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Abstract. Dynamical Casimir effect (DCE) and cosmological particle creation (CPC) share the same under-
lying physical mechanism, that of parametric amplification of vacuum fluctuations in the quantum field by
an expanding universe or by a fast moving boundary. Backreaction of cosmological particle creation at the
Planck time has been shown to play a significant role in the isotropization and homogenization of the early
universe. Understanding the backreaction effects of quantum field processes in DCE is the goal of this work.
We present analyses of quantum field processes in two model systems: in 1+1D, a ring with time-dependent
radius, and in 3+1D, a symmetric rectangular conducting box with one moving side. In both cases the time-
dependence of the radius or the length is determined solely by the backreaction of particle creation and re-
lated effects, there is no external agent. We find that for 1+1D, the only quantum field effect due to the trace
anomaly tends to accelerate the contraction of the ring over and above that due to the attractive force in the
static Casimir effect. For the rectangular box the expansion or contraction is slowed down compared to that
due to the static Casimir effect. Our findings comply with what is known as the quantum Lenz law, found in
cosmological backreaction problems: the backreaction works in the direction of opposing further changes,
which means the suppression of particle creation and a slow down of the system dynamics. In conclusion we
suggest two related classes of problems of theoretical significance for further investigations.

Résumé. Au cours des deux dernières décennies, les chercheurs en gravitation analogique ont conçu de
nombreuses expériences en laboratoire pour tester certains effets importants de la gravité semi-classique;
le rayonnement de Hawking–Unruh dans les fluides et des BEC étant des exemples frappants. L’analogue de
la création de particules cosmologiques est l’effet Casimir dynamique, car les deux phénomènes partagent
le même mécanisme physique sous-jacent, à savoir l’amplification paramétrique des fluctuations du vide
dans le champ quantique par un univers en expansion ou par une frontière se déplaçant rapidement. Il
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a été démontré que la rétroaction de la création de particules cosmologiques au temps de Planck joue un
rôle important dans l’isotropisation et l’homogénéisation de l’univers primitif. Le problème correspondant
de la compréhension des effets de rétroaction des processus de champ quantique dans l’effet Casimir
dynamique est l’objectif de ce travail. Nous présentons des analyses des processus de champ quantique
dans deux systèmes modèles : en 1+1D: un anneau (composé de deux miroirs ponctuels identifiés aux deux
extrémités) dont le rayon dépend du temps, et en 3+1D: une boîte conductrice rectangulaire symétrique dont
la longueur d’un côté peut changer avec le temps. Dans les deux cas, la dépendance temporelle du rayon ou
de la longueur n’est pas prescrite – aucun agent externe n’est présent – mais déterminée uniquement par la
rétroaction de la création de particules et les effets connexes. Nous constatons que pour 1+1D, le seul effet
de champ quantique dû à l’anomalie de trace tend à accélérer la contraction de l’anneau au-delà de celle
déjà présente due à la force d’attraction plus faible de l’effet Casimir statique. Pour la boîte rectangulaire, le
taux d’expansion ou de contraction de la boîte est ralenti par rapport à celui dû à l’effet Casimir statique.
Nos conclusions concordent avec les résultats obtenus dans les problèmes de rétroaction cosmologique, qui
peuvent être résumés dans ce que l’on appelle la loi de Lenz quantique, selon laquelle la rétroaction agit dans
le sens de l’opposition à de nouveaux changements, ce qui signifie la suppression de la création de particules
et un ralentissement de la dynamique du système. En conclusion, nous mentionnons également deux classes
de problèmes connexes, et d’importance théorique pour des recherches ultérieures.

Keywords. backreaction, dynamical Casimir effect, nonequilibrium quantum field, vacuum fluctuations,
quantum fields in curved spacetime, adiabatic regularization.

Mots-clés. rétroaction, effet Casimir dynamique, champ quantique hors équilibre, fluctuations du vide,
champs quantiques dans un espace-temps courbe, régularisation adiabatique.
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1. Introduction

In keeping with the request from the editors of this special issue dedicated to the memory of
Renaud Parentani we have chosen a topic of current research interest which Renaud has worked
on and made important contributions, namely, moving mirrors and dynamical Casimir effect
(DCE). This ranges from the early substantive papers of Obadia and Parentani [1–3], a must-read
after that of Davies and Fulling [4, 5], to the recent papers of Busch, Parentani and Robertson [6,
7], which use the example of DCE to explore the fundamental issue of quantum entanglement,
with the purpose of providing a much more accessible experimental platform than black holes
and the early universe for testing the informational theoretical predictions of Hawking–Unruh
effects [8, 9] and the inflationary cosmology [10]. The underlying physical mechanism of DCE,
namely, parametric amplification of quantum fluctuations, is a close analogy to cosmological
particle creation (CPC) [11, 12], a topic studied in the 70s as an important part of the pioneering
efforts towards establishing a quantum field theory in curved spacetime [13–17].

Dynamical Casimir effect has a broader scope than the moving mirror analogue of Hawking
radiation, also explored from the 70s on [4, 18–21], since the trajectory of the mirror is chosen
to mock up the position of a black hole (see [22] for varying trajectories) and because of the
presence of an event horizon, the particle creation spectrum in this category of problems is
specified to be thermal in nature1. Backreaction of Hawking effect using the moving mirror
analogy has been studied by some authors earlier on [25, 26], including a note by Massar and
Parentani [27], and more recently, e.g., [28]. From the rigorous calculations of one of the present
authors with Galley and Behunin [29], whereas the late time behavior of the black hole’s dynamics
as modified by the emitted Hawking radiation is the focus of the black hole backreaction program,

1Cosmological particle creation can be thermal, the common denominator for thermal particle production in
evolutionary cosmology and in spacetimes with event horizons is explained in [23]. One can also treat cases with near-
thermal radiation with a stochastic field theory approach, as described in [24].
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it is precisely in the late time regime when divergence problems arise which destroys the moving
mirror analogue2.

