the fitted decay rates are substantially larger than the value γsp suggested by Eq. (7), see Fig. 5c.
Furthermore, the experimental curves eventually depart from the exponential behavior and
settle at long times to a regime where the decay becomes slower than predicted by Eq. (7). In
that regime, the experimental data tend to align as a straight line in a double-logarithmic plot,
indicating that the long-term decay follows an algebraic law ∝ t−α instead of an exponential
one.
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Figure 4. Nearest- (circles) and next-nearest (squares) neighbor correlators C1 and C2 as a
function of time for several lattice depths indicated in the individual panels a-f. The blue
dotted and solid lines show respectively an exponential fit to C1(t ) and an improved fit using
a function [Eq. (8)] that first decays exponentially before crossing over to an asymptotic
power-law decay. The asymptotic power law itself is shown by the dashed line. The theory
based on the dissipative Bose-Hubbard model (Section 4) predicts the asymptotic law
C2 ≈ C 2

1 . We test this prediction by taking the square of the improved fit to C1 without
any additional change (red dot-dashed lines). We observe a reasonable agreement with the
experimentally measured C2 (red squares) at sufficiently long times. The hashed gray areas
show the regions Cs < 0.02 where detection noise becomes dominant. These regions are
excluded from the fits. The experimental error bars are statistical. We record typically five
independent realizations per data point (Vx , t ). We fit each realization independently and
report the mean and standard deviation of the fitted C1/2.

3.2. Atom losses

In addition to the decay of coherence and to interband transfer, we also observe an overall decay
of the total atom number due to the excitation laser. We attribute these losses to light-induced
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two-body collisions converting a fraction of the internal energy into kinetic energy and leading
to atom losses1. This observation is qualitatively and quantitatively in line with our previous
work on two-dimensional systems [20], where it was analyzed in details. The loss time constant
is roughly one order of magnitude slower than the decoherence dynamics. The main effect of
inelastic losses –the reduction of atom number– is normalized away by the definition (3) of the
single-particle correlators. However, there remains a more subtle effect on the coherence that
will be discussed later in Section 5.

3.3. Determination of the decay exponent
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Figure 5. Results of fitting Eq. (8) to the experimental data: a: Power law exponent α; The
dashed line in a shows the decay exponent α = 1/2 expected from theory [section 4]; b:
power law amplitude A; c: initial decay rate γ0 plotted as a function of lattice depth. The
filled circles correspond to measurements made in the interval 5ER ≤ Vx ≤ 10ER where
the exponent can be reliably extracted, while open circles show measurements outside this
interval. The average exponent for 5ER ≤Vx ≤ 10ER isα≈ 0.54(6). The blue squares in c are
the decay rate of a single exponentially decaying function C1(0)e−γ0t fitted to the data. All
error bars are one standard deviation confidence intervals estimated from the fit.

We now analyze in more details the behavior of the single-particle coherences C1 and C2

shown in Fig. 4. The theory presented in Section 4 explains the origin of the asymptotic power-
law tail (shown as dashed line in Fig. 4). However, the same theory only predicts the asymptotic
behavior and cannot describe the transient behavior at short times γspt ≲ 1, where the initial
coherence is quickly suppressed before the power-law regime emerges [21]. Experimentally,
we are able to explore a relatively narrow time window 0 ≤ γspt ≲ 5 due to the parasistic loss
processes mentionned above. As a result, modelling this transient behavior is important to
extract a reliable value for the power-law exponent.

The solid curve in Fig. 4 shows a fit to the experimentally measured C1(t ) using the function

C1(t ) =C1(0)exp
(−γ0t

)+ A
1−exp

(−γ0t
)(

γspt
)α . (8)

Eq. (8) should be viewed as a heuristic function describing a smooth crossover from an initially
exponential decay to a long-time algebraic decay with exponentα. For simplicity, we have chosen
to use the same exponential function to describe the initial decay and the build up of power-law
behavior. We use the initial decay rate γ0, the asymptotic amplitude A and the decay exponent α
as free fitting parameters.

1A contribution from nearby photoassociation resonances is also possible.
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The results of the fit are presented in Fig. 5. The main result concerns the exponent α of
the power law, plotted in Fig. 5a. The limitations on detection sensitivity and observation times
restrict the range of lattice depths where a power-law tail can be reliably extracted to intermediate
values, roughly 5ER ≤Vx ≤ 10ER. For clarity of presentation, we have marked with open symbols
in Fig. 5 measurements outside of this “interval of reliability”. For lattice depths below ∼ 5ER,
the observed decay is essentially described by the exponential part, although a slower tail at long
times seems to develop in all cases (even without a lattice). For such low lattice depths, the fitted
initial decay rate γ0 (circles in Fig. 5c) is almost identical to the decay rate of a single exponentially
decaying curve fitted to the data (blue squares). For lattice depths above ∼ 12ER, the lattice
dynamics becomes slower than the spontaneous emission time, ħ/J ≥ γ−1

sp . As a result, when
the power law tail eventually appears, its amplitude is close or below the noise floor (see Fig. 5b)
and extracting reliably the exponent becomes difficult. This behavior is reflected by increased
uncertainties on the fitted power law exponent outside the interval 5ER ≤ Vx ≤ 10ER. Inside the
“interval of reliability”, we find an average value α≈ 0.54(6) consistent with α= 0.5.

