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Abstract. The simulation of quantum Hall physics with rotating quantum gases is witnessing a revival due to
recent experimental advances that enabled the observation of a Bose–Einstein condensate entirely contained
in its lowest kinetic energy state, i.e. the lowest Landau level. We theoretically describe this experimental
result, and show that it can be interpreted as a squeezing of the geometric degree of freedom of the problem,
the guiding center metric. This “geometric squeezing” offers an unprecedented experimental control over the
quantum geometry in Landau-level analogues, and at the same time opens a realistic path towards achieving
correlated quantum phases akin to quantum Hall states with neutral atoms.

Résumé. La simulation de la physique de Hall à l’aide d’un gaz quantique en rotation se renouvelle grâce à
de récentes avancées expérimentales qui ont permis l’observation d’un condensat de Bose–Einstein entière-
ment contenu dans le niveau de Landau fondamental. Nous décrivons ici ce résultat expérimental d’un point
de vue théorique, et donnons une interprétation en termes de compression du degré de liberté géométrique
du système, la métrique des centres de dérive. Cette « compression géométrique » offre un contrôle expéri-
mental sans précédent sur la géométrie quantique des systèmes analogues aux niveaux de Landau, et ouvre
une nouvelle voie vers la création de phases quantiques corrélées similaires aux états de Hall avec des atomes
ultra-froids.
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1. Introduction

Quantum fluids and quantum gases under rotation exhibit a rich variety of phenomena, from
Abrikosov vortex lattices [1–4] to quantum analogues of hydrodynamic instabilities and turbu-
lence [5–8], with strong connections to other fields of physics such as rotating nuclei [9, 10], neu-
tron stars [11, 12], and electrons in high magnetic fields [13, 14]. At the core of this rich phe-
nomenology is the interplay between two of the most fundamental properties of quantum mat-
ter: macroscopic quantum coherence – manifest through superfluid behaviors – and its coupling
to a gauge field. Here, the gauge field is not dynamical but externally imposed by the rotation due
to the identical mathematical structure of the Coriolis and Lorentz forces [15–17].

The observation of lattices of quantized vortices in Bose–Einstein condensates (BEC) [1] and
later in strongly interacting Fermi gases [4] provided a striking demonstration of superfluidity of
quantum gases. Since these first demonstrations, one of the long-standing goal for these systems
has been to increase the impact of the effective gauge field and reach the deeply degenerate
regime, where quantum fluctuations are strong enough to coherently melt the vortex lattice [18].
This occurs when all atoms live in their lowest kinetic energy manifold, which corresponds to
the lowest Landau level (LLL) in the analogy with charged particles in magnetic fields, and when
the total angular momentum of the atomic ensemble becomes comparable to the number of
atoms. In this regime, the neutral atom analogue of integer and fractional quantum Hall states of
electrons could potentially be realized [19–22].

Moving in this direction, condensates with larger angular momentum were produced at
ENS [23] and JILA [24], leading to vortex arrays containing hundreds of vortices and rotation near
the lowest Landau level. Both of these experiments observed a softening of the vortex lattice, ei-
ther through a qualitative change in appearance of the vortex lattice [23] or by direct measure-
ment of the Tkachenko mode frequency [24] that is related to the vortex lattice stiffness [25]. This
softening provided a promising precursor to the melting of the lattice induced at zero temper-
ature by quantum fluctuations, and a deterministic route towards achieving the quantum Hall
regime by reduction of the atomic density [26].

To achieve such high angular momenta, the rotation frequency in these experiments was
tuned as close as possible to the natural frequency of the underlying harmonic trapping poten-
tial [23, 24]. In fact, the physics of homogeneous electron gases is most directly realized when
rotation and trapping frequency are equal [16, 17, 27]. In this case indeed, the centrifugal force
exactly compensates the harmonic confinement and the system is effectively in “flat land” where
atoms are only subject to the effective gauge field imprinted by the Coriolis force.

The lack of confinement in this regime stood as the main hurdle impeding further progress
in the study of rapidly rotating quantum gases near the LLL regime [5, 28]. This difficulty shifted
the focus to alternative ways to imprint an effective synthetic magnetic field on quantum gases
– using dressing by laser light [29, 30], imprinting flux in optical lattices [31–33] or employing
synthetic dimensions [34–37]. While these ideas have already led to elegant realizations of
effective magnetic fields at the single-particle level [38–40], their implementations in presence of
interatomic interactions has so far been hindered by severe difficulties, such as heating in dressed
or shaken optical lattices [41] or all-to-all non-local couplings along synthetic dimensions that
have been observed to energetically disfavor quantum Hall states [42].

With the advent of single-atom-resolving microscopes for quantum gases [43–47] and the
ability to imprint arbitrary confining potentials [48–50], the original idea of employing rotation
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as the most direct analogue of the Lorentz force on charged particles is witnessing a revival.
In a new experimental platform [8, 51, 52], our group has been able to directly image vortices
in-situ, without time-of-flight expansion. Additionally, we have developed an alternative way
of spinning up a quantum gas, entirely without introducing vortices, which we term geometric
squeezing. The present article aims to provide a theoretical account of this geometric squeezing
and its consequences.

In essence, this new method harnesses the lack of confinement and the ensuing dynamical
instability when spinning the gas at the trapping frequency, which originally prevented the
observation of condensates in the LLL regime, to elongate the atomic cloud. This stretching
simultaneously decreases the overall density of the system and increases its moment of inertia,
and hence its angular momentum. As a result, condensates contained entirely in the LLL, in
the form of a single Landau gauge wavefunction, are produced. This method provides an ideal
starting point for the study of interactions within the LLL, both in the mean-field regime where
the particle number largely exceed the number of vortices [8]; but also beyond mean-field as the
number of atoms is reduced during geometric squeezing to become comparable to the number
of flux lines, paving a new route for the realization of fractional quantum Hall states with neutral
atoms [53–58].

2. Model and outline

We consider atoms of mass m in a three-dimensional harmonic potential with natural frequen-
cies [ωx = ω⊥

p
1+ε,ωy = ω⊥

p
1−ε,ωz ] rotating around the vertical axis at angular velocity Ω.

