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Abstract. In this work, we study the core concepts of Hawking radiation in the astrophysical and analogue
systems. We focus on negative frequencies and negative norms: their definition, their relationship, and their
role in the particle creation process of the Hawking effect. We characterize the dispersion relation by the signs
of the frequency and the norm. We conclude that the most natural frame for studying the Hawking effect is
that in which the horizon is static, where the sign of the norm can be made equal to the sign of the Doppler-
shifted frequency in that frame. We use as examples the four most successful experimental analogue systems:
water waves, Bose–Einstein condensates, polaritons fluids, and optical fibers.

Résumé. Dans ce travail, nous étudions les concepts fondamentaux du rayonnement de Hawking dans les
systèmes astrophysiques et analogiques. Nous nous concentrons sur les fréquences négatives et les normes
négatives: leur définition, leur relation et leur rôle dans le processus de création de particules de l’effet
Hawking. Nous caractérisons la relation de dispersion par les signes de la fréquence et de la norme. Nous
concluons que le cadre le plus naturel pour étudier l’effet Hawking est celui dans lequel l’horizon est statique,
où le signe de la norme peut être rendu égal au signe de la fréquence décalée par effet Doppler dans ce cadre.
Nous utilisons comme exemples les quatre systèmes analogues expérimentaux les plus réussis: les vagues
d’eau, les condensats de Bose–Einstein, les fluides à polaritons et les fibres optiques.
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1. Introduction

The process of emission of Hawking radiation in astrophysical black holes [1] remains one of
the most interesting topics in physics since it bridges the usually separated fields of general
relativity, quantum mechanics, and thermodynamics [2]. The theory developed by S. Hawking
uses a semiclassical approach to study the evolution of quantum fields propagating on a classical
background spacetime [3]. Black holes should then radiate via the Hawking process, where a
pair of particles is produced near the event horizon, one of which can escape to infinity and be
detected as radiation: this is the Hawking radiation. The second particle is trapped inside the
event horizon, it is said to have negative frequency and is the Hawking partner. Hawking studied
the conversion between ingoing and outgoing modes by tracing back in time an outgoing mode
escaping from the horizon. He realized that this mode was created by the mixing of positive- and
negative-frequency modes.

Since its proposal, the Hawking effect has influenced the development of several fields of
physics, including astrophysics [4], quantum field theory in curved spacetimes (QFTCS) [5],
string theory [6], cosmology [7], optics [8], and possibly others. However, its major drawback
lies in the challenges it presents to actually measure its effects: Its direct astrophysical detection
is not considered possible with current or foreseeable technology [9].

This situation changed with the proposal of W. Unruh of analogue systems, where a process
similar to Hawking radiation appears [10], raising the possibility to study this effect in the
laboratory. In the decade of the 2000’s, scientists worked to make this possibility a reality. There
are many different physical systems where analogue Hawking radiation can be theorized and
experimentally measured for either a classical or a quantum field. These systems include: water
waves [11–13], superfluids [14,15], BECs [16–18], optical pulses [8,19–21], and polaritons [22,23].
So even more fields are impacted by Hawking radiation. The analogue Hawking systems have a
rich diversity of dynamics and one key element in common: they all share the same kinematics
as radiation around astrophysical black holes.

Such analogue systems share a number of common features: There is always an interaction
between a classical background and a classical or quantum fluctuation. This interaction replaces
gravity in the original system, arises from an interaction with a moving medium, and can be
modeled as an effective space-time geometry. The curvature includes a region that blocks ingoing
or outgoing modes and resembles an event horizon. This region consists of a transonic flow,
where the moving medium goes from subsonic to supersonic. When an ingoing fluctuation mode
interacts with this horizon, it scatters into two new outgoing modes: the Hawking and the partner
modes. This is the main feature for which we can consider them as analogue systems producing
analogue Hawking radiation.

These analogue systems do not exactly reproduce what happens in astrophysical black holes.
Understandably, the dynamics are different for each system. However, Hawking radiation is a
phenomenon that depends only on the kinematics of the system, and these conditions can be
replicated in different analogue systems [24, 25].

For a single ingoing mode there are only two outgoing modes during the pair production of the
astrophysical Hawking process, due to the linear dispersion relation that determines the number
of modes. However, it is possible to have more than two outgoing modes in analogue systems
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due to a non-trivial dispersion relation. In both cases, the spectrum loses its thermality through
the appearance of a gray body factor [26, 27]: Due to a scattering process by considering the full
(3+1)D geometry in the astrophysical case and due to a non-trivial dispersion in the analogue
systems. At the same time, the introduction of dispersion solves the theoretical conundrum in
Hawking’s original derivation of the apparent need of ultrahigh frequency modes for the radiation
to be emitted: the trans-Planckian problem [25, 28].

