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Abstract. Motivated by the experimental observation [1] that driving a non-interacting Bose gas in a 3D
box with weak disorder leads to power-law energy growth, E ∝ tη with η = 0.46(2), and compressed-
exponential momentum distributions that show dynamic scaling, we perform systematic numerical and
analytical studies of this system. Schrödinger-equation simulations reveal a crossover from η≈ 0.5 to η≈ 0.4
with increasing disorder strength, hinting at the existence of two different dynamical regimes. We present
a semi-classical model that captures the simulation results and allows an understanding of the dynamics
in terms of an energy-space random walk, from which a crossover from E ∝ t 1/2 to E ∝ t 2/5 scaling is
analytically obtained. The two limits correspond to the random walk being limited by the rate of the elastic
disorder-induced scattering or the rate at which the drive can change the system’s energy. Our results provide
the theoretical foundation for further experiments.

Résumé. Motivés par l’observation expérimentale [1] que le forçage d’un gaz de bosons sans interaction dans
une boîte 3D en présence d’un faible désordre conduit à une croissance de l’énergie en loi de puissance,
E ∝ tη avec η = 0,46(2), et à des distributions en impulsion exponentielles comprimées révélant une loi
d’échelle dynamique sous-jacente, nous effectuons des études numériques et analytiques systématiques de
ce système. Des simulations de l’équation de Schrödinger montrent un passage de η≈ 0,5 à η≈ 0,4 lorsqu’on
augmente la force du désordre, ce qui laisse supposer l’existence de deux régimes dynamiques différents.
Nous présentons un modèle semi-classique qui rend compte des résultats des simulations et permet de
comprendre la dynamique en termes de marche aléatoire dans l’espace des énergies, grâce à quoi un passage
de la loi d’échelle E ∝ t 1/2 à la loi E ∝ t 2/5 est obtenu analytiquement. Les deux lois limites correspondent
au fait que la marche aléatoire est limitée par le taux de la diffusion élastique induite par le désordre ou au
contraire par le taux avec lequel le forçage peut modifier l’énergie du système. Nos résultats fournissent une
base théorique aux futures études expérimentales.
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1. Introduction

The emergence of simple and universal behaviours insensitive to system parameters and past
trajectories is one of the most fascinating aspects of the physics of complex systems. Although
the theory of universal behaviours was traditionally developed for equilibrium critical phenom-
ena [2], recent experimental and theoretical studies have extended these ideas to a wide range of
far-from-equilibrium systems [3–11].

In particular, a broad range of universal dynamics has been observed in quenched or driven
ultracold atomic gases (see, e.g., [12–25]). One fruitful avenue for such studies involves driven
box-trapped Bose gases [15], where the interplay of the drive and the inter-particle interactions
leads to turbulent cascades with power-law momentum distributions [15] sustained by a con-
stant momentum-space energy flux [26]. While interactions are usually central to the universal
dynamics, in a recent experiment [1], we demonstrate that in absence of interactions, an interplay
between drive and disorder can also lead to universal behaviour. This system, with a power-law
energy growth (E ∝ tη with η = 0.46(2)) and self-similar momentum distributions well charac-
terised by a compressed exponential, shows qualitatively different behaviour from its interacting
counterpart.

In Ref. [1], these observations are reproduced with Schrödinger-equation simulations and
qualitatively explained by a semi-classical model. In this paper, we formalize our theoretical
results. First, we extend the Schrödinger-equation simulations to a wider parameter range
and observe a crossover from η ≈ 0.5 to η ≈ 0.4 with increasing disorder strength (Section 2),
which hints at the existence of two distinct dynamical regimes. We then present the semi-
classical model (Section 3) that captures the simulation results and allows an understanding of
the dynamics in terms of an energy-space random walk. This in turn leads to a simple energy-
space drift-diffusion equation (Section 4) that reproduces the crossover between the two regimes,
and analytic predictions of E ∝ t 1/2 and E ∝ t 2/5 that emerge in the limits where the random walk
is limited by the rate of disorder-induced scattering or the rate at which the drive can change
the system’s energy. Our results offer a new example of a dynamical system undergoing energy-
space drift-diffusion [27–31] and provide the theoretical foundation for further experimental
studies.

2. Schrödinger-equation simulations

The non-interacting dynamics in Ref. [1] can be described by the Schrödinger equation

iħ ∂

∂t
ψ=

[
− ħ2

2m
∇2 +Vbox +VD − Uz

L
sin(ωt )

]
ψ, (1)

where m is the particle mass, Vbox is the clean trapping potential, VD is the disorder, L is the box
length along the driving-force direction z, and U /L is the amplitude of the driving force. Here,
we model the trap as a cubic box (Figure 1(a)) of infinite depth,1 and the disorder VD is chosen

1In Ref. [1], a cylindrical box trap was used, but the essential physics should be the same as long as the dynamics of
the driven direction remain separable for VD = 0.
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Figure 1. Schrödinger-equation simulations of a driven non-interacting Bose gas in a box
with disorder. (a) Illustration of the simulation geometry. For the box of size L, the natural
units of momentum, energy, and time are, respectively, ħk0 = ħπ/L, E0 = ħ2/(mL2), and
t0 = ħ/E0. (b) Snapshots of the projected momentum distribution ñk (kx ,kz ) for drive
parameters U = 1500E0 and ω = 75E0/ħ, and disorder strength σ = 〈V 2

D〉1/2 = 750E0

(the simulation grid is of size 127× 127× 127, which leads to a UV cutoff of 127k0). For
comparison to Ref. [1], using the 39K atom mass m = 6.5× 10−26 kg and L = 50 µm, the
simulation parameters here correspond to U /kB = 7.4 nK, ω/(2π) = 9.5 Hz, and σ/kB =
3.7 nK. The scale bar corresponds to 20k0. (c) Evolution of the (spherically averaged)
momentum distribution nk for parameters as in (b) and t/t0 ∈ [0.85,55.8]. (d) Energy-
growth dynamics for U = 1500E0, ω= 75E0/ħ, and various σ. The solid lines show power-
law fits used to extract the energy-time scaling exponent η. (e) For each σ value in (d),
momentum distributions at different t (such as shown in (c) for σ = 750E0) collapse
onto a single curve when dynamically scaled according to Equation (2), with arbitrarily
chosen tref = 10 t0. The solid lines show fits according to Equation (3), used to extract the
compressed-exponential exponents κ. (f ) Extracted η and κ as a function of σ for fixed
U = 1500E0 and ω= 75E0/ħ.

to be an uncorrelated (zero-mean) Gaussian random potential. The choice of an uncorrelated
potential is sensible because the correlation length of VD in an optical trap, which is on the
order of the laser wavelength λ, is small compared to the atomic de-Broglie wavelength in the
experiment. The strength of the random potential VD is characterized by its r.m.s. value σ.