For simplicity, we assume the axial dynamics completely frozen due to a strong vertical confine-
ment ωz ≫ ω⊥. The weak in-plane anisotropy, characterized by ε, imprints the rotation of the
trap onto the atoms. We choose ω⊥, ħω⊥ and ℓ⊥ = √ħ/(mω⊥) as respective units of frequency,
energy and length. In the frame co-rotating with the trap, the single-particle dynamics of the
system is governed by the Hamiltonian

H = 1

2

[
p2

x +p2
y + (1+ε)x2 + (1−ε)y2

]
−ΩLz , (1)

with Lz = xpy − y px the axial angular momentum [1].
The last term in Eq. (1) is responsible for the centrifugal and Coriolis fictitious forces. The

latter has the same mathematical structure as the magnetic Lorentz force, which justifies the use
of rotating gases to emulate the physics of charged particles in a magnetic field [15]. This is best
seen by splitting (−ΩLz ) into two contributions, a deconfining potential −Ω2(x2 + y2)/2 and an
effective vector potential A =Ω[−y, x] equivalent to an applied magnetic field along the vertical
direction:

H = 1

2

[
(p−A)2 + (

1−Ω2 +ε)x2 + (
1−Ω2 −ε) y2], (2)

which holds up to an overall constant.
The aim of the present article is to provide a theoretical description of the dynamical proper-

ties of Eq. (1), as experimentally observed in Refs. [8, 51, 52]. For that purpose, we first review
the single-particle properties of the model, starting with its dynamical instability near Ω = 1
(Sec. 3) and observe how the latter squeezes quantum states over time (Sec. 4). This squeez-
ing can be simply understood by the unitary evolution imposed by the rotating saddle potential,
which physically implements a transformation from symmetric to Landau gauge in our system
(Sec. 4.2), and more intuitively explains the elongation of the quantum states and the reduction
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of the density that allows to reach the LLL. As a result of squeezing, overlaps between neighbor-
ing quantum states, which define the quantum geometry of the system [59], also change, as for-
mally captured by a squeezing transformation of the guiding centers (Sec. 4.3). This “geomet-
ric squeezing” provides a unique experimental control over the quantum geometry in Landau-
level analogues. We finally connect this single-particle picture to a more realistic situation where
interactions are accounted for using a hydrodynamic description of the superfluid (Sec. 5) and
full-fledged Gross–Pitaveskii numerical simulations of the condensate’s dynamics (Sec. 6).

3. Classical solution

In this section, we study the dynamical instability of the Hamiltonian Eq. (1) in more detail. We
first locate the regime of instability, which is heralded by unbounded trajectories of the classical
equations of motion (Sec. 3.1). We then interpret these unbounded solutions as a a guiding center
drift following the isopotentials imprinted by the rotating saddle (Sec. 3.2), and study the effects
of this drift for a thermal phase-space distribution of particles (Sec. 3.3).

3.1. Dynamical instability

To put Eq. (1) in normal form and find its eigenmodes, we first decouple the position and
momentum operators mixed by Lz = xpy − y px . This is achieved by the following rotations
admixing (x, py ) and (y, px )[

x ′

p ′
y

]
=

[
c s
−s c

][
x

py

]
,

[
y ′

p ′
x

]
=

[
c s
−s c

][
y

px

]
, (3)

with c = cos(θ/2) and s = sin(θ/2) and tanθ = −2Ω/ε. Eq. (3) is a canonical transformation as it
defines a new pair of conjugate variables (x ′, p ′

x ) and (y ′, p ′
y ). In terms of these new variables, the

Hamiltonian can be split as H =H++H−, where

H+ = p ′2
x

2m+
+ 1

2
k+x ′2, H− =

p ′2
y

2m−
+ 1

2
k−y ′2, (4)

corresponds to harmonic oscillators with mass and coupling constant given by

m−1
± = 1∓ (ε/2)±

√
Ω2 + (ε/2)2, (5)

k± = 1± (ε/2)±
√
Ω2 + (ε/2)2. (6)

While k+ and m+ are always positive, k− and m− respectively changes sign for Ω− =p
1−ε and

Ω+ = p
1+ε. When Ω ∈ [Ω−,Ω+], these coefficients have opposite sign and one of the system’s

eigen-frequencies

ω± =
√

k±/m± =
[

1+Ω2 ±
√
ε2 +4Ω2

]1/2
, (7)

becomes imaginary (see Fig. 1a), leading to a dynamical instability.
To illustrate this instability, let us integrate the classical equations of motion of the model. To

that aim, we first obtain the time evolution operators of the two decoupled harmonic oscillators[
x ′(t )
p ′

x (t )

]
=U+(t )

[
x ′(0)
p ′

x (0)

]
,

[
y ′(t )
p ′

y (t )

]
=U−(t )

[
y ′(0)
p ′

y (0)

]
, (8)

where standard calculations, repeated in App. A for completeness, yield

U±(t ) =
[

cosω±t sinω±t
m±ω±

− k± sinω±t
ω± cosω±t

]
. (9)
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Figure 1. a) Eigenfrequencies of the quadratic Hamiltonian Eq. (1) for ε= 0.1 as a function
of the rotation frequency Ω. The instability region [

p
1−ε,

p
1+ε] where ω− becomes

imaginary is hatched. b) Classical trajectories starting from the initial position marked as a
black dot and (px , py )|t=0 = (0,1). The color of the curve encodes the value of Ω, which is
also marked with a vertical dashed line in (a): red forΩ= 0.4, purple forΩ= 1, and pink for
Ω= 1.6.

Note that this result is valid for both real and imaginary frequencies ω±. The complete time
evolution in terms of the original variables is then inferred from the rotations given in Eq. (3).
Some classical trajectories computed with these methods are displayed in Fig. 1b, where the black
dot indicates the initial position and (px , py )|t=0 = (0,1). These trajectories clearly distinguish
the stable regime with bounded trajectories (red and pink) from the dynamically unstable region
characterized by unbounded trajectories (purple).

3.2. Guiding center drift

A clear separation of scale can be observed when the rotation frequency matches the original
trap frequency Ω = 1, where a slow drift along the first diagonal is superimposed to a much
faster rotation of the particle (Fig. 1b). At this point, the centrifugal force exactly compensates
the original confinement and the system is, in the rotating frame, equivalent to that of charged
particles in a constant magnetic field subject to a saddle potential ε(x2 − y2)/2 [60]. The fast
rotation corresponds to the cyclotron motion with period 2π/ω+, while the drift corresponds
to the guiding center motion along the isopotential lines of the saddle [61]. Besides a stronger
emphasis on the behaviors within the unstable regime, the classical solutions derived in this
section and their interpretation in terms of cyclotron and guiding center motion are not new.
They were, for instance, discussed in the context of anisotropic perturbations to the Foucault
pendulum to explain the weak ellipticity of trajectories observed in some experiments [62, 63].

3.3. Generic phase space distributions

Over lengthscales larger than the cyclotron radius, the effects of the fast and short-range cy-
clotron motion can be averaged out and the guiding center dynamics alone remains. Here, we
use the classical time evolution obtained above to isolate and study the effects of guiding center
drift on a classical – or semi-classical – phase-space distribution.