Another observation in Fig. 4 concerns the next-nearest-neighbor correlator C2. We find
that C2 is well described by C 2

1 for t ≫ γ−1
0 , where C1, given in Eq. (8), is fitted to the nearest

neighbor coherence without additional adjustment parameter. This behavior is consistent with
an exponential decay of the correlator Cs ∼ e−s for s ̸= 0. In the next Section 4, we analyze
a minimal model that explains the two effects that we observe experimentally, namely the
emergence of a power law behavior C1 ∝ 1/t 1/2 and the relation C2 ≈C 2

1 .

4. The dissipative Bose–Hubbard model

For the sake of simplicity in the following discussion, we restrict ourselves to a quantum gas in
the fundamental band ν0, ignoring the possibility of interband transfer. Extending the theory
given below to take multiple bands into account is straightforward in principle, but leads to a
substantial increase of the complexity. Ref. [29] establishes the minimal model describing the
dynamics of a gas of bosonic atoms in an optical lattice illuminated by near-resonant light. This
model can be described by a Lindblad master equation of the form

d

d t
ρ̂ = 1

iħ
[
Ĥ , ρ̂

]+K
[
ρ̂
]

. (9)

Here Ĥ denotes the Bose–Hubbard (BH) Hamiltonian,

Ĥ =−J
∑
〈i , j〉

â†
i â j + U

2

∑
i

n̂i (n̂i −1) , (10)

with J and U the nearest-neighbor tunnelling and interaction energies. The superoperator K

(hereafter called “dissipator”) reads

K
[
ρ̂
]= γsp

∑
i

n̂i ρ̂n̂i − 1

2

{
n̂2

i , ρ̂
}

. (11)

We refer to the model defined by Eq. (9), Ĥ and K as “dissipative Bose–Hubbard model” in the
following. In Appendix A, we discuss N−particle corrections, either collective radiative effects
where the spontaneous emission rate of n atoms differs from nγsp (illustrated in Fig. 2b), or
long-range interactions between the induced electric dipoles carried by each atom mediated by
multiple photon scattering (illustrated in Fig. 2c) [29]. We conclude that collective effects are
negligible for the experimental parameters used in this work.

The dissipative BH model has been analyzed by Poletti et al. [21, 22]. After an initial stage
for γspt ≤ 1, where spatial coherences eventually present in the initial state are exponentially
damped, they discovered an asymptotic regime where relaxation slows down dramatically. The
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theory of [22] is summarized in Appendix C. The key result is a classical master equation for the
on-site number distribution pn , i.e. the probability to find n bosons at any given site,

d pn

dτ
= ∑
σ=±1

Wn+σ
[{

pn
}](

pn+σ−pn
)

, (12)

with τ= t/T ∗ a dimensionless time. The dimensionless transition rates are given by Wn+1[{pn}] =∑
m gε,n(m,n + 1)pm−1, Wn−1[{pn}] = ∑

m gε,n(m + 1,n)pm+1, with the function gε,n(m,n) =
mn/[(m −n + 1)2 + (nε)2]. The dynamics is governed by the dimensionless dissipation param-
eter

ε= ħγsp

U n
, (13)

and by an emergent time scale T ∗ such that

1

T ∗ = 2zγsp

(
J

U n

)2

. (14)

Here z = 2 is the number of nearest-neigbors in one dimension and n̄ the filling factor (mean
number of atoms per lattice site).
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Figure 6. Numerical solution of the master equation (12) for the on-site distribution pn .
a: bare distribution as a function of occupation number n. b: rescaled distribution

p̃(u) = pn × n̄τ
1
4 as a function fo the scaling variable u = (n − n̄)/(n̄τ

1
4 ). The dashed line

shows the scaling distribution f∞ and the solid line a normalized Gaussian function. We
used the parameters U /J = 20, ε= 0.1 and n̄ = 3.