Another advantage of analogue systems is the possibility to measure the negative-frequency
Hawking partner mode, something impossible in astrophysical black holes [21]. This possibility
has drawn attention to the concept of negative frequencies and has introduced a number of
experimental and conceptual challenges to understand them [11, 21, 29–31]. The importance of
negative frequencies and their distinction from positive ones is usually discussed in the context
of quantum field theory, where negative and positive frequencies are related to the annihilation
and creation operators, respectively [5,32,33]. For classical systems, although seldom recognized,
its importance is equally valid and necessary for a proper explanation of processes where mixing
of positive and negative frequencies is possible, including analogue Hawking radiation.

As is common in QFTCS, the scalar product can be a negative quantity and it defines a pseudo-
norm instead of a norm [34] e.g., in the Klein–Gordon equation. As a consequence, we can have
modes with either a positive or a negative norm. It is usual to partition the modes into two sets:
a set with positive norm and a set with negative norm. Sometimes frequency and norm are used
interchangeably, but they are not equal. Ideally, the signs of the norm and the frequency would
match but, as we will see, in practice they not necessarily do.

The dispersion relation is also split into positive and negative frequency branches. It is usually
convenient to express the modes of the fluctuation field in terms of these branches. We find that
it is possible to match the sign of the norm to the sign of the frequency for all modes. This is not
possible for any frequency, but only for the frequency defined in the reference frame comoving
with the horizon. Interestingly, the negative-norm modes (negative comoving frequency modes)
appear only when the fluctuation modes move from the subsonic to the supersonic region, as we
will see by examining the supersonic dispersion relation.

In this work, we review Hawking radiation in astrophysics and analogue systems in Section 2.
We revisit the concept of negative frequencies and how they are understood by the Doppler effect
in Section 3. We discuss the role of the scalar product and the pseudo-norm and how they are
related to the branches of the dispersion relation. We note the importance of the negative-
frequency modes for the Hawking radiation in Section 4, where we obtain that the sign of the
norm can be aligned with the sign of the frequency defined in the frame of reference of the
horizon. In Section 5 we briefly describe these concepts in four analogue systems: gravity waves
in water tanks, fluctuations in Bose–Einstein condensates, light polaritons in a polariton fluid,
and light pulses in an optical fiber.

2. Hawking radiation in astrophysics and analogue systems

In 1974, S. Hawking proposed a novel mechanism by which black holes formed by the gravita-
tional collapse of a massive body, such as a star, would emit thermal radiation [1]. The energy of
this radiation comes from the evaporation of the black hole, since in the overall picture the emit-
ted radiation is accompanied by a loss of mass from the black hole. Such an important conclusion
can be analyzed by studying Hawking’s approach, where a pair of modes of opposite frequency
appear. The positive-frequency mode with an escaping trajectory is what we interpret as Hawk-
ing radiation, while the negative-frequency mode with a falling trajectory into the black hole is
called the partner and is what reduces the black hole mass. The creation of these pairs of quanta
arises from the behavior of quantum fields in curved spacetimes, where the notion of vacuum
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depends on the observer [5, 33]. Therefore, two different sets of bases can be used to describe a
quantum field φ̂ in two quasi-static and asymptotic regions of spacetime (i.e., before and after
the collapse of the star) and can be written as

φ̂(x, t ) =
∫ ∞

0

(
âωφ

in
ω (x, t )+H.c.

)
dω=

∫ ∞

0

(
b̂ωφ

out
ω (x, t )+H.c.

)
dω, (1)

where â and b̂ are annihilation operators, each for a different basis of modes φin
ω and φout

ω ,
and H.c. is the Hermitian conjugate. The expansion in one set of modes written as a linear
combination of modes from the other set is known as a Bogoliubov transformation, i.e.,

φ̂in
ω (x, t ) =αφ̂out

ω (x, t )+βφ̂out∗
ω (x, t ). (2)

If we use only positive-frequency modes from one set (i.e., the non-H.c. modes) to construct
positive-frequency modes from the other set, then β = 0 in the Bogoliubov transformation and
the annihilation operators from one set are a linear combination of only annihilation operators
from the other set. In this case, there is an agreement in the definition of the vacuum state for
both sets. On the other hand, when β ̸= 0, positive-frequency modes of one set are written as a
linear combination of positive- and negative-frequency modes of the other set, and the definition
of the vacuum state is different for each set.

The scattering of in-modes in the vacuum state at the event horizon leads to the spontaneous
creation of particles in the out-modes. The calculation of the expectation value for an out-
fluctuation in the in-vacuum, i.e., 〈0in|b̂+

ωb̂ω|0in〉, leads to a spectrum of a bosonic thermal
distribution with the profile of a perfect black body with a temperature given by:

T = ħσ
2π

= ħc3

8πGM
, (3)

where σ= c3/4GM is the surface gravity and M is the black hole mass. The Hawking radiation is
a fascinating theoretical construct that bridges the gap between general relativity, quantum me-
chanics, and thermodynamics in the context of astrophysical black holes. It has profound im-
plications for the ultimate fate of these enigmatic entities and makes them an attractive research
topic in modern theoretical physics [35]. Even with technological advances and improvements
in observational techniques, detecting Hawking radiation from astrophysical black holes remains
an enormous challenge. The radiation produced is extremely faint, making it nearly impossible
to observe directly with current and foreseeable technology (but see Ref. [4]).