We assume that the ensemble of particles, prepared using Ω = ε = 0, can be described by a
phase-space distribution f0(r,p) = f0(E) that only depends on the local energy E = (r2 +p2)/2
with r = [x, y]T and p = [px , py ]T . Notably, this encompasses the Boltzmann, Fermi–Dirac and
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Figure 2. Evolution of the real-space density for an ensemble originally described by a
Boltzmann distribution with inverse temperature (β = 1) as the rotation and anisotropy
are switched on to Ω = 1 and ε = 0.1 for t > 0. As a guide to the eye allowing to visualize
the guiding center drift, some isopotential lines of the rotating saddle potential ε(x2 − y2)
are shown with solid lines using a gray scale, which goes from black (negative) to white
(positive) values.

Bose–Einstein distributions, allowing us to describe classical, fermionic and bosonic ensembles
at thermal equilibrium. However, our method is not limited to these cases and generically applies
to all distributions that only depend on the classical local energy E of the problem.

The rotation Ω and ellipse ε are turned on at t = 0 to non-zero values, and the phase-space
density ft (r,p) at time t > 0 can be obtained by following the classical trajectories of all particles
in the ensemble. A particle found at phase-space point (r,p) at time t must have originated from
the phase-space point (r(−t ),p(−t )) at time t = 0, so we have ft (r,p) = f0(r(−t ),p(−t )) = f0(Et ),
which only depends on the original energy Et = [r(−t )2 + p(−t )2]/2 of the particle now found
at (r,p). Because Eq. (1) is quadratic, Et also is a quadratic form in the variables (r,p) that we
formally write as

Et = 1

2

[
r p

]
Q

[
r
p

]
, Q =

[
Qr r Qr p

Qpr Qpp

]
. (10)

We provide the explicit form of Q in App. B as determined from Eqs. (3) and (9).
We are interested in the real-space density distribution

ρt (r) =
∫

d2p ft (r,p) =
∫

d2p f0(Et ), (11)

which we compute using a linear transformation of the momenta consisting of a shift p̃ =
p +Q−1

ppQpr r followed by a rotation and dilatation p̃θ = Q1/2
pp p̃, with Q1/2

pp the square root of
the symmetric matrix Qpp . Relegating the lengthy but straightforward algebra to App. B, this
procedure yields

ρt (r) =
∫

d2p̃ f0

(
rT Q−1

pp r+ p̃T Qpp p̃
)

= 1√∣∣detQpp
∣∣
∫

d2p̃θ f0

(
rT Q−1

pp r+ p̃T
θ p̃θ

)

=
ρ0

(
Q−1/2

pp r
)

√∣∣detQpp
∣∣ .

(12)

It shows that the real-space density of the atomic ensemble keeps the same functional form in
terms of a rotated and stretched coordinate, which results in elliptical equidensity lines. These
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ellipses are, up to an overall scale, entirely specified by the direction of their major axis, measured
by its angle φ(t ) from the y-axis, and the principal axis lengths λ±(t ) given by the square roots of
Qpp ’s eigenvalues. These parameters are derived in App. B using the explicit form of Qpp , and are
given by

tan[2φ(t )] = Ω(c+τ+− c−τ−)(
ΩR +Ω2

)
τ2++ (

ΩR −Ω2
)
τ2−

,

λ2
±(t ) = 1− ε2

(
τ2+−τ2−

)
4ΩR

± εΩ

2ΩR

∣∣∣∣c−τ−− c+τ+
sin[2φ(t )]

∣∣∣∣ ,

(13)

where c± = cos(ω±t ), τ± = sin(ω±t )/ω±, andΩ2
R =Ω2 + (ε/2)2.

In the dynamical instability and small anisotropy regime (Ω= 1,ε≪ 1), ω− is imaginary such
that the formula for c− and τ− can be alternatively written in terms of |ω−| with hyperbolic
trigonometric functions. At long times, they therefore largely dominate in magnitude over c+ and
τ+, allowing to make analytical progress. In particular, we find that the tilt φ≃ arctan[−4/ε]/2 ≃
−π/4+ ε/8 ≃ −π/4 brings the major axis of the distribution along the first diagonal. Similarly,
the behavior of the major and minor axis length can be studied by writing λ2

± = κ±e2|ω−|t +α±
with α± a bounded function of time, and κ± the coefficient corresponding to the instability.
Expanding for long time, we get κ− = 0 and κ+ = 1/(2ΩR ) ≃ 1. This shows that the minor axis
remains a constant at long time while the major axis increases exponentially quickly at a rate
|ω−| = ε/2. Altogether, the coefficients given in Eq. (13) describe an exponential squeezing of the
original rotation-symmetric cloud along the first diagonal, as captured by the long time behavior
λ+/λ− ∝ eεt/2.

This is illustrated in Fig. 2, where we plot the density distribution ρt at different times
starting from a Boltzman distribution ρ0(r) = n0e−βr2/2 of inverse temperature β = 1, for which
integration over momenta can be performed analytically. To make a closer connection with the
guiding center drift discussed above, we overlay some isopotential lines of the rotating saddle,
making clear that such drift is the fundamental reason behind the squeezing of the cloud.

4. Squeezing quantum states

We now investigate the fate of a quantum state under the Hamiltonian Eq. (1), with a particular
focus on the dynamically unstable regime identified above. Analogous to the classical case, single
particle quantum states stretch out over time along the isopotential lines of the imposed rotating
saddle (Sec. 4.1). In contrast to classical dynamics however, the zero point motion of the cyclotron
harmonics imposes a minimum width to the density distribution even after an infinite evolution
time. The quantum dynamics can be understood as physically effecting a transformation from
the symmetric gauge to the Landau gauge (Sec. 4.2), which arises from the evolution under the
potential imprinted by the rotating saddle. We finally observe that the dynamics of our model
can be formally described by a squeezing transformation of the guiding centers, which defines
the quantum geometry in Landau-level analogues (Sec. 4.3). As a result, the dynamical instability
is a form of quantum “geometric squeezing”.

4.1. Explicit evolution of quantum states

4.1.1. Decoupling cyclotron and guiding center motion

As in the classical case, we first decouple the normal modes of the Hamiltonian. While we
could rely on the rotations used in Eq. (3) for that purpose, we notice that the decoupling can
also be achieved by a simple gauge transformation. More precisely, we append the phase factor

G = e iκx y , κ= ε/(2Ω), (14)
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Figure 3. Density |〈x, y |n,m〉t |2 of the time evolved Fock states. After a small transient
evolution, which is longer for higher cyclotron index n, the dynamics is well captured by
isopotential flow of guiding centers. As a guide to the eye allowing to visualize the guiding
center drift, some isopotential lines of the rotating saddle potential ε(x2− y2) are shown on
the topmost right panel with solid lines using a gray scale, which goes from black (negative)
to white (positive) values.

on all single particles states |ψ̃〉 =G|ψ〉, which are now ruled by the Hamiltonian

H̃ =GH G†

= 1

2

[
p2

x +p2
y +

(
1+κ2)(x2 + y2)]−ΩLz −κ

(
xpy + y px

)
.