A numerical solution of the master equation (12) is shown in Fig. 6a. The initial state is a
Fock state with n = 3. The master equation conserves the norm

∑
n pn = 1 and the average

population
∑

n npn = n. The distribution function broadens with time as expected, but in a
very peculiar way. Fig. 6b illustrates that the distribution function obeys approximately a scaling
dynamics. The distribution functions at widely different times overlap when plotted versus the
scaling variable [22],

u (n/n̄,τ) = n/n̄ −1

τ
1
4

. (15)

The scaling property implies that the standard deviation of n increases with time roughly as a
power law ∝ τ1/4, much more slowly than for a standard diffusive process ∝ τ1/2.

To gain further insight on the origin of this scaling behavior, we follow again Poletti et al. [22]
and consider the limiting case of very large filling n ≫ 1. In that limit, the discrete variable
n and distribution pn can be replaced by their continuous counterparts, x = n/n ∈ [0,∞[ and
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p(x,τ) = pn(τ)/δx, with δx = 1/n. The classical master equation (12) maps to a diffusion
equation [22],

∂p (x,τ)

∂τ
≈ ∂

∂x

(
D(x)

∂p (x,τ)

∂x

)
. (16)

with a diffusion coefficient D(x) = 1/[ε2 + (x −1)2].
The diffusion equation admits two limiting cases of interest, a dissipation-dominated regime

ħγsp ≫ U (i.e. ε≫ 1), with a diffusion coefficient D(x) ≈ 1/ε2, and an interaction-dominated
regime U ≫ ħγsp (i.e. ε ≪ 1), with a diffusion coefficient D(x) ≈ (x − 1)−2. In both cases, the
diffusion coefficient behaves as a power law D(x) ∼ x−η with η = 0 (ε≫ 1) or 2 (ε≪ 1). For the
initial condition2 p(x,0) = δ(x), the diffusion equation (16) with a power law diffusion coefficient
admits a self-similar solution [22]

p(x,τ) = τ−β f∞ [u (x,τ)] , (17)

with scaling exponent β= 1/(η+2).
In the dissipation-dominated regime ε ≫ 1, the scaling solution f∞ is a Gaussian function

corresponding to a scaling exponent β = 1/2. This corresponds to standard diffusive behavior
with ∆x ∝ p

t/ε. The diffusion coefficient in physical units Dε ∼ 1/(T ∗ε2) ∼ J 2/(ħ2γsp) ≪ J/ħ
describes a diffusive dynamics much slower than the ballistic dynamics of atoms tunnelling in
the lattice. Such a slowed down, dissipative dynamics can be interpreted as resulting from the
inhibition of coherent tunnelling by the quantum Zeno effect [36].

The interaction-dominated regime ε ≪ 1 is characterized by a different scaling function
f∞(u) = e−16u4

/Γ(1/4) (Γ is the Euler gamma function) and exponent β = 1/4. Numerical sim-
ulations as in Fig. 5 show that even for finite n̄ ≥ 1, the distribution function obeys approximately
the scaling relation p(x,τ) ≈ τ−β fapprox[u(x,τ)] with exponent β≈ 0.25. This approximate scaling
behavior for finite n̄ explains the sub-diffusive dynamics observed in the numerical calculation.
However, we find empirically that the approximate scaling function for finite n̄ differs from f∞.
Numerically, we find that it is closer to a normalized Gaussian function fapprox(u) = e−u2/2/

p
2π

(see Fig. 6b).

5. Single-particle correlation function

To connect the theory and the experimental results, we now turn to the calculation of the single-
particle correlators. We find in Appendix D.1 that the nearest-neighbor correlator depends on the
populations as

C1(t ) ≃ J

U n̄

+∞∑
m,n=0

m(n +1)(n −m +1)

(n −m +1)2 + (εn)2

[
pm pn −pm−1pn+1

]
. (18)

We have also computed the next-nearest-neighbors correlator C2(t ) in terms of the distribution
function pn using the same method as for C1. We do not reproduce here the rather lengthy
expression [see Eq. (47) in Appendix D.1].

When the distribution p assumes a scaling form p(n,τ) ≈ τ−β f [u], the correlators C1,2 obey
simple laws (see Appendix D.2),

C1(t ) ≃ a1√
2zγspt

, (19)

C2(t ) ≃ a2

2zγspt
= a2

a2
1

C 2
1 (t ). (20)

2For an arbitrary initial condition p0(x), the time evolution can be obtained from p(x,τ) = ∫
d x0p0(x0)G(x − x0,τ)

owing to the linearity in p(x) of the diffusion equation.
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The numerical coefficients a1, a2 depend on the particular form of the distribution function f .
For the approximate but experimentally relevant Gaussian scaling distribution, we find a1 = a2 =
1 and

C2(t ) ≃
n̄∼1

C 2
1 (t ). (21)