In Figure 1(b), we illustrate the evolution of the momentum distribution, nk (k) = |ψ(k)|2, for
one choice of parameters {U , ω, σ}. As in the experiment [1], the drive rapidly increases the
momentum spread along z, and cross-dimensional coupling due to VD causes energy to leak
into the transverse directions. At long times, nk (k) is nearly isotropic and gradually broadens
(Figure 1(c)).

In agreement with the observations in Ref. [1], the energy growth is well described by a power-
law, E(t ) ∝ tη, as shown in Figure 1(d). The (nearly-)isotropic momentum distributions nk (k, t )
at different t are self-similar, with

nk (k, t ) =
(

t

tref

)α
nk

((
t

tref

)β
k, tref

)
, (2)
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where tref is an arbitrary reference time, β = −η/2, and α = 3β corresponding to particle-
conserving transport.2 This self-similarity is illustrated in Figure 1(e) for different parameters
{U ,ω,σ}; for each simulation, the distributions at different t collapse onto a single curve when
rescaled according to Equation (2). The collapsed curves are well described by compressed
exponentials (black lines in Figure 1(e)) of the form

nk (k) ∝ exp[−(k/ks)κ], (3)

with exponent κ and momentum scale ks ∝
p

E .
In Ref. [1], only a relatively narrow range of η and κ was observed. Here, by extending the

range of disorder strengths σ, we observe a crossover from η≈ 0.5 and κ≈ 4 to η≈ 0.4 and κ≈ 5
(Figure 1(f)). This hints at the existence of two distinct dynamical regimes, corresponding to weak
and strong disorder. Analytically understanding the emergence of these two regimes is the goal
of the subsequent sections.

3. Semi-classical model

The key ideas used to develop our model for the interplay of the drive and disorder are illustrated
in Figure 2. First, we note that in the absence of disorder, strongly driving the gas along a
separable axis of the trap leads to 1D chaotic dynamics with bounded energy growth [1, 32,
33]. This is illustrated by the (disorder-free) 1D Schrödinger-equation simulations shown in
Figure 2(a), where we initialize the system in different sine-basis states |ψ(t = 0)〉 = |kz,0〉 of
the box (red dots). For small kz,0, the strong drive mixes the kz states only up to a cutoff kc

(horizontal dashed line), while for large kz,0, the drive only weakly perturbs the system. However,
the presence of disorder significantly modifies the picture in 3D. While the drive can only increase
kz up to about kc, the disorder can scatter particles to equal-energy states with lower kz , where
the drive can again increase their energy (see Figure 2(b)). This cooperative process is the key to
the unbounded energy growth.

To model this process, we propose the following semi-classical kinetic equation

∂nk (k, t )

∂t
= s |k|

[
−nk (k, t )+ 2

π|k|2
∫
|k|=|k′|

nk (k′, t ) d2k′
]

+Θ(kc −kz ) f

[
−nk (k, t )+ 1

kc

∫ kc

0
nk (kx ,ky ,k ′

z , t ) dk ′
z

]
, (4)

whereΘ(k) is the Heaviside function, and s and f , respectively, characterize the rate of the elastic
disorder-induced scattering and the rate at which the drive can change the system’s energy.

The first line of Equation (4) describes the elastic disorder-induced scattering. A perturbative
treatment using Fermi’s golden rule gives the scattering rate from a state |k〉 as

Γs(k) = 2π

ħ
∑
k′
|〈k|VD|k′〉|2δ[E(k)−E(k′)]. (5)

For uncorrelated VD, after ensemble-averaging |〈k|VD|k′〉|2 is k-independent, so

Γs(k) ≃ 〈Γs(k)〉 = s |k|, (6)

where s ∝ σ2 (see Appendix A.1), and the factor of k arises from the 3D density of states. This
leads to the −s |k|nk (k, t ) term in Equation (4) for the population out-flux from state |k〉. The
integral term in the first line of Equation (4) describes the in-flux to state |k〉; since the out-flux
from each state contributes an equal in-flux to every other state on the same k-shell, the total
in-flux to state |k〉 due to scattering is given by the out-flux averaged over the shell.

2In Ref. [1], line-of-sight integrated distributions were analysed experimentally, in which caseα= 2β, withβ still equal
to −η/2.
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Figure 2. Key ideas underpinning our semi-classical model. (a) Numerical simulations
of the (disorder-free) 1D Schrödinger equation for U = 1500E0 and ω = 75E0/ħ, starting
from different initial sine-basis states (red dots). The density plots show the 1D momentum
distribution n1D

k (kz , t ). The horizontal dashed line indicates the cutoff momentum kc (see
text and Appendix A.2). (b) The unbounded energy growth process in our model. The dots
indicate the sine-basis eigenstates |k〉 of the disorder-free box. At t = 0, the particles start
in the ground state (red dot), and their kz may be increased by the drive (blue arrows) up
to kc. The disorder-induced scattering (orange arrows) moves the particles along equal-
energy shells and provides opportunities for the drive to further pump energy into the
system.

Figure 3. Stochastic-simulation results for our semi-classical model. (a) Energy growth
over time for different skc/ f . We normalize the energy E by Ec = ħ2k2

c /(2m), and the
time t by 1/ f . The colored lines are power-law fits used to extract η. The gray dashed
lines show analytic predictions for skc/ f = 102 and 10−3 using Equations (18) and (23),
respectively. (b) Momentum distributions for the simulations shown in (a), dynamically
scaled according to Equation (2), using the extracted η and an arbitrary reference time
tref = 5 × 103/ f . The solid lines show compressed-exponential fits used to extract κ.
(c) Extracted η and κ as a function skc/ f , showing a similar crossover between the two
dynamical regimes as seen in Figure 1(f).