(15)

Introducing the cyclotron (a+) and guiding center (a−) bosonic operators, defined as

a± = 1

2

[
α(x ± i y)+ i

px ± i py

α

]
, α= (1+κ)1/4, (16)

the Hamiltonian separates into two independent parts H̃ = H̃ ++H̃ − that read

H̃ ± = µ±
2

(
2a†

±a±+1
)
± κ

2

(
a2
±+a†2

±
)

, (17)

with µ± =
√
ω2
±+κ2, which describes the independent squeezing of the cyclotron and guiding

center harmonic oscillators.

4.1.2. Heisenberg evolution

Before looking at the real-space representation of time-evolved wavefunctions, it is instructive
to consider the evolution of the cyclotron and guiding center operators defined by

A±(t ) = Ũ (t )a±Ũ †(t ), Ũ (t ) = e−i tH̃ . (18)

Using the Baker–Campbell–Hausdorff formula, we get

A±(t ) = f±(t )a±+ g±(t )a†
±,

f±(t ) = cosω±t + iµ±
sinω±t

ω±
, g±(t ) =±iκ

sinω±t

ω±
.

(19)
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When compared to Eq. (16), this explicit form of A+(t ) suggests the definition of a novel time-
dependent complex coordinate

ξ(t ) =α[
f+(t )

(
x + i y

)+ g+(t )
(
x − i y

)]
, (20)

which drastically simplifies its expression

A+(t ) = 1

2

[
ξ+2i pξ̄

]
, (21)

where we have introduced ξ̄ the complex conjugate of ξ, and (pξ, pξ̄) the canonical momenta
associated with (ξ, ξ̄); their explicit representation is provided in App. C for completeness. From
Eq. (21), the physical interpretation of ξ is clear: it defines the elliptic coordinate system most
adapted to describe cyclotron orbits at any point in time. Note that we have defined ξ using
A+(t ) to be sure that the method also applies in the regime of instability. Finally, we express the
time-evolved guiding center operator using the new coordinate system

A−(t ) = 1

2

[
u(t )

(
ξ̄+2i pξ

)− v(t )
(
ξ−2i pξ̄

)]
,

u = f− f+− g−g+, v = f−g∗
+− g− f ∗

+ .
(22)

4.1.3. Quantum states

Using this new system of coordinates, we can now efficiently determine the time evolution
of arbitrary quantum states. For this, it is sufficient to find the evolution of a complete set
of vectors at the initial time (t = 0). We consider two such sets: (i ) the coherent states |α〉0

satisfying a±|α〉0 = α±|α〉0, and (i i ) the Fock states |n〉0 diagonalizing the number operators
a†
±a±|n〉0 = n±|n〉0. To obtain their time evolution, we rely on the fact that |α〉t = Ũ (t )|α〉0 and

|n〉t = Ũ (t )|n〉0 can be determined, up to a global phase, as solutions of

A±(t )|α〉t =α±|α〉t , A†
±(t )A±(t )|n〉t = n±|n〉t . (23)

As a first example, let us derive the real-space representation of the time-evolved vacuum
state defined by A±(t )|0,0〉t = 0. These relations provide two differential equations, which can
be solved using a Gaussian ansatz, yielding

φt (ξ, ξ̄) ≡ 〈x, y |0,0〉t (24)

= 1p
π|u| exp

[
δξ2 −|ξ|2

2

]
, δ= v

u
,

where we have kept the time dependence of ξ, u and v implicit. The same approach can in fact
be extended to any coherent state and leads to

〈x, y |α〉t =φt
(
ξ−α+, ξ̄− ᾱ+−2α−/u

)
e−i Im(ξᾱ+). (25)

As in the most usual case, we observe that the coherent states are, up to a phase factor, shifted
copies of the vacuum |0,0〉t obtained above. Finally, we can use the algebraic relations in Eq. (23)
to express the time-evolved Fock states as

|n〉t = 1p
n+!n−!

(
A†
+
)n+ (

A†
−
)n− |0,0〉t , (26)

which provides, after lengthy calculations relegated to App. C, the explicit real-space representa-
tion of 〈x, y |n〉t .

We finish this section by discussing more pictorially the time-evolution under H . In Fig. 3,
we show the density of the vacuum state – which determines that of all other coherent states –
and of a few Fock states as a function of time for ε= 0.1 andΩ= 1. The most striking feature is a
drastic change in aspect ratio as a function of time. As is the case of classical distributions (Fig. 2).
this can be understood as a result of particles flowing along the isopotential lines of the saddle
potential, which are depicted on the upper right panel of Fig. 3. The main difference between
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the classical and quantum cases is the finite minor width that the quantum states still possess at
long times. The latter is due to the zero point motion of the cyclotron operator, which sets the
fundamental limit ℓB /

p
2 on the width of the quantum states, with ℓB =pħ/(2mΩ) the magnetic

length.

4.2. Effecting a gauge transformation

Focusing on a single Landau level, say the LLL, within which the kinetic energy is quenched,
the time evolution under the saddle potential can be interpreted as performing a gauge trans-
formation transforming symmetric gauge wavefunctions into Landau gauge ones, thus captur-
ing the elongation of the states. Intuitively, this comes from the fact that the gauge transforma-
tion U = e iΩx y allows to transform the symmetric gauge used in Eq. (2) into the Landau gauge,
i.e. UH U † has an effective gauge potential A′ = 2Ω[0, x]. Now, since the function x y is iden-
tical to (x2 − y2)/2 after rotation of the axes by π/4, time-evolution under the saddle potential
exactly reproduces the effect of the gauge transformation U . Note that this argument discards
all kinetic contributions, which is justified within a given Landau level, where the kinetic energy
is quenched by the stiff cyclotron harmonic oscillator. As a result, the time evolution under the
rotating saddle potential physically implements a gauge transformation within the LLL.