The first idea for an analogue system in which Hawking radiation could be reproduced
came from W. Unruh in 1981 [10] who, while teaching a course in fluid dynamics, came to the
conclusion that the equations of motion for waves in fluid mechanics are similar to those for
massless scalar fields in general relativity1. Thus, a fluctuation field propagating in a flowing
medium can be seen as propagating in curved spacetime. Within this moving medium with a
flow velocity profile U (x) we identify a region where its velocity is equal to the velocity of the
propagating perturbation c, such that space is divided into a subsonic U < c and a supersonic
U > c region. This behavior is similar to the conditions found in an astrophysical event horizon
considering the Schwarzschild metric written in the Painlevé–Lemaître–Gullstrand coordinates,
where the velocity profile of the spacetime is U =p

2M/r and the fluctuation velocity is equal to
the speed of light c. The transonic region U = c defines the horizon.

One of the most distinctive aspects of analogue Hawking radiation is the presence of disper-
sion in the system, whereas for astrophysical Hawking radiation we assume a linear dispersion
relation considering that the speed of light is constant at all frequencies. This absence of dis-
persion mechanisms leads to the previously discussed trans-Planckian problem for astrophysi-
cal Hawking radiation [25,36]. On the other hand, by including a dispersion model, the analogue

1Confirmed by direct communication with the author.
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Hawking radiation solves the trans-Planckian problem, but the price paid is the loss of thermality
due to the appearance of a gray body factor [26].

The mathematical analysis to derive Hawking radiation in analogue systems can be done in
exactly the same way as Hawking did for astrophysical black holes when we neglect higher-
order dispersion effects. We assume that the flow is transonic and the location of the horizon
is x = xh . Obviously, the derivative of the flow velocity profile is non-zero at this point. We do a
linear approximation U (x) ≈αx+c and it can be proven that pair production takes place and the
outgoing modes will have a black body radiation profile with temperature

T = ħα
2π

, α= dU (x)

d x

∣∣∣∣
x=xh

, (4)

where α is the generalized surface gravity, which depends on the velocity profile of the moving
medium.

3. Negative frequencies

We have found that in general it is better to describe the analogue event horizon in a frame of
reference where it is static, since experiments for each analogue system can be quite different
from each other. This frame can be either the laboratory frame or a frame moving with the
effective mechanism that generates the horizon, called the comoving frame. It is important to
keep track of how the mode frequencies of the fluctuation field change between these two frames.
The nonrelativistic Doppler effect relates the observed frequency ωo in one frame to the emitted
frequency ωe in the other frame

ωo =ωe

(
c ±Vo

c ∓Ve

)
, (5)

where c is the velocity of the fluctuation, Vo is the velocity of the observer, Ve is the velocity of
the emitter, the sign in the numerator is positive if the observer is moving toward the emitter, and
negative if the observer is moving away from the emitter source. The sign in the denominator
does the opposite.

The Lagrangian for dispersive systems is modeled with the inclusion of higher-order deriva-
tives L = L(φ,∂tφ,∂xφ, . . . ), where φ is the fluctuation field. Using the least action principle, we
can obtain the Euler-Lagrange equation, which gives the wave equation containing the dynam-
ics of the system. The resulting dynamical equation contains the information of the dispersion
relation in the reciprocal space, which can be written as

ω′2 = (ω−Uk)2 = F (k)2, (6)

whereω′ is the comoving frequency obtained by a Doppler shift from the laboratory frequency ω
and sometimes known as the free-fall frequency F (k). In the dispersionless case the dispersion is
linear F (k) = ±ck, and for dispersive cases it takes more complex functional forms. In the latter
case, the dispersion relation can be classified as subsonic or supersonic, depending on the value
of the phase velocity |ω/k| with respect to the value c of the dispersionless case. As we will see,
the transition from one region to the other is crucial for the appearance of positive- and negative-
norm solutions.

If the Lagrangian is invariant to time translations, we have solutions called stationary modes,
which have the formφ(x, t ) = e−iωtφω(x). A complete solution involves the complex conjugate of
the stationary modes, so it is common to express the field as an expansion of modes with positive
and negative frequencies ω, i.e.,

φ(x, t ) = aωe i kx−iωt +a∗
ωe−i kx+iωt , (7)
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where the first term represents the positive-frequency modes and the second term represents the
negative-frequencies modes.

4. Negative norms

As we discussed earlier, Hawking radiation is not a full quantum gravity effect, but rather a con-
sequence of analyzing a quantum fluctuation field in a classical curved spacetime background,
which is known as semiclassical gravity. Even more remarkable is the fact that the curved space-
time in analogue systems results from the consideration of an effective theory describing a mov-
ing medium in which a quantum—or even a classical—field fluctuation propagates. In the sim-
plest case, such a propagating field is a massless scalar field that can be decomposed into appro-
priate modes. These modes can be characterized by properties of their oscillatory nature, namely
their wavenumbers or frequencies.