Thus, the scaling approach fully explains the experimental observations of Section 3.
As for the distribution function, the numerical evaluations of C1/2 shown in Fig. 7 confirm

the relevance of the scaling solution even for relatively small filling factors. Fig. 7a shows that
the asymptotic laws in Eqs. (19,20) describe well the algebraic tails of the correlators for n̄ = 3.
Fig. 7b concentrates on C1, varying the filling factor in the interval n̄ ∈ [0.1,3.5]. When n̄ ≳ 1,
the correlator C1 approaches the scaling law (19) from γspt ≳ 1 up to a filling-dependent time
Tsc. Thus, one can define a “scaling window” t ∈ [γ−1

sp ,Tsc] where the correlator is well described
by the scaling theory. Outside this window, the distribution has broadened sufficiently to “feel
the n = 0 boundary”, the distribution deviates from the scaling form and the algebraic behavior
disappears.

To conclude this analysis, we briefly discuss how the overall picture of scaling dynamics is
modified in presence of losses, as in the experimental system. We restrict ourselves to the
“adiabatic regime” (approximately realized in the experiments), where the loss rate is much
slower than the spontaneous emission rate. The scaling solution is still relevant, but with a
slowly decaying n̄(t ) due to losses. Fig. 7b then allows us to understand qualitatively that losses
shorten the scaling window. For very small loss rates, the density barely changes in the entire
scaling window, and the scaling picture of the evolution of coherence is therefore not significantly
modified. As the loss rate is increased, the system follows as time goes the set of curves shown
in Fig. 7b, moving to the right due to spontaneous emission but also downwards towards lower
filling factors because of losses. Eventually, the system exits the scaling regime not because of
the initial finite duration of the scaling window, but because n̄(t ) has dropped to a value ∼ 1
where the scaling behavior disappears. Numerical simulations [20] support the claim that our
experiments are performed in this intermediate, adiabatic regime, where losses are slow enough
to use an adiabatic description, but fast enough to impact the evolution of coherence.
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Figure 7. a: Nearest-and next-nearest-neighbor correlators C1 (blue) and C2 (red) evalu-
ated for U /J = 20 and ϵ = 0.1 with a Fock state with n̄ = 3 as initial state. The numerical
calculations (solid lines) are compared to the analytic scaling forms in Eqs. (19,20) [dotted
lines]. The dashed line shows the exponential decay curve expected for independent atoms.
b: Calculation of C1 for several filling factors n̄ ∈ [0.1,3.5] and the same parameters as in a.
The dashed line shows the asymptote predicted in the scaling limit n̄ →+∞, ϵ→ 0.
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6. Conclusion

In this article, we have given a detailed experimental and theoretical account of the loss of spatial
coherence in one-dimensional bosonic quantum gases illuminated by near-resonant light. We
analyze the momentum distribution to extract nearest- and next-nearest-neighbors correlators
of the bosonic field. We find experimentally that the n-n correlator decays as a power law ∝ 1/

p
t ,

and also that the n-n correlator controls the n-n-n correlator according to C2 ≈C 2
1 at long times.

Our findings are in contrast to the simple model where the atomic ensemble is treated as mutually
independent scatterers, and where the decay would be exponential with a time scale given by
the inverse of the spontaneous emission rate. The power law decay at long times is correctly
predicted by the theory of [21], which agrees quantitatively with our measurements in the sense
that it predicts an exponent α = 1/2 and the same relation C2 ≈ C 2

1 between n-n and n-n-n
correlators as observed experimentally. The long-term algebraic decay is an emergent dissipative
many-body phenomenon, where both the dissipation and strong interactions play a crucial role.
This dynamics is independent of the details of the particular initial state, which are erased during
the early part of the decay before the power law behavior is established. Experimentally, we
observe that the time scale governing this early decay is much shorter than γ−1

sp . An accelerated
early dynamics is qualitatively consistent with the mean-field numerical simulations of [29], and
intuitively expected in an interacting system. A recent publication [37] suggests that the initial
decay should be controlled by a “non-Hermitian susceptibility” that characterizes the response of
the initial system to dissipation. In analogy with its equilibrium counterpart, the non-Hermitian
susceptibility could potentially be useful as a novel probe of many-body properties, for instance
of the momentum distribution. We leave a deeper investigation of this question for future work.

Appendix A. Theory of spontaneous emission from a Bose–Hubbard quantum gas

In this Appendix, we discuss the quantum-optical theoretical framework that allows one to
describe the behavior of an ultracold gas of interacting atoms driven by near-resonant light.
This framework (sometimes called “generalized optical Bloch equations”) generalizes the well-
known optical Bloch equations [30] to account for the quantized motion of atoms (here, in a
periodic lattice potential). Such a generalization has been studied in depth in the context of laser
cooling [38–40]. The generic equations of motion take the form of a master equation for the
atomic density operator {ρ̂α,β}{α,β=e,g }, where each component ρ̂α,β is an operator with respect
to the motional degrees of freedom. Here our treatment also takes light-induced many-body
effects into account following Refs. [29, 41–44].