To see this more formally, let us project the original Hamiltonian (Eq. (1)) for a rotation at
the trap frequency Ω = 1 onto its ε = 0 lowest energy level. This simply amounts to replacing
(x, y) → (X ,Y ) with (X ,Y ) the guiding center coordinates [61], which are defined by

X = (x +py )/
p

2, Y = (y −px )/
p

2, (27)

and match the (p ′
y , y ′) defined in Eq. (3) for θ = −π/2. After projection to the LLL, we thus

get PLLLH PLLL = ε(X 2 − Y 2)/2 whose unitary evolution operator reads U (t ) = e−iεt (X 2−Y 2)/2.
Starting from the ground state in the symmetric gauge 〈x, y |0,0〉0 = exp[−|z|2/2]/

p
π with z =

x + i y , we evolve it using U (t ) noting that (X − i Y )|0,0〉0 = 0 and [X ,Y ] =−i to find [51]

〈x, y |0,0〉t =
exp

[
− |z|2+i tanh(εt/2)z2

2

]
p
πcosh(εt/2)

, (28)

which is the same as Eq. (24) forΩ= 1 and κ≪ 1 if we assume the cyclotron motion unperturbed
( f+ = 1, g+ = 0). For long times εt ≫ 1, we can neglect the exponentially small contribution of the
hyperbolic functions and find the simpler form

〈x, y |0,0〉t ≃
ϵt≫1

e−
1
2 [(x−y)2+i (x2−y2)]e i z2e−εt√

π
2 eεt/2

. (29)

Here, the first exponential factor precisely equals a Landau gauge wavefunction of length L = eεt/2

with its long axis rotated byπ/4 compared to the original system of coordinates (see Fig. 3). While
negligible near the origin, the second exponential factor in Eq. (29) is necessary to ensure correct
normalization and to fix the length L of the cloud along its long axis, which can be seen explicitly
using e i z2e−εt ∼ e−(x+y)2e−εt /2 valid when |x − y |≪ |x + y |.

This simplified account of the dynamics provides two important insights. First, due to the
quenched kinetic energy of the rapidly rotating quantum gas, the saddle potential effectively
implements a gauge transformation through a unitary evolution. This evolution is coherent
and does not introduce any heating nor turbulence in the form of disordered vortex nucleation.
Second, the peak density of the cloud decreases exponentially with time, allowing to reach
extremely dilute regimes that were previously out of reach [51], which opens a realistic path
towards the long sought-after quantum Hall regime of rotating quantum gases.
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Figure 4. Amplitude of the squeezing parameters for the cyclotron γ+ and guiding center
γ− operators when rotation and anisotropy are switched on at t = 0 to Ω = 1 and ε = 0.1.
Except for a weak breathing at frequency ω+ due to the cyclotron motion, most of the
observable features, e.g. in Fig. 3, are attributable to the guiding center dynamics.

4.3. Relation to quantum geometry

After a small transient evolution, the full quantum evolution seems to be explained by guiding
center drift along the saddle, with almost no appreciable effects attributable to the cyclotron
degree of freedom. This might, at first sight, seem odd since both cyclotron and guiding center
motion are ruled by similar squeezing Hamiltonians (Eq. (17)). Looking more closely at the
squeezing parameter

γ± = g±/ f±, (30)

of the two operators, plotted as a function of time in Fig. 4, reveals that the cyclotron operator is
very stiff ω+ ≫ κ and only slightly breathes at its natural frequency without experiencing much
squeezing. On the contrary, ω− is of the order of or even smaller than the squeezing amplitude
κ, leading to a much larger squeezing parameter γ− ≫ γ+ that reaches values close to unity for
long times. Most of the observable features in the time evolution of the system are thus directly
attributable to the guiding center dynamics.

This is a generic feature of well-separated Landau levels, which possess a stiff cyclotron mode
and a much softer guiding center degree of freedom. In fact, it is known that, in presence of
an external perturbation, only the soft guiding center mode will adjust to accommodate the
perturbation. It will do so in a purely geometric manner, by changing the local shape of the
guiding center coherent states. This geometrical response of a quantum Hall system was first
spotlighted by Haldane, which described the quantum geometric degree of freedom of the system
in terms of a guiding center metric g [59], which in our notation reads [64]

g = 1

1−|γ−|2
[ |1+γ−|2 i

(
γ−−γ∗−

)
i
(
γ−−γ∗−

) ∣∣1−γ−∣∣2

]
. (31)

In the context of quantum Hall systems, geometric responses of the guiding-center metric
have already been observed for an applied in-plane magnetic field [65] or an anisotropic band
mass tensor [66]. In another context, a spontaneous symmetry breaking of a fractional quantum
Hall system toward a nematic phase, i.e. a transition from γ− = 0 to |γ−| ≃ 1, was predicted as
a way to minimize the interaction energy [67]. Beyond these geometric responses due to the
guiding center degree of freedom, the relation between quantum geometry and guiding center
metric was observed to be more profound [59]. Indeed, in condensed-matter systems, bands with
non-zero Chern number that analytically reproduce the physics of Landau levels were proved to
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only have one degree of freedom: their quantum metric, which also characterizes the guiding
center metric of the Landau level they map onto [68].

Here, we have shown how the dynamical instability of rotating quantum gases could be used to
modify the quantum geometry of the system by squeezing of the guiding centers. This “geometric
squeezing” experimentally pioneered in Ref. [51] results in an unprecedented control over the
quantum geometry of the system, and offers a new way to reach the lowest Landau level.

5. Hydrodynamic description of geometric squeezing

The previous analysis completely neglected the effects of interatomic interactions. However, for
the experimental conditions of Ref. [51], the typical interaction energy at initial time is much
larger than the cyclotron gap and the density profile of the condensate at short time is mostly
governed by interaction effects. We now develop a hydrodynamic description of the condensate
in the presence of these interactions and solve for its dynamics in absence of quantum pressure.
In Sec. 6, we will connect this hydrodynamic picture valid for dense clouds experimentally
observed at short times to the mostly non-interacting dynamics (Sec. 4) of elongated and dilute
BEC obtained after a long time using full-fledged numerical simulations.