Therefore, the general solution is a linear combination of all possible solutions over a given
basis. This linear expansion must include the space of complex conjugate solutions. The distinc-
tion between ordinary solutions and their complex conjugates gives us a natural separation for
positive- and negative-frequency solutions. On the other hand, the norm of a quantum field can
be computed by the definition of the scalar product

(φ̂1, φ̂2) = i
∫ ∞

−∞
(
φ̂∗

1 π̂2 − φ̂2π̂
∗
1

)
dx, (8)

where φ̂ is the massless field and π̂ is its canonical momentum defined as

π= ∂L

∂
(
∂t φ̂∗) , (9)

and L is the Lagrangian. Unlike traditional scalar products, Eq. (8) can be either positive or
negative, and is therefore known as a pseudo-norm [34]. However, the sign of the norm and
the sign of the frequency are not necessarily the same for a given solution. When we consider
all possible modes that can occur given an input state, we look for modes that are solutions
of the dispersion relation given the value of a conserved Killing vector, usually the laboratory
frequency [37]; although for the particular case of the fiber-optical analogue, the conserved
quantity is the comoving frequency. Within these possible modes we find solutions that extend
into the range of negative frequencies for the dispersion relation, and as such are part of the basis
of complex conjugate solutions. As a side note, when talking about real fields, such as the electric
field, its complete decomposition into complex modes and their conjugates must simultaneously
include positive and negative frequencies spanned over a basis. Both sets are necessary to recover
the real solution [31, 38].

When we expand the modes to form a general solution, we can choose to do so in the
basis of plane waves that span both dispersion branches in Eq. (6). This means that we take
ω=Uk ±|F (k)| and the solution takes the form:

φ(x, t ) = 1

2π

∫ ∞

−∞

[
A+(k)e i kx−i (Uk+|F (k)|)t + A−(k)e i kx−i (Uk−|F (k)|)t

]
dk. (10)

From this expansion we can confirm that the exponential terms in the second sum are the
complex conjugates of the exponentials in the first sum, so we have a complete set. If we calculate
the norm of this solution using the scalar product of Eq. (8), we find

(φ,φ) = 1

π

∫ ∞

−∞
|F (k)|

[∣∣A+∣∣2 −|A−|2
]

dk. (11)

If the Lagrangian for the system under analysis is invariant under global phase transformations,
then the scalar product of the field is a conserved quantity. By considering a positive-norm mode
as an input to the system, part of the field can be transformed into a negative-norm mode,
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accompanied by an increment of positive-norm modes, in such a way that the total norm is
conserved. If the input mode is the vacuum state, a pair of modes with opposite norm and
frequency can be created, and we have the so-called spontaneous creation of a pair of particles.
The Hawking effect is an example of such an effect.

The two branches in Eq. (11) are decoupled and the sign of a solution is equal to the sign of
the comoving or free-fall frequency. In fact, the modes in the positive dispersion branch with
positive norm have a positive comoving frequency. This construction of the space of solutions
carries with it the importance of the negative frequencies as a core element in the description of
the analogue Hawking radiation.

As we have seen, the dynamics of all analogues of Hawking radiation is described by some
wave equation, most of them second-order equations after some approximations. These in
turn are translated into second-order algebraic equations from which we derive the dispersion
relation. In fact, there are two possible solutions or branches of the dispersion relation: one for
positive frequencies and another for negative frequencies.

For concreteness, we will now discuss the dispersion relation of the four most relevant exper-
imental systems for analogue gravity. The four most studied analogue systems are gravity waves
in water tanks [11, 12], phonons in Bose–Einstein condensates [16, 17, 39, 40], light pulses in op-
tical fibers [20, 21], and, more recently, light polaritons in a microcavity [22, 23]. The dispersion
relations for each system will be given in Eqs. (14), (18), (22), and (25), and their respective plots
in the laboratory and in the comoving frame for the supersonic case in Figs. 2, 4, 6, and 8.

5. Analogue gravity systems

5.1. Water waves

In the context of water waves, the classical phenomenon of analog Hawking radiation can be
observed in a flowing fluid with a velocity profile varying in space U (x), as in a water channel,
where we consider only one effective spatial dimension. This setup can be obtained in a long
water tank with varying depth. The forces acting on the fluid are such that the horizontal flow
remains stationary. We consider an irrotational, inviscid, and incompressible fluid [11, 13]. The
analogue curved spacetime is obtained by varying the depth of the bottom of the tank. This
variation produces the velocity gradient flow and we can identify a horizon that is stationary
in the laboratory frame. Fluctuation waves are generated by an external method (usually an
oscillating paddle) and propagate against the fluid flow up to the point where their velocity c
equals the velocity of the flow U : This point is called the horizon. In Fig. 1 we show a schematic
of the water wave analogue in the water tank configuration.