The second line of Equation (4) heuristically models the driving process. While the chaotic 1D
dynamics is not amenable to an exact treatment, the simulation results in Figure 2(a) inspire a
simple model, where the drive randomly mixes kz states up to kc at a phenomenological rate f ,
without affecting states with kz > kc. While we also treat kc phenomenologically, its value can be
estimated from the time-averaged energy of the driven 1D system (see Appendix A.2).

Before analytically studying this model, we validate it through stochastic numerical simula-
tions of Equation (4) for different values of the dimensionless parameter skc/ f , which sets the
ratio of the elastic scattering rate to the rate at which the drive can change the system’s energy.
As shown in Figure 3, our model, despite its simplicity, captures all the key features seen in the
Schrödinger-simulation results in Figure 1.
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Figure 4. Qualitative ideas underpinning the energy-space random-walk picture. (a) Sta-
tistical states of the particle in energy space: ZS(E) (orange) labels the state of a particle
randomly distributed on a spherical shell with definite k and E , while ZB(Ē) (blue) labels
the state of a particle randomly distributed in a cylindrical band with definite k⊥, random
kz ∈ [0,kc], and mean energy Ē . (b) Effects of a driving event after scattering events. When
the driving event happens, the particle originally in ZS(E) (orange line) may be driven into
a range of ZB(Ē) states (blue shaded area) with a range (∆k⊥) of k⊥, and hence a range of
Ē . (c) Effects of a scattering event after driving events. When the scattering event happens,
the particle originally in state ZB(Ē) (vertical blue line) may be scattered into ZS(E) states
(orange shaded area) with a range (∆k) of k, and hence a range of E .

4. Analytic analysis

4.1. Qualitative ideas

To solve our model analytically, we switch from momentum space, where Equation (4) describes a
highly non-local jump process, to energy space, where the process is quasi-local. In energy-space,
the trajectory of a particle can be described by a sequence of events of the form

.. .
S−→ ZS(E1)

S−→ ZS(E1)
S−→ ZS(E1)

D−→ ZB(Ē2)
D−→ ZB(Ē2)

S−→ ZS(E3)
S−→ ZS(E3)

D−→ ZB(Ē4) −→ . . . ,

where S and D refer to individual scattering and driving events, and ZS(E) and ZB(Ē) label the
state of the particle, where the subscripts stand for shell and band, respectively (see Figure 4 (a)).
After a scattering event S, the particle is randomly distributed on a k-shell of energy E , so its
state is labeled ZS(E). Similarly, after a driving event D , the particle is randomly distributed on a
cylindrical band with radius k⊥ = (k2

x +k2
y )1/2 and unknown kz ∈ [0,kc], so only its mean energy

Ē = ħ2(k2
⊥ + k2

c /3)/(2m) is known; we label such a state ZB(Ē). The fact that the particles can
spend a significant time in ZB(Ē) means that the system is not necessarily in a micro-canonical
ensemble, which is typically assumed in other related works [27–31].

Note that successive S or D events do not change the state ZS or ZB, but the state changes when
S and D alternate, as illustrated in Figure 4(b) and (c). When the particle is in ZS(E), a D event
can drive it into ZB states with a range of possible k⊥ (see ∆k⊥ in Figure 4(b)), and hence a range
of Ē distributed around the original energy E . Similarly, when the particle is in ZB(Ē), an S event
can scatter it into ZS states with a range of possible k (see ∆k in Figure 4(c)), and hence a range
of E distributed around the original energy Ē . In both cases, the energy change can be of either
sign and has an absolute value on the order of Ec = ħ2k2

c /(2m). This suggests an energy-space
random walk (with a reflecting boundary at E = 0, since E is constrained to be non-negative):

d

dt
〈E 2〉∝ r (E)E 2

c , (7)
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where r (E) is the (generally energy-dependent) rate at which S and D alternate. Due to the
reflecting boundary, the mean energy 〈E〉 is non-zero and scales as 〈E 2〉1/2.

In the strong-scattering regime, sk ≫ f , the rate r (E) is limited by the occurrence of D events,
so r (E) ∝ (kc/k) f , where the kc/k factor arises because the particle takes part in the random
walk only when kz < kc. Since k =p

2mE/ħ∝ 〈E 2〉1/4, Equation (7) implies

〈E〉∝ Ec ( f t )2/5, (8)

in agreement with both the Schrödinger-equation simulations and the stochastic simulations of
our model.

On the other hand, in the strong-driving regime, f ≫ sk, the rate r (E) is limited by the
occurrence of S events and given by r (E) ∝ (kc/k) sk = skc. As the suppression from kc/k is
cancelled by the density of states factor k in the scattering rate, Equation (7) implies

〈E〉∝ Ec (skct )1/2, (9)

which is also consistent with both the Schrödinger-equation simulations and the stochastic
simulations of our model.

4.2. Energy-space drift-diffusion equation

We now formalize the ideas from Equation (7) and derive an energy-space drift-diffusion equa-
tion valid for all values of skc/ f . Since the particle changes state only when S and D alternate, we
can more succinctly describe its trajectory as

. . .
S−→ ZS(E1)

D−→ ZB(Ē2)
S−→ ZS(E3)

D−→ . . . ,

where S and D, respectively, stand for D . . .DS and S . . .SD . Heuristically, the energy change may
be described by

dE

dt
= vE +ζ(t ), (10)

where the “velocity” vE and “random force” ζ(t ), respectively, lead to energy drift and diffusion.
Denoting 〈TS,D〉 as the mean waiting time for S and D to happen, and µS,D and σ2

S,D the energy
drift and the energy-variance production in each step, we have

vE = µS +µD

〈TS +TD〉 ,

〈ζ(t )ζ(t ′)〉 = σ2
S +σ2

D

〈TS +TD〉δ(t − t ′).
(11)

As derived in Appendix B, we have

〈TS +TD〉 = k

kc

(
1

sk
+ 1

f

)
,

µS = 2 f E 2
c

45(sk + f )E
,

µD = 0,

σ2
S = σ2

D = 4E 2
c

45
.

(12)

The expressions for 〈TS +TD〉, µD , and σS,D agree with the qualitative discussion in Section 4.1.
The non-zero µS arises because a particle in ZB(Ē) is more likely to be scattered out of the band
at higher kz , due to the k dependence of the scattering rate.