In the regime of weak laser excitation, saturation effects can be neglected and the internal
degrees of freedom can be eliminated adiabatically [30]. This approch leads to an effective
Lindblad master equation (9) describing the dynamics of the motional degrees of freedom in
the electronic ground state g . The Hamitonian is Ĥ = Ĥ 0 + V̂ dd, with Ĥ 0 the bare many-body
Hamiltonian in the absence of the excitation laser, including interactions and the optical lattice
potential, and with

V̂ dd =ħγsp

∫
d 3r1d 3r2 GL(r12)e−ikL·r12

(
Ψ̂(r1)Ψ̂(r2)

)†
Ψ̂(r1)Ψ̂(r2) (22)

the interaction mediated by light scattering between the induced electric dipoles carried by each
atom. We note Ψ̂(rα) the field operator annihilating an atom in the ground state at position
rα and r12 = r1 − r2 the relative distance. The many-body dissipator in the Lindblad master
equation (9) takes the form

Km−b
[
ρ̂
]=γsp

∫
d 3r1d 3r2 FL(r12)e−ikL·r12

(
n̂(r1)ρ̂n̂(r2)− 1

2

{
n̂(r1)n̂(r2), ρ̂

})
,
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with n̂(r ) = Ψ̂†(r )Ψ̂(r ) the particle density operator. The function KL = FL + iGL = εL · ¯̄K · ε∗L is
determined by the laser polarization εL and by the so-called dyadic Green function Km,m′ (r12),
the propagator of a photon from r1 to r2 with polarization changing from axis m to m′ [41, 42].
The two functions FL and GL are shown in Fig. 8a,b for our particular experimental situation with
λlat/λ0 ≈ 759/556 ≈ 1.37 and εL = ex .
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Figure 8. Real part (a) and imaginary part (b) of KL(s) = FL(s)+ iGL(s) = εL · ¯̄K (s) ·ε∗L . The
plots are drawn with our experimental parameters, λlat/λ0 ≈ 759/556 ≈ 1.37 and εL = ex

and for two orthogonal directions s along ex and ez . c: On site Hubbard interaction energy.
The calculation includes the contribution of van der Waals interaction and of dipole-dipole
interactions. The solid (respectively, dashed) curve corresponds to U > 0 (resp., U < 0). The
yellow dot marks the experiments presented in the main text.

We expand the master equation in the Wannier basis. For simplicity and to avoid notational
overload, we assume that the Wannier functions w(r − ri ) are tightly localized and use a tight-
binding approximation. For one-body terms in the Hamiltonian, we only retain the dominant
contributions involving on-site energies and nearest-neighbor tunnelling. The most generic form
for two-body terms involves four sites labeled i , j ,k, l . We only keep the dominant terms with
i = j and k = l . The bare many-body Hamiltonian Ĥ 0 then reduces to the well-known Bose–
Hubbard Hamiltonian,

Ĥ BH =−J0
∑
〈i , j〉

â†
i â j + U0

2

∑
i

n̂i (n̂i −1), (23)

with J0,U0 the tunnelling and interaction energies for atoms in the fundamental band and with
n̂i = â†

i âi the on-site particle number operator. The d-d interactions and dissipator take the form

V̂ dd ≃∑
i

U 0
ddn̂i (n̂i −1)+

∑
i ̸= j

U
ri j

dd n̂i n̂ j , (24)

Km−b
[
ρ̂
]≈∑

i j
Λri j

(
n̂i ρ̂n̂ j − 1

2

{
n̂i n̂ j , ρ̂

})
, (25)

with matrix elements

U
ri j

dd =ħγsp

∫
d 3r1d 3r2 GL

(
r12 + ri j

) |w(r1)|2 |w(r2)|2 , (26)

Λri j = γsp

∫
d 3r1d 3r2 FL

(
r12 + ri j

) |w(r1)|2 |w(r2)|2 . (27)
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For ri j ̸= 0, the functions vary slowly on the scale of the Wannier functions, and the d-d
interaction energy can be approximated as

U
ri j ̸=0
dd ≃ħγspGL

(
ri j

)
. (28)

Similarly, transition rates for any ri j are approximately given by

Λri j ≃ γspFL
(
ri j

)
. (29)

In our experimental situation, the ratio λlat/λ0 is such that the function F is small in all
directions when ri j ̸= 0. As a result, one can simplify the dissipative term and consider a “zero-
range model” with

Λri j ≃ γspδi j . (30)

Off-site terms due to d-d interactions are similarly small and typically negligible even in compar-
ison with the tunnelling energy.