The dynamics of surface waves can be described by the Klein–Fock–Gordon equation for the
fluctuation φ

(∂t +∂xU ) (∂t +U∂x )φ=Vext (−i∂x )φ, (12)

where Vext(i∂x ) represents a generalized potential that, for the particular water tank configuration
described above, can be written as

Vext(−i∂x ) = i

(
g∂x − γ

ρ
∂3

x

)
tanh(−i h∂x ). (13)

The dispersion relation for this system is

(ω−Uk)2 =
(

g k + γ

ρ
k3

)
tanh(kh), (14)

where g is the free fall gravity acceleration, ρ is the density of the fluid, γ is the surface tension,
and h is the depth of the fluid in the water tank.
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Now let us define the laboratory and comoving frequencies using the Doppler effect described
by Eq. (5). In this case the observer is fixed in the laboratory, i.e. Vo = 0, the emitter is the fluid
moving with the waves at velocity Ve =U , the laboratory frequency is ω0 =ω, and the comoving
frequency is ω′ =ωe . For this case, the Doppler formula is then

ω′ =ωc −U

c
. (15)

In the laboratory frame, we consider the detector’s point of view to define positive frequencies,
i.e. since a frequency detector only detects the beating of waves, we usually assign a positive
frequency to it. In this case, all frequencies measured in the laboratory are positive quantities, but
the difference c −U is not always a positive quantity, so the value of ω′ can have a different sign
depending on the situation. There are three possibilities: (i) in the subsonic region U < c then
ω′ > 0, (ii) in the transonic U = c then ω′ = 0, and (iii) in the supersonic U > c then ω′ < 0. The
supersonic flow condition is accompanied by negative comoving frequencies. This is the case
shown in Fig. 2 where we plot the dispersion relation Eq. (14) in the laboratory and comoving
frames. There is a transition condition U = c and ω′ = 0 where negative comoving frequencies
appear: This is the so-called horizon frequency. In dispersive systems it is more useful to define
the horizon as a frequency rather than a spatial point [20]. Beyond this point, an ingoing mode
undergoes a frequency shift and part of its norm is transformed into a pair of positive- and
negative-frequency modes by norm conservation.

If we compute the norm for this system, we would find that Eq. (11) can be expressed as

(φ,φ) = 1

π

∫ ∞

−∞

∣∣∣∣(g∂x − γ

ρ
∂3

x

)
tanh(−i h∂x )

∣∣∣∣[∣∣A+∣∣2 −|A−|2
]

dk. (16)

In Fig. 2 the positive and negative branches of the supersonic dispersion relation are shown
in blue and red, respectively, and the black line represents a given conserved frequency. The
possible solutions for this conserved frequency are the modes resulting from the intersection
of the black line with one of the two branches. The Hawking effect consists of the emission of
two signals of opposite-sign norm, one solution in the positive branch and one solution in the
negative branch. In both the laboratory and the comoving system, there are three solutions in the
positive branch and one in the negative branch. The input fluctuation (in) is the solution near the
origin with k > 0 and positive norm +|F (k)|, the Hawking mode (H) has larger k ≫ 0. The partner
mode (P) has k ≪ 0 and negative norm −|F (k)|. The fourth mode is counterpropagating (C) and
does not affect the Hawking process.

Before the fluctuation reaches the horizon, the dispersion relation is that of the subsonic case,
where there are only two positive-norm solutions. Since there are no modes in the negative
branch, A− = 0 in the norm Eq. (16). It is only when the fluctuation passes the horizon condition
and enters the supersonic region U < c that the negative-norm modes become real solutions
and contribute to the norm with a factor −|F (k)||A−|2. The supersonic condition also defines the
negative frequencies for the frame where the detector is not static due to the Doppler effect. Thus,
the supersonic condition describes the existence of negative-norm modes and their association
with negative-frequency modes.

5.2. Bose–Einstein condensates

Now we consider a Bose–Einstein condensate (BEC) in a quasi-one-dimensional laser trap, elon-
gated enough such that its transverse dynamics can be considered constant, and the system is
reduced to an effective one-dimensional problem. The condensate flows with a spatial variation
of its velocity U (x) and density profile n(x) near a region where the flow is kept stationary in time
by interaction with an external potential Vext(x) together with tuning of the interaction constant
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Figure 1. Diagram of an experiment to measure analogue Hawking radiation in water
waves [11]. The analogue event horizon is stationary in the laboratory frame.
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W
at

er
 w

av
es

H
in

CP

P

Comoving frame

H
inC

Figure 2. Left: Dispersion relation in the laboratory frame. Right: Dispersion relation in
the comoving frame for the water wave analogue.

g (x). Within the condensate, the speed of sound is c(x) =√
g n(x)/m, where m is the mass of the

condensate. The desired velocity profile to obtain a black hole configuration requires the imple-
mentation of a sink of atoms, which is physically achieved by a moving laser sweeping the con-
densate [41]. Therefore, we have two regions separated by this sink: a subsonic half where U < c
usually called the upstream (u) region, and a supersonic half where U > c, called the downstream
(d) region. In this way it is possible to obtain an effectively curved spacetime in which fluctu-
ations can propagate. Fluctuations in the d region cannot access the u region: This is the ana-
logue of the interior of an astrophysical black hole, and the sink separating the two regions which
satisfies the sonic condition U = c is equivalent to the event horizon.