Combining Equations (10)–(12), we can write a drift-diffusion equation [34] for the energy
distribution P (E , t ):

∂P

∂t
= 4s f kcE 2

c

45

∂

∂E

[
1

sk + f

(
∂P

∂E
− P

2E

)]
. (13)



8 Yansheng Zhang et al.

with s, f , kc defined in Section 3, Ec = ħ2k2
c /(2m), and k = p

2mE/ħ. The formal derivation
of Equation (13), using the theory of continuous-time random walks [35], is given in Appen-
dix B. This equation satisfies the non-equilibrium fluctuation–dissipation relation proposed in
Ref. [29], as discussed in Appendix C.

4.3. Limiting regimes

For sk ≫ f , Equation (13) reduces to

∂P

∂t
= Dd

∂

∂E

[
1p
E

(
∂P

∂E
− P

2E

)]
, (14)

with diffusion constant

Dd = 4

45
f E 5/2

c . (15)

Following Ref. [36], Equation (14) can be shown to support self-similar solutions of the form

P (E , t ) ∝ E 1/2

(Ddt )3/5
exp

[
− 4E 5/2

25Ddt

]
. (16)

The corresponding momentum distribution,

nk (k, t ) ∝ 1

(Ddt )3/5
exp

[
− 4ħ5k5

25(2m)5/2Ddt

]
, (17)

is a compressed exponential (see Equation (3)) with κ= 5, and the energy growth is a power law

〈E(t )〉 =
(

5

2

)4/5 1

Γ(3/5)
(Ddt )2/5 = 1.398(Ddt )2/5, (18)

with η= 2/5 in agreement with Equation (8).
For sk ≪ f , Equation (13) reduces to

∂P

∂t
= Ds

∂

∂E

[
∂P

∂E
− P

2E

]
, (19)

with diffusion constant

Ds = 4
45 skcE 2

c . (20)

The self-similar solution supported by Equation (19) is

P (E , t ) ∝ E 1/2

(Dst )3/4
exp

[
− E 2

4Dst

]
. (21)

The corresponding momentum distribution,

nk (k, t ) ∝ 1

(Dst )3/4
exp

[
− ħ4k4

16m2Dst

]
, (22)

is a compressed exponential with κ= 4, and the energy growth is a power law

〈E(t )〉 = Γ (1/4)

2Γ (3/4)
(Dst )1/2 = 1.479(Dst )1/2, (23)

with η= 1/2 in agreement with Equation (9).
To quantitatively verify Equations (18) and (23), in Figure 3(a), we compare them to our

stochastic-simulation results for skc/ f = 102 and 10−3 and observe good agreement.
In the low-disorder limit (sk ≪ f ), we can also directly compare our analytically predicted

energy-diffusion coefficient Ds (Equation (20)) with the Schrödinger-equation simulations, be-
cause Ds depends only on s and kc, both of which can be obtained from the input parameters
{U , ω, σ} (such a comparison is not possible for Dd because we cannot calculate f ). For each
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Figure 5. Comparison between analytic predictions and Schrödinger-equation simula-
tions in the low-disorder regime (sk ≪ f ). (a) Energy-space diffusion coefficient Ds (in
units of D0 = E 3

0 /ħ) extracted from simulations with ω = 75E0/ħ, plotted versus s (in
units of s0 = E0L/ħ) analytically calculated from σ. The solid lines show the linear fits to
Ds/D0 = Kss/s0, used to extract the proportionality constant Ks. (b) Ks versus calculated kc

(see Appendix A.2) for different U (color bar) and ω (diamonds: 50E0/ħ, circles: 75E0/ħ,
and squares: 100E0/ħ). The solid line shows the analytic prediction Ks = (πkc/k0)5/45 (cal-
culated from Equation (20)) with no free parameters.

simulation in the low-disorder limit,3 we fit the E(t ) curve (such as shown in Figure 1(d)) to Equa-
tion (23) and extract Ds. In Figure 5(a), for fixed ω and various U , we plot the extracted Ds ver-
sus s calculated from σ and observe the linear behaviour predicted in Equation (20). Then, in
Figure 5(b), for several ω and a range of U , we show that the fitted constants of proportionality
between Ds and s (the slopes of lines in Figure 5(a)) agree with Equation (20).

4.4. General solution

After analysing the two limits, we now examine the general solution to Equation (13). We can
remove the parameters {s,kc, f } from the equation by introducing the dimensionless quantities

k ′ = k

ksys
, E ′ = E

Esys
, t ′ = t

tsys
, (24)

with

ksys = f

s
, Esys =

ħ2k2
sys

2m
, tsys = f 4

s5k5
c

. (25)

This transforms Equation (13) to

∂P ′

∂t ′
= 4

45

∂

∂E ′

[
1

k ′+1

(
∂P ′

∂E ′ −
P ′

2E ′

)]
, (26)

with P ′(E ′, t ′) = EsysP (E , t ).
This shows that, under appropriate scaling, solutions to Equation (13) follow a universal

E–t trajectory. We illustrate this in Figure 6. In principle, at very long times, one should always
observe E ∝ t 2/5 and κ = 5. In terms of system parameters, we classify the system as low-
disorder if skc ≪ f and high-disorder if skc ≫ f , but the dynamics is actually controlled by the
ratio sk/ f , which increases as the energy grows. Thus, a low-disorder system at long times is
mathematically identical to a high-disorder one at short times. However, note that the crossover
between the two regimes occurs over an enormous timescale, so any realistic experiment will
sample a small region of the universal trajectory, with the energy growth well fitted by a power

3We define the low-disorder limit here to correspond to η> 0.48 (as obtained from an unconstrained fit).
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Figure 6. Results of extended stochastic simulations of the semi-classical model with
different skc/ f . We show the evolution of the energy E (left) and of the compressed-
exponential exponent κ for the instantaneous shape of nk (right). We perform simulations
with different skc/ f , indicated by the color, which merge into common curves when t and
E are scaled using units given in Equation (25). In both plots, the dashed lines show the
analytic predictions in the two limiting regimes, and the solid black lines show numerical
predictions using Equation (13). The small deviations of stochastic simulations from the
solid lines (not visible in the E plot) arise due to initial transients in each simulation.

law and an essentially constant κ. Also note that for a strongly disordered system, tsys is very
short (skc/ f ≫ 1, so tsys ≪ 1/ f ), so by the time any significant energy is pumped into the system,
t/tsys is already large.