The on-site d-d interaction parameter U 0
dd must be treated differently. For this term, the

approximation leading to Eq. (28) for off-site terms is invalid, due to the 1/r 3 divergence of
d-d interactions at short distances [45]. In three dimensions, this divergence is regulated by
angular integration in three dimensions [45]. Fig. 8c shows a numerical evaluation of the on-
site interaction matrix element U =U0 +U 0

dd. For the parameters used in this work, the d-d term
is a small correction to the total interaction energy and can be safely neglected.

For higher dissipation rates comparable to or greater than ER/ħ, the dipole-dipole interaction
energy can be substantial. In our experimental configuration, each site of the optical lattice
resembles a pancake-shaped trap (the confinement is always stronger in the vertical direction),
and the atomic electric dipoles are primarily along (ex + e y )/

p
2. In this configuration, dipole-

dipole interactions are attractive. As a result, the on-site interaction energy vanishes when the
d-d interaction energy exactly cancels the background value, and becomes negative above. This
feature could be used in future experiments to manipulate interactions among 174Yb atoms, or
similar atoms lacking accessible Feshbach resonances.

Appendix B. Decay of coherence for non-interacting atoms

With the same approximations as in Appendix A, the dissipator describing the effect of sponta-
neous emission on the motional state of a single atom in the fundamental band of an optical
lattice reads

D
[
ρ̂
]= γsp

∑
i , j
Λxi j

(
n̂i ρ̂n̂ j − 1

2

{
n̂i n̂ j , ρ̂

})
, (31)

whereΛxi j is defined in Eq. (27) and where xi j = x j −x j . The dissipator leads to an exact equation
of motion for the spatially averaged coherence Cs ,

dCs

d t
=−γsp

(
1−Λs

)
Cs . (32)

Therefore, Cs decays exponentially with a rate constant γsp(1−Λs ) varying from zero when s = 0
to ≈ γsp when s is much larger than the light wavelength λ0. If we take a “zero range” limit where
λ0 is much shorter than the lattice spacing, the rate constant becomes γsp(1−δs,0). This leads to
Eq. (7) in the main text.
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Appendix C. Analysis of the dissipative Bose–Hubbard model

In this Section, we give the details of the theoretical analysis of the dissipative Bose–Hubbard
model (DBHM) proposed by Poletti et al. [21, 22]. We summarize their methods and results for
the sake of completeness. We consider a lattice of Ns sites in one dimension (for simplicity) and
introduce a vector of occupation numbers n = (n1, · · · , . . . ,nNs )T to identify a particular Fock state
configuration. Using Eqs. (9,10,11), one finds that the components ρn

m = 〈n|ρ̂|m〉 of the density
matrix in the Fock basis obey a set of coupled equations,

d

d t
ρn′′′

n =
(
∆E(n′′′,n)

iħ − γsp

2

∣∣n −n′∣∣2
)
ρn′

n + i J

ħ
∑
m

[〈
n′′′|T̂ |m〉

ρm
n −〈

m
∣∣T̂ ∣∣n

〉
ρn′′′

m

]
. (33)

The two terms inside the parenthesis in the right hand side (rhs) of Eq. (33) come respectively
from the interaction Hamiltonian and the dissipator, both local in the Fock basis. The interaction
term describes the precession of the phase of the off-diagonal elements ρn′′′

n at the Bohr frequency
∆E(n′′′,n) = U

2

∑
i (n′

i (n′
i −1)−ni (ni −1)). The dissipative term is proportional to the distance in

Fock space between the two configurations defined as |n −n′| =
√∑

i (ni −n′
i )2. The form of the

dissipator implies that a superposition of two Fock state decays rapidly to a statistical mixture,
and that the decay rate increases quadratically with the distance. Finally, the last two terms in
the rhs of Eq. (33) describe the build-up by coherent tunnelling of coherences of the form ρ

n+ei , j
n ,

where the vector ei , j has components (ei , j )k = δi k −δ j k and where i , j are nearest-neighbors.
Taking m = n in the general formula (33), we obtain the evolution of the Fock state populations

πn ≡ ρn
n ,

dπn

d t
=− J

iħ
∑

i ,σ=±1

√
ni (ni+σ+1)

(
ρ

n+ei+σ,i
n −ρn

n+ei+σ,i

)
. (34)

The local term vanishes identically, and the populations evolve only by coupling to the “nearest-
neighbor coherences” ρ

n+ei±1,i
n , i.e. coherences between two Fock states differing only by a

particle-hole pair on neighboring sites.
We consider next the evolution of the coherences of the form ρ

n+ei+s,i
n . We will refer to such a

coherence ρm
n as a coherence of order s = |i − j | if m −n = ei , j for some pair i , j . We have

d

d t
ρ

n+ei+s,i
n ≈−λi+s,iρ

n+ei+s,i
n − J

iħSi+s,i (t ). (35)