The condensate wave function ψ̂ models the fluctuation and is a solution of the stationary
Gross-Pitaevskii equation [

− ħ2

2m
∂2

x +Vext(x)+ g (x)
∣∣ψ̂∣∣2

]
ψ̂=µψ̂, (17)

where µ is the chemical potential. Far away from the sink both regions reach an asymptotic limit
where the flow and fluctuation velocities reach a static value Vu,d and cu,d , respectively. In these
limits, the dispersion relation can be written as

F (k)2 = (
ω−Uu,d k

)2 = c2
u,d k2

(
1+ 1

4

(
kξu,d

)2
)

, (18)

where ξu,d = ħ/(mcu,d ) is the healing length, which describes the interaction range of the
condensate in the two regions u,d . In this case we propose to keep the negative-sign solution
when we take the square root of this equation to align positive norms to positive frequencies,
unlike most work in BECs, where the signs are reversed.
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In this system, the moving laser creates the necessary potential that produces the separation
of the medium by means of the analogue event horizon. In the laboratory frame the horizon
moves along with the laser, but we can define a comoving frame where it is stationary. We show
a schematic of the system in Fig. 3. To use Eq. (5), we identify the observed frequency as the
comoving frequency ωo = ω′ and the emitted frequency as the laboratory frequency ωe = ω.
The negative of the flow velocity replaces the velocity Vo = −U and the velocity of the emitter
is Ve = 0 in this frame of reference. Thus, the frequencies in both frames of reference are related
as

ω=ω′ c

c −U
(19)

Since the optical detector also moves with the laser [41], there is an effective change of roles,
since now ω′ > 0. The same three cases subsonic, transonic and supersonic that exist for water
waves are reproduced here. The laboratory frequency ω can be positive or negative with an
indefinite value at the transonic condition U = c, which describes the horizon. Even if the horizon
is stationary in the comoving frame, the same physics applies to describe the core phenomenon.

By evaluating Eq. (11) to find the norm we have(
ψ̂,ψ̂

)= 1

π

∫ ∞

−∞

∣∣∣∣∣cu,d k

√
1+ 1

4
(kξu,d )2

∣∣∣∣∣[∣∣A+∣∣2 −|A−|2
]

dk, (20)

where we can see again that the norm is determined by the free-fall frequency now given by
Eq. (18).

P

BH horizon Inner horizon

H 

Figure 3. Analogue Hawking radiation for Bose–Einstein condensates [42]. The analogue
event horizon is stationary in the comoving frame.

Laboratory frame

H C
Pin

Comoving frame

H in
C

P

Figure 4. Left: Dispersion relation in the laboratory frame. Right: Dispersion relation in
the comoving frame for the BEC case.
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In Fig. 4 we plot the dispersion relation in Eq. (18) in the laboratory and comoving frames,
where we have two positive-norm solutions and two negative-norm solutions. This mode
structure is different from the water wave analogue.

5.3. Polaritons fluids

In polariton fluids, the system consists of a semiconductor microcavity placed between two Bragg
mirrors to form a thin cavity (see Fig. 5). The material inside the cavity usually consists of InGaAs
quantum wells. These quantum wells confine excitons, which are quasi-particles of bound states
composed of electrons and holes. These excitons interact strongly with confined photons emitted
by a laser in the cavity. A combination of excitons and photons can merge to form a quasiparticle
resulting from light-matter interactions within this microcavity, known as a polariton.

The Hamiltonian of this system has two eigenstates: the lower and upper polariton branches.
The pump laser is chosen to be quasi-resonant with the lower branch. By introducing of a
deformation within the cavity, a polariton flow can be modified to have an effectively curved
spacetime for fluctuations in the polariton fluid. Then the condition to have a horizon is to have
subsonic U < c and supersonic U > c regions separated by a transonic boundary U = c, which
is the analogue event horizon. This system can be configured in one or two dimensions [43, 44],
including a rotating configuration [45].

The dynamics of a fluctuation is given by a modified Gross-Pitaevskii equation [22]:

iħ∂t Ψ̂=
[
− ħ

2m
∂2

x +ħg +Vext − iΓ

]
Ψ̂+Fp , (21)

where Γ is the loss rate and Fp is the field of the pump laser. The dispersion relation is

(F (k)+ iΓ)2 = (
ω(k)−Uk + iΓ

)2 = ħk2

2m

(ħk2

2m
+2g n

)
, (22)

where n = |Ψ|2. In this system, the flow is generated by the moving polaritons due to the applied
pump laser. Similarly to the BEC case, we take negative sign in the square root of this equation to
align positive norms with positive frequencies and negative norms with negative frequencies.