5. Conclusion and outlook

In conclusion, we have developed a semi-classical model for a driven non-interacting box-
trapped Bose gas in the presence of uncorrelated disorder. The dynamics at the heart of this
model can be understood in terms of an energy-space random walk, and the resulting analytic
predictions reproduce the key features seen both in the experiment of Ref. [1] and in Schrödinger-
equation simulations.

Our work points to several future directions. First, it would be interesting to experimentally
explore the dynamics beyond the weak-disorder regime. This could also lead to further theo-
retical questions, as the scattering in our model is treated within first-order perturbation theory,
which does not hold for arbitrarily strong disorder; for example, the onset of Anderson localiza-
tion [37] may lead to additional dynamical regimes. Second, an analogous study in 2D may reveal
even richer physics. Taking our model at face value, we would expect η = 2/5 across all param-
eter regimes in 2D, because there is no density-of-states enhancement factor k in the scattering
rate, so we always have r ∝ 1/k and E ∝ t 2/5. However, this may be inaccurate due to the more
prominent role of fluctuations in 2D. For example, our treatment of the scattering rate relies on
ensemble-averaging. While this is a good approximation in 3D, its validity in 2D is not obvious,
as far fewer states are involved in the scattering process. This poses interesting questions both
experimentally and theoretically.
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(https://doi.org/10.17863/CAM.105357).

https://doi.org/10.17863/CAM.105357


Yansheng Zhang et al. 11

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization
that could benefit from this article, and have declared no affiliations other than their research
organizations.

Appendix A. Calculation of the semi-classical model parameters

A.1. The scattering rate

In this section, we present the calculation for Γs(k) in Equation (5) and derive an explicit
expression for s in Equation (6) for a cubic box of volume L3 in the presence of a disorder
potential VD(r). The unperturbed basis states of the box are |k〉 states of the form

|k〉 =
√

8

L3 Σ(k,r) =
√

8

L3 sin(kx x)sin(ky y)sin(kz z). (A27)

The ensemble-averaged matrix element
〈〈|〈k|VD(r)|k′〉|2〉〉 is explicitly〈〈|〈k|VD(r)|k′〉|2〉〉 =

〈〈∣∣∣∣ 8

L3

∫
Σ(k,r)VD(r)Σ(k′,r)d3r

∣∣∣∣2〉〉
= 64

L6

∫
Σ(k,r1)Σ(k′,r1)Σ(k,r2)Σ(k′,r2)〈〈VD(r1)VD(r2)〉〉 d3r1d3r2

= 64

L6

∫
Σ(k,r1)Σ(k′,r1)Σ(k,r2)Σ(k′,r2)C (r1 − r2)d3r1d3r2, (A28)

where

C (r1 − r2) = 〈〈VD(r1)VD(r2)〉〉 . (A29)

By substituting the Fourier representation

C (r1 − r2) = 1

(2π)3

∫
C̃ (q)eiq·(r1−r2) d3q (A30)

into Equation (A28), we get〈〈|〈k|VD(r)|k′〉|2〉〉 = 64

(2π)3L6

∫
Σ(k,r1)Σ(k′,r1)Σ(k,r2)Σ(k′,r2)C̃ (q)eiq·(r1−r2) d3r1d3r2d3q

= 64

(2π)3L6

∫ ∣∣∣∣∫ Σ(k,r)Σ(k′,r)eiq·r d3r

∣∣∣∣2

C̃ (q)d3q. (A31)

The {x, y, z} integrals are separable, with 1D integrals of the form

I1D =
∣∣∣∣∫ L

0
sin(kx)sin(k ′x)eiqx dx

∣∣∣∣2

= L2

16

∣∣∣∣ sinc

(
(k +k ′+q)L

2

)
ei(k+k ′+q)L/2 + sinc

(
(k +k ′−q)L

2

)
ei(k+k ′−q)L/2

− sinc

(
(k −k ′+q)L

2

)
ei(k−k ′+q)L/2 − sinc

(
(k −k ′−q)L

2

)
ei(k−k ′−q)L/2

∣∣∣∣2

. (A32)

For large momenta, the sinc functions in the above equation have almost no overlap, so we can
drop the interference terms:

I1D ≃ L2

16

{
sinc2

(
(k +k ′+q)L

2

)
+ sinc2

(
(k +k ′−q)L

2

)
+ sinc2

(
(k −k ′+q)L

2

)
+ sinc2

(
(k −k ′−q)L

2

)}
, (A33)
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and using limL→∞ sinc2(qL/2) = (2π/L)δ(q), we get

I1D ≃ Lπ

8
[δ(k +k ′+q)+δ(k +k ′−q)+δ(k −k ′+q)+δ(k −k ′−q)]. (A34)

Substituting this expression back into Equation (A31), we get〈〈|〈k|VD(r)|k′〉|2〉〉= 1

64L3

∑
k′′

C̃ (k′′), (A35)

with k′′ = (λx kx +λ′
x k ′

x ,λy ky +λ′
y k ′

y ,λz kz +λ′
z k ′

z ) where λi ,λ′
i can take on values ±1. Intuitively,

{k′′} is the set of 64 k-vectors that connect the plane-wave components in |k〉 to those in |k′〉.
In numerical simulations, we discretize real space into (N − 1)3 grid points, which requires

some changes to the above equations. First, the decomposition of the C (r1 − r2) is written in
terms of a Fourier series rather than a Fourier transform,

C (r1 − r2) = 1

L3

∑
q

C̃ (q)eiq·(r1−r2), (A36)

where the summation is performed over the first Brillouin zone of the grid. Second, the delta
functions δ(k′′ − q) become

∑
Gδk′′−q,G where {G} is the set of reciprocal lattice vectors. This

change introduces unphysical Umklapp scattering processes. However, for the uncorrelated
disorder potential VD(r) with zero mean and variance σ2, the correlation function is C (r) =
δr,0σ

2, so C̃ (k′′) is constant and the Umklapp scattering processes do not affect the physics.
Equation (A35) then gives 〈〈|〈k|VD(r)|k′〉|2〉〉= σ2

N 3 . (A37)

Note that the factor of 1/64 in Equation (A35) disappears because all 64 k′′ contribute to the sum.
Finally, substituting Equation (A37) into Equation (5), we get