5.1. Hydrodynamic equations

The dynamics of a condensate within a rotating trap U (r ) is amenable to a hydrodynamic
description, obtained by rewriting the Gross–Pitaevskii (GP) equation for the wavefunction Ψ =p
ρ e i S/ħ as equivalent hydrodynamic equations for the density ρ = |ψ|2 and the condensate

phase S. As in Sec. 2, we work in the rotating frame, where the GP equation reads [69]

iħ∂tΨ=
[−ħ2∇2

2m
+U (r)−ΩLz

]
Ψ+ g |Ψ|2Ψ, (32)

with g the interaction coefficient, and substitute inΨ=p
ρ e i S/ħ. Taking the imaginary part yields

∂ρ

∂t
=−∇· (ρ(v−Ω× r)

)
, v = (∇S)/m, (33)

which is the continuity equation in the rotating frame; while taking the real part yields

−∂S

∂t
=− ħ2

2m

1p
ρ
∇2pρ+ 1

2m
(∇S)2 +U (r )

−Ω · (r× (∇S))+ gρ. (34)

As noted in [5], for a condensate in a harmonic trap in the Thomas–Fermi regime these equations
can be solved analytically via a quadratic ansatz for the condensate wavefunction. In the
Thomas–Fermi regime the mean-field interaction gρ is much larger than the spacing between
single-particle energy levels of the trap, so that the density will vary smoothly on the scale of
the oscillator length, allowing to neglect the quantum pressure term ∼∇2pρ. In contrast, as the
chemical potential gρ is reduced to about cyclotron frequency 2Ω and one enters the regime
of the lowest Landau level, the spatial extent of the condensate wavefunction will shrink to the
scale of the magnetic length, corresponding to the spatial extent of cyclotron orbits in the lowest
Landau level, on the scale of the trap oscillator length. This implies that the relative importance
of the quantum pressure to the mean-field term is given by the ratio of the chemical potential to
the Landau level spacing, and loosely corresponds to the number of Landau levels admixed into
the condensate wavefunction. We therefore expect a classical hydrodynamic description to be
valid when this number is much larger than unity.
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5.2. Analytic solution

Following [5], to which we refer for more details, we consider an anisotropic harmonic trap of the
form

U (r) = 1

2
mω2

⊥

(
[1+ε] x2 + [1−ε] y2 +

(
ωz

ω⊥

)2

z2
)

, (35)

and make a quadratic ansatz for the density and phase,

ρ(r, t ) = ρ0(t )+ mω2
⊥

g

3∑
i , j=1

xi Ai j (t )x j ,

S(r, t ) = S0(t )+mω⊥
3∑

i , j=1
xi Bi j (t )x j .

The time-evolution of the condensate wavefunction is thus encoded in the matrices A and B ,
which evolve according to [5]

1

ω⊥
dA

dt
=−2A TrB −2(AB +B A)+ Ω(t )

ω⊥
(R A− AR)

1

ω⊥
dB

dt
=−2B 2 −W − A+ Ω(t )

ω⊥
(RB −BR),

where the matrices W and R are defined as

W = 1

2

1+ε 0 0
0 1−ε 0
0 0 (ωz /ω⊥)2

 , (36)

and

R =
 0 1 0
−1 0 0
0 0 0

 . (37)

This formalism allows straightforward calculation of the condensate dynamics under arbitrary
variation in the trap rotation frequency. As an example, we show in Fig. 5 the evolution in
the condensate e−1/2 radii along its major and minor axes, σ+ and σ−, for the experimental
parameters of [51]. An initially equilibrium cloud was prepared in an anisotropic trap with
ε= 0.125 andω⊥ = 2π×88.6 Hz, whose rotation rate was smoothly increased fromΩ= 0 toΩ=ω⊥
and held for a variable time t .

While the long cloud axis grows exponentially ∼ exp(ζt ) where ζ = εω⊥/2, the short axis falls
more slowly. This is because the cloud size contains contributions from both the guiding centers,
which are squeezed at a rate ζ, and from the cyclotron orbits, whose size depends upon the
number of occupied Landau levels NLL ≡µ/(2ħω⊥). The squeezing of guiding centers means that
for most of the experiment σ− is generally dominated by cyclotron motion and its evolution is
captured by a simple scaling model. The chemical potential is proportional to the atomic density
∼ 1/(σ+σ−σz ), where σz is the axial extent of the condensate. The major width always increases
as σ+ ∝ exp(ζt ), and the short axis size σ−,z ∝p

µ when NLL ≫ 1. We therefore predict a time-
dependence σ− ∝ exp(−ζt/4), which is shown by the dashed line in Fig. 5.

The falling chemical potential µ∝ exp(−ζt/2) guarantees that eventually µ < 2ħω⊥ and the
condensate enters the LLL. In the experiment of [51] and the GP simulation of Fig. 6, we find that
σ− saturates at the zero-point cyclotron orbit size imposed by Heisenberg uncertainty. However,
since the hydrodynamic model neglects quantum pressure, it instead predicts that σ− → 0. This
discrepancy highlights the breakdown of the hydrodynamic approximation as the BEC enters
the LLL.
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Figure 5. The evolution in the major and minor radii of a condensate held in a rotating
harmonic trap. While the long axis grows exponentially with a rate corresponding to the
squeezing of guiding center coordinates (dotted line), the minor width falls more slowly
(dashed line). This is due to the falling density leading to smaller Landau level occupation,
and hence a smaller size of cyclotron orbits (see text).

We note that for certain parameter regions of rotation frequency and trap anisotropy the
purely parabolic profile of the BEC was found to be unstable [5], and higher-order surface
distortions develop. However, for the case Ω =ω⊥, the dominant “instability” is already the one
of the parabolic mode, i.e. geometric squeezing, overwhelming possible higher-order distortions.
Only when the trap anisotropy is reduced near zero, Gross–Pitaevskii simulations and experiment
display surface instabilities involving vortex nucleations, which have been studied recently [8].

6. Gross–Pitaevskii simulations

A clear picture of how geometric squeezing enables us to reach the lowest Landau level emerges
from the non-interacting treatment presented above: due to the quenched kinetic energy of the
rapidly rotating quantum gas, the time evolution operator is mainly due to the anisotropic sad-
dle potential that physically implements a symmetric-to-Landau gauge transformation (Sec. 4.2).
This evolution squeezes the atomic cloud, which simultaneously decreases the peak density ex-
ponentially with time and increases its moment of inertia. This reduces the effects of interactions
(Sec. 5), forming the ideal conditions to reach the LLL.

We perform full Gross–Pitaveskii numerical simulations of the dynamics of the condensate, in
the presence of interactions. The formalism and numerical details are gathered in Sec. 6.1, while
the results of the simulations are discussed in Sec. 6.2.

6.1. Formalism

We now consider a BEC containing N atoms in the rotating anisotropic trap of Eq. (1) described by
the macroscopically occupied mode Ψ. Within the purely two-dimensional settings introduced
in Sec. 2, the GP equation takes the form [70]:

i∂tΨ(r , t ) = [
H + g2d|Ψ(r , t )|2]Ψ(r , t ), (38)
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where g2d = N as
p

8πωz is the effective effective two-dimensional interaction parameter, with as

the scattering length of the atoms [71].
This mean-field description of the system neglects the effects of quantum fluctuations, such

that the atomic cloud can be solely described by a single condensate wavefunction. In the
hydrodynamic regime where the chemical potential is larger than the Landau level spacing
(µ ≫ 2ħω⊥), the physics is dominated by interaction and the mean-field description is well
justified [17]. As the chemical potential is lowered and becomes comparable to the Landau level
spacing, condensation is still possible so long as the number of particles in each Landau level
exceeds the quantum degeneracy of this level. In other words, the GP description still holds in
the mean-field quantum Hall regime where the filling fraction ν = 2πnℓ2

B ≫ 1, with n the two
dimensional density of the cloud. The mean-field approximation eventually breaks down in the
deep quantum Hall regime where ν∼ 1, where quantum fluctuations become important and can
help stabilize the bosonic analogue of fractional quantum Hall states [20].