The analogue event horizon is stationary in the laboratory frame and the transonic condition
U = c occurs near the position of a defect introduced into the cavity, similar to previous cases.
The calculated norm for this system is(

Ψ̂,Ψ̂
)= 1

π

∫ ∞

−∞

∣∣∣∣∣
√

ħk2

2m

(ħk2

2m
+2g n

)
− iΓ

∣∣∣∣∣[∣∣A+∣∣2 −|A−|2
]

dk. (23)

In Fig. 6 we show the dispersion relation for the polariton fluid in both the laboratory and
the comoving frames. Since the functional form in Eqs. (18) and (22) is proportional, we have a
similar feature set of solutions for the BEC system.

5.4. Optical fibers

In the fiber-optical analogue, the moving medium is the fiber itself, as viewed from the comoving
frame of a pump pulse traveling along the fiber. It is desirable to have the shortest pump pulse
possible, since it enhances the Hawking effect due to increased nonlinearity [46]. As the pump
pulse propagates through the fiber, there is a local change in the refractive index proportional to
the intensity of the pulse δn(τ) ∝ I (τ), where τ is the delay time and I is the intensity of the pump
pulse. This phenomenon is known as the optical Kerr effect [47], and it is the way to obtain an
effectively curved spacetime. The use of highly-nonlinear fibers known as photonic-crystal fibers
(with high nonlinear coefficient γ ∼ 104W−1km−1 [48]) and the use of ultra short pulses (FWHM



12 Raul Aguero-Santacruz and David Bermudez

-+
-+

Bragg mirror

Bragg mirror

Quantum
wells

Pump laser

Polariton

Photon

Exciton

Figure 5. Analogue Hawking radiation for polariton fluids [44]. The analogue event horizon
is stationary in the comoving laboratory frame.
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Figure 6. Left: Dispersion relation in the laboratory frame. Right: Dispersion relation in
the comoving frame for the polariton case.

∼ 10 fs) are also desirable to enhance the nonlinear effects. In this way, we work in the regime of
extreme nonlinear optics (XNLO) [8], where the negative branch of the dispersion relation can be
seeded to produce negative-norm solutions. In Fig. 7 we can see a representation of how Hawking
radiation takes place inside an optical fiber when the system is viewed in the pump pulse frame.

Fluctuation waves traveling inside the fiber but away from the pump pulse are affected only
by the refractive index of the fiber n0(ω), which changes the speed of the waves according to their
frequencies. When these fluctuation waves approach the pump pulse, the total refractive index
n(ω,τ) = n0(ω)+δn(τ) is higher. As the fluctuation wave catches up with the pump pulse, its
velocity decreases until it eventually stops (in the comoving frame) at a point that is the analogue
horizon. Fluctuations moving in the same direction as the effective fluid flow, i.e. the effective
moving fiber in the comoving frame, are said to be copropagating, and counterpropagating when
they move in the opposite direction. If the waves are counterpropagating, they reach the pump
pulse through an analogue white-hole horizon or if the waves are copropagating, they reach the
analogue black-hole horizon of the pump pulse. In either case, a pair of Hawking radiation signals
are produced. They can be classical or quantum depending on the type of input fluctuation
considered. A classical input can be another pulse, such as a soliton or a continuous wave. For
the quantum effect to occur, the quantum vacuum acts as the input fluctuation. The classical
case has been experimentally verified [19], including the detection of the negative-frequency
mode [21]. The quantum case has not yet been experimentally verified.

The dynamics of light interacting inside an optical fiber is described by Maxwell’s equations.
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However, the wave equation can be simplified with a minimum of approximations while still
retaining validity for XNLO [49]. This equation is known as the unidirectional pulse propagation
equation (UPPE) and is written as

i∂zEω+k(ω)Eω+ ω

2cn(ω)
χ(3) (E 2E ∗+E ∗2E +E 3)

ω+ = 0, (24)

where Eω is the Fourier transform of the analytic signal of the electric field E , k(ω) = ωn(ω)/c is
the propagation constant or wavenumber and represents the dispersion of the system, n(ω) is
the total index of refraction, and the plus subscript in the last term means positive filtering of
frequencies, i.e. Θ(ω).

In optics, the dispersion information is usually encoded in the refractive index n(ω) or the
wavenumber k(ω). However, for horizon physics we work in the comoving frame of the pump
pulse, and it is more convenient to use the Doppler frequency ω′ since it is (at least approxi-
mately) a conserved quantity

ω′(ω) = γL [ω±Uk(ω)] , (25)

where γL is the Lorentz factor and the plus (minus) sign is for the negative (positive) branch of
the dispersion relation.