Γs(k) = 2π

ħ
∑
k′
|〈k|VD(r)|k′〉|2δ[E(k)−E(k′)] = mL3

πN 3ħ3σ
2k, (A38)

where the sum has been approximated by an integral and we can read off the scattering parame-
ter s in Equation (6) as

s = mL3

πN 3ħ3σ
2. (A39)

A.2. The cutoffmomentum kc

Here we detail our method to determine kc. In our semi-classical model, we have assumed that
the drive randomly mixes states with kz < kc at a rate f . Therefore, in 1D, a state initialized with
kz,0 < kc will reach a momentum distribution n1D

k that is (on average) uniform below kc and zero
above it. For kz,0 < kc, the mean energy of the driven system is thus

〈E〉 = 1

kc

∫ kc

0

ħ2

2m
k2

z dkz = ħ2

6m
k2

c = 1

3
Ec. (A40)

Therefore, kc may be estimated by computing 〈E〉 from 1D Schrödinger-equation simulations
for a driven particle in a disorder-free box. In Figure 7(a), we show 〈E〉 for U = 1500E0 and
ω= 75E0/ħ, starting from different kz,0. For low kz,0, 〈E〉 is indeed essentially independent of kz,0

(see also Figure 2(a)). To estimate kc and its error, we use the mean and the standard deviation of
〈E〉 for kz,0 < 10k0. Figure 7(b) shows the values of kc calculated for the values of U andω used in
Figure 5(b).
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Figure 7. Extraction of kc from 1D Schrödinger-equation simulations without disorder.
(a) Time-averaged energy, 〈E〉, for the system initialized in different states kz,0; see also
Figure 2(a). We normalise kz,0 by k0 = π/L and 〈E〉 by E0 = ħ2/(mL2). The solid line shows
the prediction of our model: For kz,0 < kc, the particles evenly probe momentum states
up to kc, so 〈E〉 = Ec/3 independently of kz,0 (blue dashed line), while for kz,0 > kc, we
have 〈E〉 = ħ2k2

z,0/(2m) (red dotted line), so at kz,0 = kc the energy jumps by a factor of 3.
(b) Extracted values of kc for all the simulation parameters used in Figure 5(b). The solid
lines are guides to the eye.

Appendix B. Derivation of the energy drift-diffusion equation

As described in Section 4.2, the trajectory of a particle whose distribution is described by Equa-
tion (4) can be summarized as

. . .
S−→ ZS(E1)

D−→ ZB(Ē2)
S−→ ZS(E3)

D−→ ZB(Ē4)
S−→ ZS(E5)

D−→ . . . , (B41)

where S and D refer to D . . .DS and S . . .SD , respectively. In this section, we first calculate
the distributions of the waiting times TS,D , the energy drifts µS,D (E), and the energy variances
σ2

S,D (E), before assembling the drift-diffusion equation (Equation (13)). Note that in this section
we set ħ= m = L = 1.

B.1. Calculations for D = S . . .SD

B.1.1. Calculation of TD

The waiting time TD is a continuous random variable. We begin by calculating its mean, 〈TD〉,
before calculating its full distribution. Suppose that at t = 0, the particle has just been scattered
into ZS(E) with unknown position on the k-shell. Then, with probability (1−kc/k), it sits in the
upper part of the shell (“upper shell”), where kz > kc. In this case, the next event has to be S, and
the waiting time for it is Exp[sk] (an exponential distribution with time constant 1/(sk)). After the
S event, the clock is reset because the particle is still in the same statistical state ZS. Therefore,
the additional waiting time before D happens is again TD . Hence,

TD|u = Exp[sk]+TD , (B42)

where TD|u is the conditional waiting time till D if the particle is initially in the upper shell. On
the other hand, if the particle is initially in the lower shell, where kz < kc, the next event could be
either S or D , and the waiting time for this event is Exp[sk + f ]. With probability f /(sk + f ), the
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event is D , and the particle is driven out of the shell. Otherwise, the event is S, the clock is reset,
and the additional waiting time before D happens is again TD . This can be written as

TD|ℓ,D = Exp[sk + f ],

TD|ℓ,S = Exp[sk + f ]+TD ,
(B43)

where TD|ℓ,S and TD|ℓ,D are the conditional waiting times till D if the particle is initially in the
lower shell and the first event after t = 0 is S or D , respectively. We can thus write an equation
for 〈TD〉:

〈TD〉 = k −kc

k

(
1

sk
+〈TD〉

)
+ kc

k

{
f

sk + f

1

sk + f
+ sk

sk + f

(
1

sk + f
+〈TD〉

)}
. (B44)

The solution for 〈TD〉 is

〈TD〉 = k

kc

1

f
+ k −kc

kc

1

sk
. (B45)

For k ≫ kc, to leading order in kc,

〈TD〉 ≃ k

kc

1

f
+ 1

skc
. (B46)

Generalizing the analysis above, we can also write an equation for the distribution function
φD (t ) for TD :

φD (t ) = k −kc

k

∫ t

0
g (t − t ′; sk)φD (t ′)dt ′

+ kc

k

(
f

sk + f
g (t ; sk + f )+ sk

sk + f

∫ t

0
g (t − t ′; sk + f )φD (t ′)dt ′

)
, (B47)

where g (t ;λ) denotes the exponential distribution function with time constant 1/λ. By taking the
Laplace transform

φ̃D (u) =L [φD ] =
∫ ∞

0
φD (t )e−ut dt , (B48)

the integral equation (B47) can be reduced to an algebraic one,

φ̃D (u) = k −kc

k

sk

u + sk
φ̃D (u)+ kc

k

(
f

sk + f

sk + f

u + sk + f
+ sk

sk + f

sk + f

u + sk + f
φ̃D (u)

)
. (B49)

Its solution is

φ̃D (u) = kc

k

f u + s f k

u2 + (sk + f )u + f skc
. (B50)

The exact expression for φD (t ), obtained from the inverse Laplace transform of φ̃D (u), is compli-
cated, but it can be well approximated by an exponential distribution. This can be seen from the
above equation, where for small u (corresponding to large t and large k), we have (using 〈TD〉 in
Equation (B46))

φ̃D (u) ≃ kc

k

s f k

(sk + f )u + f skc
≃ 1/〈TD〉

u +1/〈TD〉 =L

[
1

〈TD〉e−t/〈TD 〉
]

. (B51)

B.1.2. Calculation of µD (E) and σ2
D (E)

When ZS(E)
D−→ ZB(Ē) happens, the new energy Ē is a random variable with distribution

G(Ē |E). Irrespective of TD , it is equally likely for the particle to be driven from any point on the
lower shell. This means that

G(Ē |E)dĒ ∝ 2πk2 sinθdθ∝ k k⊥√
k2 −k2

⊥
dk⊥, (B52)
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with k⊥ ∈ [
√

k2 −k2
c ,k] because the particle is in the lower shell. After some manipulation, we get

G(Ē |E) ∝ 1√
E − Ē +k2

c /6
, (B53)

with Ē −E ∈ [−k2
c /3,k2

c /6]. From this distribution, we calculate

µD (E) = 〈Ē −E〉 = 0,

σ2
D (E) = 〈(Ē −E)2〉 = 1

45 k4
c .