To integrate the time-dependent GP equation, we use a time splitting pseudospectral method
(TSSP) [72]. This method is most often used in absence of rotation, and harnesses the fact that
the kinetic term ∝ p2 is easily evolved in Fourier space while the interaction and potential terms
are most easily treated in real space [73]. The TSSP uses a Trotter decomposition of the time-
evolution operator, and the infinitesimal time evolution operator at each timestep is split to
separate the kinetic term from the rest of the Hamiltonian. This enables us to Fourier transform
Ψ before evolving it with the kinetic terms, leading to local time evolution operators that can be
efficiently implemented numerically [74].

In the rotating frame, the angular momentum operator Lz = xpy − y px explicitly mixes
the coordinate and momentum operators, and the split-step method should be modified for
best performance. More precisely, we first implement a one-dimensional Fourier transform to
bring Ψ(x, y, t ) into Ψ(kx , y, t ) and evolve it under the Ωy px part of the Hamiltonian. Fourier
transforming both axes, we arrive at Ψ(x,ky , t ), which is evolved under Ωxpy piece of the
Hamiltonian. We alternate the order of these evolutions, implementing y px first for even
timesteps and xpy first in odd ones, which further reduces systematic computational errors.

6.2. Evolution under geometric squeezing

An example of GP simulation is shown in Fig. 6. We initially prepare a non-rotating and weakly
interacting BEC at equilibrium in the anisotropic trap of Eq. (1), where ε = 0.125 resembles the
experimental settings. We then ramp up the rotation frequency from Ω(t = 0) = 0 following
a sequence similar to the experimental procedure of Ref. [51]. This gradually brings the BEC
gradually to rotate at the trap frequencyΩ= 1.

The density profiles displayed in Fig. 6a clearly demonstrate that, as in the non-interacting
case, the BEC elongates along the first diagonal in the rotating frame as a result of the guiding
center flow following the isopotential of the rotating saddle. To be more quantitative, we plot
in Fig. 6b the e−1/2 radii of the condensate wavefunction along its major (σ+) and minor (σ−)
axes as a function of time. Consistent with the squeezing of the guiding centers, σ+ grows
exponentially at a rate set by ε/2. The minor axis is also exponentially reduced at early times,
but eventually saturates around the value ℓB /

p
2, the width of a Landau gauge wavefunctions.

This clearly signals that, as the peak density of the BEC decreases, the chemical potential of the
cloud becomes comparable to the cyclotron gap and all of the atom are eventually contained into
the LLL, in the form of a macroscopically occupied Landau gauge wavefunction of minor width
ℓB /

p
2. We finally note that oscillations in σ− at frequency 2ω+, clearly visible in Fig. 6b, are also

present in the non-interacting solutions of Sec. 4 and are due to the breathing of the cyclotron
degree of freedom, explicit in the oscillatory nature of γ−(t ) in Fig. 4.
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Figure 6. a) Density of the condensate wave-function obtained by numerical integration of
the GP equation for ε= 0.125 and a ramp fromΩ(t = 0) = 0 toΩ(t =∞) = 1 that matches the
experimental sequence of Ref. [51]. b) Major (σ+, green) and minor (σ−, red) typical width
of the condensate wavefunction as a function of time. Time is normalized by the squeezing
rate, ζt with ζ = ε/2, such that the exponential increase of the major width at long time
becomes universal (affine with a slope of one in the semi-logarithmic used here). Finally,
the dotted horizontal line shows indicates the zero-point width ℓB /

p
2 of a Landau gauge

orbital, to which σ− saturates.
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Figure 7. The density profile of the vortex lattice under geometric squeezing. Squeezing is
manifested in the cloud profile and the vortex distribution.

As another example, we show in Fig. 7 the evolution of a vortex lattice under the same
evolution. At initial time, the vortex lattice is equilibrated with in a 2D harmonic trap rotating at
Ω= 0.8. The anisotropy of the trap is switched on at t = 0 and keeps rotating atΩ. In the rotating
frame where the saddle potential is static, the vortex lattice elongates along the isopotential
diagonal, with the vortices moving along the same direction. The flow of vortices at short times
indicate that only the guiding center motion evolves and gets squeezed, leaving the cyclotron
motion unchanged. For longer squeezing times, the inter-vortex distance becomes comparable
to the minor axis of the cloud and their dynamics strongly couple to the overall squeezing of the
atomic cloud, leading to a complex pattern formation.
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7. Conclusion

In this article, the “geometric squeezing” experimentally pioneered in Ref. [51] to bring rotating
quantum gases into the lowest Landau level has been theoretically studied using a combination
of analytical arguments and numerical simulations. At its core, this method uses novel experi-
mental improvements to harness the dynamical instability that originally prevented the obser-
vation of quantum gases in the lowest Landau level. This instability is due to the unbounded
trajectories of the guiding center flowing along the isopotential lines of the saddle potential im-
posed by the rotating anisotropic trap. This evolution elongates the atomic ensemble, thereby
simultaneously decreasing its peak density and increasing its moment of inertia. This naturally
lead to a dilute gas with low interaction energy and high angular momentum per particle, which
is entirely contained within the lowest Landau level in the form of a macroscopically occupied
Landau gauge wavefunction.
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Appendix A. Classical 1d harmonic oscillator

In this appendix, we derive the evolution operators corresponding to the classical equations of
motion of a one-dimensional harmonic oscillator, which is used in Eq. (8) of the main text to
obtain the trajectories shown in Fig. 1b. We thus start from a Hamiltonian

H = p2

2m
+ 1

2
kr 2, (39)

where m and k are allowed an arbitrary sign, and with define the possibly complex eigenfre-
quency ω=p

k/m. In terms of the reduced variables

r̃ =p
mωr, p̃ = p/

p
mω, (40)

Hamilton’s equations of motion read

d

dt

[
r̃
p̃

]
=ω

[
0 1
−1 0

][
r̃
p̃

]
(41)

and can be straightforwardly solved by exponentiation[
r̃ (t )
p̃(t )

]
=

[
cosωt sinωt
−sinωt cosωt

][
r̃ (0)
p̃(0)

]
, (42)

which we stress is valid both for a real and purely imaginaryω. Going back to the original variable
leads to [

r (t )
p(t )

]
=

[
cosωt 1

mω sinωt
− k
ω sinωt cosωt

][
r (0)
p(0)

]
. (43)
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Appendix B. Evolution of phase space densities

In this appendix, we derive the parameters of the elliptic isodensity lines of the phase-space
distributions studied in Sec. 3.3. We recall that, following the classical equation of motion, the
phase-space distribution at time t only depends on the following variable

Et = 1

2

[
r p

]
Q

[
r
p

]
, Q =

[
Qr r Qr p

Qpr Qpp

]
, (44)

with the explicit form of Q inferred from Eq. (3) and Eq. (9)

Q = RT
[

U T+U+ 0
0 U T−U−

]
R, R =


c 0 0 s
0 −s c 0
0 c s 0
−s 0 0 c

 .