In this system, the pump pulse propagating through the fiber generates the horizon, which is
stationary in the comoving frame of the pulse. This is the same situation as in BECs, and the same
analysis of the relationship between the different frame frequencies applies. This is Vo = −U ,
Ve = 0, ωo = ω′, ωe = ω, and therefore the Doppler shifted frequency in Eq. (5) takes the same
form as in Eq. (19) and can be effectively reduced to Eq. (25) if we include the γ factor in ω′.

The transformation from the laboratory frame to the comoving frame is done by the non-
boosted coordinate transformation t = τ− z/U and ζ = z/U , where τ and ζ are the delay time
and the propagation time, respectively.

P

BH

H
in

Figure 7. Diagram of the situation for analogue Hawking radiation inside an optical fiber
in the comoving frame [8]. The analogue event horizons for white hole and black holes are
stationary in the comoving frame. The Hawking radiation and its partner appear when a
fluctuation interacts with the pump pulse.

The two coordinates τ, ζ in the comoving frame have dimensions of time, τ playing the role
of space and ζ that of time, and their conjugated variables are ω and ω′, respectively. With
the fluctuation modes now expressed in terms of the variables of the comoving frame, the two
branches of the dispersion relation can be used to write a general solution to the propagation
equation, which has the form

E (τ,ζ) = 1

2π

∫ ∞

−∞

(
A+(ω)e−iωτ−i (ω−U |k(ω)|)ζ+ A−(ω)e−iωτ−i (ω+U |k(ω)|)ζ

)
dω. (26)

The norm is calculated by replacing the previous expression in Eq. (11) and we find it to be

(E ,E ) = 1

π

ϵ0c2

U

∫ ∞

−∞
|k(ω)|

[∣∣A+(ω)
∣∣2 −|A−(ω)|2

]
dω, (27)
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Figure 8. Left: Dispersion relation in the laboratory frame. Right: Dispersion relation in
the comoving frame for the optical case.

where we can see that k(ω) plays the role of the free-fall frequency and defines the sign of the
norm.

In Fig. 8 we plot the dispersion Eq. (25) for the laboratory and comoving frames, where we see
two positive-norm solutions and two negative-norm solutions. Also, k(ω) determines the norm,
but the comoving frequency ω′ is conserved. Therefore, all four systems share the same feature
of presenting possible solutions with negative comoving frequencies in the superluminal region.

6. Recent developments and conclusions

All the systems discussed so far represent a way to study Hawking radiation in systems different
from the original astrophysical one, each with its own advantages and disadvantages. In these
systems there is a flowing medium over which the propagating fluctuations can be dynamically
studied with a wave equation. Embedded in these equations is information about the dispersive
properties of the system, and as we have seen, this property is strongly related to the mixing of
positive and negative norm modes that is necessary for the Hawking effect to occur. In addition,
the magnitude of the velocities involved in the horizon frame are slow.

The water waves system was the first to be theorized and the first in which the Hawking
effect was experimentally verified, although only as a classical effect. Even then there were
measurements of the negative-frequency Hawking modes [11, 12]. The study of this system has
developed gracefully thanks to the collaboration of many people [10, 11, 13]. Recently there have
been efforts to explore the quantum aspects of rotating fluids in vortex configurations [50] where
the fluid temperature can be lowered and it seems possible to study quantum effects.

The BEC systems have received great attention since their inception and have been a strong
candidate for experimental measurement of the spontaneous Hawking radiation. In recent years,
there have been reports of such experiments [16,17,41,51] by correlating the positive and negative
Hawking modes.

The polariton system has recently undergone a strong theoretical development [22,22]. There
is also current ongoing experimental efforts that are expected to give results soon [52]. Even
though this system may show similarities to the BEC system, its range of possible configurations
makes it an interesting choice for many more studies to come [53]. Including a 2D rotating
system to study rotating black holes (Kerr solution) and other phenomena such as rotational
superradiance [54].

The optical fiber analogue, while differing from the others in the way some of its variables are
represented, such as the substitution of k and ω for ω and ω′, retains the same core features.
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There is a good theoretical understanding of the effect and the experimental verification for a
classical fluctuation has been reported in the measurement of the positive and negative Hawking
modes [19–21, 55].

The study of negative frequencies is important for the analysis of Hawking radiation, either
for astrophysical or analogue black holes. Together with the norm and the dispersion relation,
we can gain very useful insight into how positive and negative are related, and why modes with a
certain norm may be easier to detect than others.

The important supersonic condition U > c is what gives rise to the negative-norm modes,
which are solutions of the negative-frequency branch in this regime. The sign of the norm
is not always the same as the sign of the frequency. However, we have shown here that the
signs of the norm and the frequency in the frame comoving with the horizon can be made
equal. This connection is helpful because it allows us to better understand the physical nature
behind spontaneous particle creation for any analogue system. We have a clear separation of
positive- and negative-frequencies and positive- and negative-norm modes that are present for
both classical and quantum analogue fluctuations.

As we have seen, all analogue systems can be studied under the same general framework in
which we can note their similarities and differences. These properties are particularly advanta-
geous as they stimulate a rich research program and flow of ideas within the study of analogue
gravity.
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