(B54)

B.2. Calculations for S = D . . .DS

B.2.1. Calculation of TS

The waiting time TS is calculated along the same lines as TD above, but we need to also average
over the initial kz in the band (with fixed k⊥) since the scattering rate sk depends on kz via

k =
√

k2
⊥+k2

z . This gives

〈TS〉 = 1

kc

∫ kc

0

[
1

sk + f
+ f

sk + f
〈TS〉

]
dkz , (B55)

where the first term in the integral comes from the mean waiting time till the first event (either D
or S) after t = 0, and the second term comes from the additional time needed if the first event is
D . Solving the equation, we get

〈TS〉 =
[∫ kc

0

sk

sk + f
dkz

]−1 ∫ kc

0

1

sk + f
dkz ≃ 1√

2Ē s
+O(k4

c ). (B56)

Note that the integrals in the above equation cannot be evaluated analytically, but by treating
kc and kz as small parameters, we can perform Taylor expansions and obtain the simple result
above.

It is also possible to obtain the distribution of TS using the Laplace transform,

φ̃S (u) =
[∫ kc

0

u + sk

u + sk + f
dkz

]−1 ∫ kc

0

sk

u + sk + f
dkz ≃ 1/〈TS〉

u +1/〈TS〉
+O(k4

c ). (B57)

Therefore, the distribution for TS is also exponential to leading order.

B.2.2. Calculation of µS (Ē) and σ2
S (Ē)

When ZB(Ē)
S−→ ZS(E) happens, the new energy E is a random variable. The exact distribution

for E is tricky to calculate because it is correlated with TS . In particular, if the particle is scattered
when it has a higher kz (and hence a higher k), E will be larger, and TS is likely to have been
shorter due to the k-dependence of the scattering rate. However, for an approximate calculation,
we ignore this correlation and calculate the distribution of E irrespective of TS . The error of this
approximation is a higher-order term.

First, let us calculate the probability p(kz |Ē) that the particle is scattered out at kz , and
hence into the shell with E = (k2

⊥+k2
z )/2. If the particle is at k ′

z at t = 0, then, with probability
sk ′/(sk ′+ f ), the first event after t = 0 is S, and we get a contribution to p(kz |Ē) only if k ′

z = kz ;
otherwise, with probability f /(sk ′+ f ), the first event after t = 0 is D , and the probability that the
particle leaves at kz in some future S event is p(kz |Ē). Averaging over k ′

z , we get

p(kz |Ē) = 1

kc

∫ kc

0

[
sk ′

sk ′+ f
δ(kz −k ′

z )+ f

sk ′+ f
p(kz |Ē)

]
dk ′

z , (B58)
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where k =
√

k2
⊥+k2

z and k ′ =
√

k2
⊥+k

′2
z . Solving the equation, we get

p(kz |Ē) =
[∫ kc

0

sk ′

sk ′+ f
dk ′

z

]−1
sk

sk + f
. (B59)

Since E = k2/2, we can calculate

µS (Ē) = 〈E − Ē〉 = f k4
c

90Ē( f +
√

2Ē s)
+O(k6

c ),

σ2
S (Ē) = 〈(E − Ē)2〉 = 1

45 k4
c +O(k6

c ).

(B60)

B.3. The drift-diffusion equation

We can now derive Equation (13) by generalizing the approach of Ref. [35]. First, we denote the
probabilities of the particle being in states ZS(E) and ZB(E) by P1(E , t ) and P2(E , t ), respectively.
We express the rate of change of P1(E , t ) and P2(E , t ) as

∂P1(E , t )

∂t
= J+1 (E , t )− J−1 (E , t )

∂P2(E , t )

∂t
= J+2 (E , t )− J−2 (E , t ),

(B61)

where J+1,2 and J−1,2 are the in- and out-fluxes, respectively. Since the state of the particle has to
alternate between ZS and ZB between steps of the energy-space random walk, we have

J+1 (E , t ) =
∫

G2(E |E ′)J−2 (E ′, t )dE ′,

J+2 (E , t ) =
∫

G1(E |E ′)J−1 (E ′, t )dE ′,
(B62)

where G1,2(E |E ′) are the energy transition probabilities for D and S, respectively. The out-fluxes
J−1,2 can be written as

J−1 (E , t ) = φ1(E , t )P1(E ,0)+
∫ t

0
φ1(E , t − t ′)J+1 (E , t ′)dt ′,

J−2 (E , t ) = φ2(E , t )P2(E ,0)+
∫ t

0
φ2(E , t − t ′)J+2 (E , t ′)dt ′,

(B63)

where φ1,2(E , t ) =φD,S (E , t ) are the waiting-time distributions. The first terms in Equation (B63)
represent the fluxes contributed by particles originally in the states 1,2 at t = 0, and the second
terms represent the fluxes contributed by particles that enter the states at t ′ and leave at t . Using
Equation (B61), we eliminate J+1,2 from Equation (B63) and get

J−1 (E , t ) = φ1(E , t )P1(E ,0)+
∫ t

0
φ1(E , t − t ′)

∂P1(E , t ′)
∂t ′

dt ′+
∫ t

0
φ1(E , t − t ′)J−1 (E , t ′)dt ′,

J−2 (E , t ) = φ2(E , t )P2(E ,0)+
∫ t

0
φ2(E , t − t ′)

∂P2(E , t ′)
∂t ′

dt ′+
∫ t

0
φ2(E , t − t ′)J−2 (E , t ′)dt ′.