The shift of momenta p̃ = p+Q−1
ppQpr r in the first line of Eq. 12 leads to

ρt (x, y) =
∫

d2p̃ f0
(
rT A−1r+ p̃T Qpp p̃

)
, (45)

with

A−1 =Qr r −Qr pQ−1
ppQpr =

[(
Q−1)

r r

]−1
, (46)

where the second equality can be either checked with lengthy by straightforward direct calcula-
tion, or derived using standard results on Schur complements. The matrix inverse Q−1 can be
independently obtained as

Q−1 = RT

[(
U T+U+

)−1
0

0
(
U T−U−

)−1

]
R, (47)

which can be efficiently evaluated using the relation

(
U T

±U±
)−1 =−Y

(
U T

±U±
)

Y , Y =
[

0 1
−1 0

]
. (48)

Acting on the Y matrices on the rotations matrices, we find(
Q−1)

r r =Qpp =⇒ A =Qpp . (49)

As explained in the main text, all parameters of the ellipse characterizing the real-space
density at time t can therefore be obtained from the eigen-decomposition of Qpp . We now find
this decomposition and derive the expression given in Eq. (13). For simplicity, we decompose
Qpp = aµσµ onto Pauli matrices σµ=0,1,2,3, and find from the definition of Q above the explicit
form

a0 = 1− ε2

4ΩR

(
τ2
+−τ2

−
)

, (50)

a1 =− εΩ

2ΩR
(c−τ−− c+τ+), (51)

a2 = 0, (52)

a3 =−ε
2

[(
1+ Ω

2

ΩR

)
τ2
++

(
1− Ω

2

ΩR

)
τ2
−
]

, (53)
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where we recall that c± = cos(ω±t ), τ± = sin(ω±t )/ω± andΩ2
R =Ω2 + (ε/2)2. The tilt of the ellipse,

measured by the φ from the y-axis, and the minor and the principal axis lengths can be obtained
from these coefficients as

tan(2φ) =−a1

a3
= Ω

ΩR

c+τ+− c−τ−(
1+ Ω2

ΩR

)
τ2++

(
1− Ω2

ΩR

)
τ2−

,

λ2
± = a0 ±

√
a2

1 +a2
3 = 1− ε2

4ΩR

(
τ2
+−τ2

−
)

± ε

2

√√√√[(
1+ Ω

2

ΩR

)
τ2++

(
1− Ω

2

ΩR

)
τ2−

]2

+ Ω
2

Ω2
R

(c+τ+− c−τ−)2,

(54)

leading to the results quoted in Eq. (13) of the main text. There, for short-handedness, we gave
the expression of λ2

± using the relation

λ2
± = a0 ±|a1|

√
1+ 1

tan2(2φ)
= a0 ± |a1|

|sin(2φ)| . (55)

Appendix C. Time evolved Fock states

In this appendix, we use the expression of A±(t ) in terms of the complex coordinate ξ, ξ̄ (Eqs. (21)
and (22)) to derive the explicit real-space representation of the time evolved Fock states alge-
braically defined in Eq. (26).

For completeness and readability, we first provide a more detailed description of the new
holomorphic system of coordinates introduced in Eq. (20). We have first used the complex
representation 

z = x + i y

z̄ = x − i y

x = 1
2 (z + z̄)

y = 1
2i (z − z̄)

,


pz = 1

2

(
px − i py

)
p z̄ = 1

2

(
px + i py

)
px = pz +p z̄

py = i
(
pz −p z̄

) ,

well-suited to describe right and left moving particles in a magnetic field. Then, we obtain elliptic
cyclotron orbits which motivates the definitions of stretched complex coordinates{

ξ =α(
f+z + g+ z̄

)
ξ̄ =α(

g∗+z + f ∗+ z̄
) ,

{
αpξ = f ∗+ pz − g∗+p z̄

αpξ̄ = f+p z̄ − g+pz
.

made to enable the simple expression A = 1
2 (ξ+ 2i pξ̄) and to best match the geometry of the

cyclotron orbit at any point in time.
To get the explicit form of Fock states, we first recall the formula obtained for the vacuum state

φt (ξ, ξ̄) = 〈x, y |0,0〉t = 1p
π|u| exp

[
δξ2 −|ξ|2

2

]
. (56)

Using the identity

A−(t )φt (ξ, ξ̄) =φt (ξ, ξ̄)

(
ξ

u
−u∂ξ̄− v∂ξ

)
, (57)

multiple times offers the following expression for the guiding center Fock states in the lowest
Landau level

〈x, y |0,n−〉t = φt (ξ, ξ̄)p
n−!

(
ξ

u
− v∂ξ

)m

1, (58)
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with 1 the function everywhere equal to one. We recognize the definition of Hermite’s polynomi-
als {Hn}n and conclude

〈x, y |0,n−〉t = φt (ξ, ξ̄)p
n−!

(
δ

2

) n−
2

Hn−

(
ξp

2uv

)
. (59)

Similarly, we can combine the identities

A†
+φt (ξ, ξ̄) =φt (ξ, ξ̄)

[
(ξ̄−δξ)−∂ξ

]
, (60)[

(ξ̄−δξ)−∂ξ
]

Hk (aξ) = Hk (aξ)
[
(ξ̄−δξ)−∂ξ

]−2akHk−1(aξ)

to find, after careful calculations, the expression

〈x, y |n+,n−〉t

= i n+φt (ξ, ξ̄)p
n+!n−!

(
δ

2

) n−+n+
2 min(n+,n−)∑

k=0
k !

(
n+
k

)(
n−
k

)(
2i

v

)k

Hn−−k

(
ξp

2uv

)
Hn+−k

(
ξ̄−δξ
i
p

2δ

)
, (61)

which generalizes the n+ = 0 solution of Refs. [75, 76].
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