Here we defined the characteristic complex frequencyλi+s,i = γsp+iU
ħ (ni+s−ni +1) and a “source

term”

Si+s,i =
〈

n +ei+s,i
∣∣[T̂ , ρ̂

]∣∣n
〉

. (36)

Eq. (35) can be integrated formally,

ρ
n+ei+s,i
n (t ) = ρn+ei+s,i

n (0)e−λi+s,i t − J

iħ
∫ t

0
Si+s,i (t −τ)e−λi+s,i τdτ. (37)

The source term Si+s,i involves contributions from all coherences of order s − 1 and s + 1 (its
explicit expression is rather massive and uninspiring). The dynamical equations thus generate
a chain where populations are coupled to s = 1 coherences, themselves coupled to populations
and to s = 2 coherences, etc. This structure, often encountered in the density matrix formulation
of quantum mechanics, is generally untractable exactly. To handle the problem, we need an
approximation scheme that allows us to truncate the chain at a low order.

To that end, Poletti et al. [21] remarked that in a system where single-particle correlations
are short-ranged, the density matrix is essentially diagonal in the Fock basis, with small off-
diagonal coherences that become smaller the further away they are from the diagonal. In other
words, populations are much larger than coherences with s = 1, themselves much larger than
coherences with s = 2, etc. As a result, we may approximate the “source” term Si+s,i that drives the
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evolution of the coherence of order s by keeping only the dominant contribution of coherences of
order s−1, i.e. ρm

n with (n,m) = (n,n+ei+s−1,i ), (n,n+ei+s,i+1), (n+ei+1,i ,n+ei+s,i ), (n+ei+1,i ,n+
ei+s,i ). If we further assume that the populations evolve much more slowly than γ−1

sp , we can pull
the source term out of the integral in Eq. (37) and obtain

ρ
n+ei+s,i
n (t ) ≃ ρn+ei+s,i

n (0)e−λi+s,i t + JSi+s,i (t )

U (ni+s −ni +1)− iħγsp

(
1−e−λi+s,i t

)
. (38)

For γspt ≫ 1, the slow component(
ρ

n+ei+s,i
n

)
slow

≃ J
p

ni (ni+s +1)Si+s,i (t )

U (ni+s −ni +1)− iħγsp
. (39)

acts as a slave variable depending on the slowly-evolving populations.
Applying this logic to the s = 1 coherence, one finds that the source term depends only on the

difference of the populations πn and πn+ei+1,i ,

Si+1,i ≈
√

ni (ni+1 +1)
(
πn −πn+ei+1,i

)
. (40)

The slow component reads(
ρ

n+ei+1,i
n

)
slow

≃ J
p

ni (ni+1 +1)
(
πn −πn+ei+1,i

)
U (ni+1 −ni +1)− iħγsp

. (41)

Substituting the slow component in Eq. (34) yields a coarse-grained (on a time scale ≫ γ−1
sp )

evolution equation for the Fock state populations πn (see Eq. (3S) in the Supplementary Material
of [22]).

An additional simplification comes from assuming a factorization ansatz for the dominant
part of the density matrix,

ρ̂ =∏
i
ρ̂i . (42)

We introduce the on-site number distribution pn by pni = 〈ni |ρ̂i |ni 〉 the diagonal elements,
with

∑∞
n=0 pn = 1. The equation governing the evolution of the populations then reduces to the

classical master equation (12).

Appendix D. Single-particle correlation function

D.1. Asymptotic behavior of Cs for γspt ≫ 1 and s = 1,2

We compute the normalized single-particle correlator,

Cs (t ) = 1

N

∑
i

〈
â†

i+s âi

〉
= 1

N

∑
i

∑
n

√
ni (ni+s +1)ρn

n+ei+s−ei
. (43)

Using Eq. (39) and C−s =C∗
s , we obtain the coarse-grained approximation of the correlator in the

asymptotic regime,

Cs (t ) ≃ J

2U n̄

1

NS

∑
i

∑
n

√
ni (ni+s +1)Re

S∗
i+s,i (t )

ni+s −ni +1+ iεn̄
. (44)

In accordance with the approximations made to obtain Eq. (39), the source term Si+s,i in Eq. (44)
only contains terms involving coherences of order s −1.