(B64)

These integral equations can be solved using the Laplace transform, which gives

J̃−1 (E ,u) = uM̃1(E ,u)P̃1(E ,u),

J̃−2 (E ,u) = uM̃2(E ,u)P̃2(E ,u),
(B65)

with the memory kernels given by

M̃1,2(E ,u) = φ̃1,2(E ,u)

1− φ̃1,2(E ,u)
. (B66)
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After Laplace-transforming back, Equation (B65) gives

J−1 (E , t ) = d

dt

∫ t

0
M1(E , t − t ′)P1(E , t ′)dt ′,

J−2 (E , t ) = d

dt

∫ t

0
M2(E , t − t ′)P2(E , t ′)dt ′.

(B67)

Substituting this into Equation (B61) and using Equation (B62) to eliminate J+1,2, we get

∂P1(E , t )

∂t
=

∫ [
G2(E |E ′)

d

dt

∫ t

0
M2(E ′, t − t ′)P2(E ′, t ′)dt ′

]
dE ′− d

dt

∫ t

0
M1(E , t − t ′)P1(E , t ′)dt ′,

∂P2(E , t )

∂t
=

∫ [
G1(E |E ′)

d

dt

∫ t

0
M1(E ′, t − t ′)P1(E ′, t ′)dt ′

]
dE ′− d

dt

∫ t

0
M2(E , t − t ′)P2(E , t ′)dt ′.

(B68)

Note that G1,2(E |E ′) is local, so we can perform a Kramer–Moyal expansion [34] to convert the
above equation to a differential equation in E , and the results are

∂P1(E , t )

∂t
= d

dt

∫ t

0

{
− ∂

∂E

[
D (1)

2 (E)M2(E , t − t ′)P2(E , t ′)
]
+ 1

2

∂2

∂E 2

[
D (2)

2 (E)M2(E , t − t ′)P2(E , t ′)
]}

dt ′

+ d

dt

∫ t

0

[
M2(E , t − t ′)P2(E , t ′)−M1(E , t − t ′)P1(E , t ′)

]
dt ′,

∂P2(E , t )

∂t
= d

dt

∫ t

0

{
− ∂

∂E

[
D (1)

1 (E)M1(E , t − t ′)P1(E , t ′)
]
+ 1

2

∂2

∂E 2

[
D (2)

1 (E)M1(E , t − t ′)P1(E , t ′)
]}

dt ′

+ d

dt

∫ t

0

[
M1(E , t − t ′)P1(E , t ′)−M2(E , t − t ′)P2(E , t ′)

]
dt ′,

(B69)

where D (n)
1,2 (E) = ∫

∆E n G1,2(E +∆E |E)d∆E are the Kramer–Moyal coefficients. In the current

context, D (1)
1,2(E) correspond to µS,D (E), and D (2)

1,2(E) correspond to σ2
S,D (E). Since φ1,2(E , t ) is

approximately exponential, we also have

M1,2(E , t ) ≃ 1

τ1,2(E)
, (B70)

where τ1,2(E) are the mean waiting times 〈TS,D〉 at energy E . Putting this in, we get the following
set of Fokker–Planck equations:

∂P1(E , t )

∂t
= P2(E , t )

τ2(E)
− P1(E , t )

τ1(E)
− ∂

∂E

[
D (1)

2 (E)

τ2(E)
P2(E , t )

]
+ 1

2

∂2

∂E 2

[
D (2)

2 (E)

τ2(E)
P2(E , t )

]
,

∂P2(E , t )

∂t
= P1(E , t )

τ1(E)
− P2(E , t )

τ2(E)
− ∂

∂E

[
D (1)

1 (E)

τ1(E)
P1(E , t )

]
+ 1

2

∂2

∂E 2

[
D (2)

1 (E)

τ1(E)
P1(E , t )

]
.

(B71)

With rapid relaxation [34], we have P2(E , t )/τ2(E)−P1(E , t )/τ1(E) ≃ 0 and

P1,2(E , t ) = τ1,2(E)

τ1(E)+τ2(E)
P (E , t ), (B72)

with P (E , t ) = P1(E , t )+P2(E , t ). Substituting this into Equation (B71), we get

∂P (E , t )

∂t
=− ∂

∂E

[
D (1)

1 (E)+D (1)
2 (E)

τ1(E)+τ2(E)
P (E , t )

]
+ 1

2

∂2

∂E 2

[
D (2)

1 (E)+D (2)
2 (E)

τ1(E)+τ2(E)
P (E , t )

]
. (B73)

We finally get

∂P (E , t )

∂t
= s f k5

c

45

∂

∂E

[
∂

∂E

(
1

sk + f
P

)
− f

2(sk + f )2E
P

]
, (B74)

or, after some manipulation,

∂P (E , t )

∂t
= s f k5

c

45

∂

∂E

[
1

sk + f

(
∂P

∂E
− P

2E

)]
, (B75)
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which is Equation (13).

Appendix C. Non-equilibrium fluctuation–dissipation relation

In cases where the dynamics of a periodically driven and thermally isolated system obeys an
energy-space drift-diffusion equation of the form

∂P

∂t
=− ∂

∂E
[A(E)P ]+ 1

2

∂2

∂E 2 [B(E)P ], (C76)

Ref. [29] proposed a general relation between the system-dependent drift and diffusion coeffi-
cients (A(E) and B(E), respectively),

2A(E) =βT (E)B(E)+ ∂

∂E
B(E), (C77)

where βT (E) = ∂E lnΩ(E) is the micro-canonical inverse temperature defined via the density
of states Ω(E). This relation is the non-equilibrium version of the equilibrium fluctuation–
dissipation theorems, but its range of validity is not well established.

In our case,Ω(E) ∼p
E andβT = 1/(2E). Reading off A(E) and B(E) from Equation (B74) shows

that Equation (C77) is satisfied by our drift-diffusion equation in all regimes. This is not surpris-
ing because our drift-diffusion equation is derived from a semi-classical kinetic equation (Equa-
tion (4)) with reciprocal transition probabilities, T (k −→ k′) =T (k′ −→ k). This reciprocity implies
that a system with equal occupation in every state [a uniform nk (k)] must be a stationary state.
Correspondingly, when P (E) ∼Ω(E), the probability current J (E) = A(E)P (E)−(1/2) ∂E [B(E)P (E)]
should be zero, and this implies Equation (C77) as discussed in Ref. [29].
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