Using Eq. (40), the nearest-neighbors correlator with s = 1 is given by

C1(t ) ≃ J

U n̄

1

NS

∑
i

∑
n

ni (ni+s +1)(ni+s −ni +1)

(ni+s −ni +1)2 + (εn̄)2

(
πn −πn+ei+1,i

)
. (45)
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We now use the factorized approximation (42), which implies πn =∏
i pni . We get

C1(t ) ≃ 1

NS

∑
i

∏
k ̸=i ,i+1

( +∞∑
nk=0

pnk

)

× J

U n̄

+∞∑
ni ,ni+1=0

ni (ni+s +1)(ni+s −ni +1)

(ni+s −ni +1)2 + (εn̄)2

(
pni pni+1 −pni−1pni+1+1

)
. (46)

Since
∑

nk
pnk = 1 and since all the terms in the sum over sites i are identical, the first line is

finally equal to one. The sum over the sites i relabeling the indices as ni = n and ni+1 = m, we
find Eq. (18).

For the nearest-neighbors correlator with s = 2, we also start from Eqs. (44, 39) and evaluate
the source term in the numerator keeping only the terms proportional to s = 1 coherences.
We obtain a rather bulky and not particularly illuminating expression of C2(τ) in terms of the
populations ρm

m with m = n,n +ei+1 −ei ,n +ei+2 −ei+1, · · · . We also use the factorization ansatz
Eq. (42) and follow the same general method as for C1. We omit the details of the rather lengthy
algebra, and only quote the final expression for C2,

C2(τ) =
(

J

U

)2 ∑
m,n,q

mn(q +1)(
q −m +1+ iεn̄

)(
q −n +1+ iεn̄

) (
pn pq −pn−1pq+1

)(
pm −pm−1

)
+ m(n +1)(q +1)(

q −m +1+ iεn̄
)

(n −m +1+ iεn̄) =
(
pm pn −pm−1pn+1

)(
pq pq+1

)
. (47)

D.2. Calculation of C1,C2 in the scaling limit

Analytical results can be obtained by taking the continuum n̄ →+∞ and scaling ε→ 0 limits. We
first consider the continuum limit, where the discrete variables (e.g. m) and distributions (pm)
are promoted to continuous ones, m → x = δm, pm → δp (x), with δ = 1/n̄ → 0. Note that the
normalization of the distribution is preserved,

∑
m pm = 1 → ∫

d xp (x) = 1 with d x ≡ δ.
After some algebra, we obtain from Eqs. (18,47)

C1(τ) = J

U n̄

∫
R2+

d xd x ′ xx ′(x ′−x)

(x ′−x)2 +ε2

[
∂x p (x)p (x ′)−p (x)∂x′p (x ′)

]
, (48)

C2(τ) =
(

J

U n̄

)2 ∫
d xd x ′d x ′′ xx ′x ′′

(x ′′−x)2 +ε2[
(x ′′−x)(x ′−x)−ε2

(x ′−x)2 +ε2

(
p(x)∂x′p (x ′)−∂x p (x)p(x ′)

)
∂z p(z)

+
(
x ′′−x

)(
x ′′−x ′)−ε2

(x ′′−x ′)2 +ε2
∂x p (x)

(
∂x′p (x ′)p(x ′′)−p (x ′)∂x′′p (x ′′)

)]
. (49)

We omitted the argument τ in the distribution function to lighten notations.
We take next the scaling limit ε→ 0. The distribution function becomes p(x,τ) = τ−β f (u), with

u = (x −1)/τ1/4 the scaling variable and f (u) the scaling function. We change to scaled variables
(x, x ′, x ′′) → (u = (x−1)/τ1/4, v = (x ′−1)/τ1/4, w = (x ′′−1)/τ1/4) and consider short rescaled times
τ≪ 1. In this regime, we may substitute x ≈ x ′ ≈ x ′′ ≈ 1 for the variables appearing alone in the
numerator. This approximation yields the scaling forms

C1(t ) −→
ε→0

a1
J

U n̄τ2β
= a1√

2zγspt
, (50)

C2(t ) −→
ε→0

a2

(
J

U n̄

)2

= a2

2zγspt
, (51)
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with numerical factors

a1 =
∫
R2

dud v
f ′(u) f (v)− f (u) f ′(v)

v −u
f (u) f (v), (52)

a2 = 1

16

∫
R3

dud vd w
1

w −u

[
w3

(
u3 − v3

)
u − v

− u3
(
w3 − v3

)
w − v

]
f (u) f (v) f (w). (53)

The true scaling function f∞ corresponds to a∞
1 = 2Γ( 3

4 )/Γ( 1
4 ) ≈ 0.676 · · · and a∞

2 = 3(a∞
1 )2/4 ≈

0.343, with Γ the Euler gamma function. Using the Gaussian scaling distribution fapprox relevant
for finite n̄ (see Section 4), we find instead a1 = a2 ≈ 1.
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