Emulating Renaud’s style, which is always direct, probing, serious and thorough, we shall spare
the readers with a heavy reference-laden background, leaving it to some excellent recent reviews,
e.g., [31–33], but go directly into the problem and its central issues. Noteworthy is that, behind
DCE rests the very important and rapidly developing field of quantum optomechanics (QOM).
From the perspective of atomic-optical physics, the displacement of a mechanical membrane
have been used to capture the activities in an optical cavity [34, 35]. Reversing the order is the
working principle behind LIGO-VIRGO-KAGRA, i.e., using an interferometer aided by optical
spring and noise reduction techniques to measure the tiniest displacements of the mirrors in
response to impinging gravitational waves.

Backreaction in 1+1D DCE

Backreaction effects in physical situations involving moving mirrors have caught increasing
attention in the last decades [36], demonstrating vacuum induced dissipation of mechanical
motion [37–39], as well as fluctuations and quantum decoherence [40–43]. Since the intent of
our present work is to serve more of an illustrative than practical purpose3, we shall be using
simple prototype models both for 1+1D and 3+1D cases.

For 1+1D, we consider a ring with a radius which varies with time in response to the quantum
effects of the matter field present in the process. The ring can also be understood as two points,
one of which is fixed, at a distance of L apart, being identified with a S1 topology, whereby L
becomes the circumference of the ring. Since the model is in 1+1D, and quantum fields in 1+1D
are conformal, the only contribution to DCE is from the conformal anomaly. (In fact, it had been
shown [48] that the trace anomaly fully determines the Hawking effect in 1+ 1D black holes.)
We shall perform an adiabatic regularization of the energy density of the quantum field, that we
use to derive the action for the dynamics of the ring-field system, and eventually the equation of
motion of the ring. In the appendix, we show an alternative derivation of the equation of motion
of the ring, which shows explicitly how the trace anomaly appears. Solving this equation gives
us the backreaction of quantum matter field, here in the form of the conformal anomaly, on the
ring’s dynamics.

While DCE has been studied by many authors, using simple models like two parallel con-
ducting plates with time-varying separation [49, 50], we know of one earlier paper which stud-
ied the model of a ring in a breathing mode [51] and another studying a one-dimensional ideal
cavity contracting uniformly for a finite duration [52]. The former authors used a path integral
(Polyakov) method (see also [53–57]) to derive the regularized effective action. Using a different
method we obtained the same equation of motion as in [51], where these authors calculated the
force due to DCE and compared it with the static Casimir force. They did not address fully the
backreaction effects of DCE, meaning, how the radius changes in time in response to the chang-
ing backreaction of the quantum field due to the trace anomaly.

Backreaction in 3+1D DCE and Cosmology

Regarding quantum effects of matter fields in a 3+ 1D background, for a conformal field in a
conformally-flat spacetime, e.g., the Friedmann–Lemâitre–Robertson–Walker (FLRW) universe,

2E.g., Haro [30] avoided this issue by assuming a well defined out state at late times, thus assuming, rather than
predicting, the black hole’s eventuality.

3For theoretical considerations many other factors may enter, such as stimulated particle creation [44] and nonlinear
interactions [45], secular effects and instability in parametric amplification and resonance, see e.g., [46]. In the design of
analogue experiments, naturally it gets even more complex, e.g.,[31, 39, 47].
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the only source in the backreaction equation is also the trace anomaly (see, e.g., [58]). When
one considers nonconformal fields in a conformally-flat spacetime (e.g., gravitons in FLRW
universe [59, 60]) or conformal fields in a non-conformally flat spacetimes (e.g., the Bianchi type
I universe [61–64], or inhomogeneities in a FLRW universe [65, 66]) there will be particle creation
and the backreaction would come from two sources, one due to the trace anomaly (attributable to
vacuum polarization effects), the other due to particle creation originating from the parametric
amplification of vacuum fluctuations (spontaneous creation) or from particles already present
(stimulated creation) [44]. It has been shown that particle creation at the Planck time led to
a rapid isotropization and homogenization of the early universe. For backreaction effects of
quantum fields on the singularity and particle horizon issues, see [67].

Analogy: Similarities and Differences

Despite the soundness of this analogy, when it comes to backreaction effects, there is an impor-
tant basic difference between DCE and cosmological particle creation (CPC). In DCE, there is an
external agent which drives the mirror. How much energy this agent puts into driving the system,
resulting in particle creation of varying degrees, is determined by the agent. If one keeps pump-
ing energy into the system at a steady rate, particle creation will continue and its backreaction
effect on the external agent would be marred by the stipulated drive protocol (albeit the agent
should feel its reactive force). In cosmology, the agent is the universe, but it does not have a free
reign. As we know from classical general relativity, the Einstein equation is both an equation of
motion, dictating how matter moves or behaves in a curved spacetime; it is also a field equation
for the dynamics of spacetime – matter governs how space is curved and evolves. Same situation
in the semiclassical Einstein equation, where matter is described by quantum fields. Spacetime
and matter make up a closed system, and the interplay between these two sectors has to satisfy
a self-consistency condition. This is explicitly demonstrated in [64] where the energy density of
particles produced over time in the field sector is shown to be exactly equal to the dissipative en-
ergy (anisotropy damping) in the geometrodynamics sector. Therefore, to make a sound compar-
ison of backreaction effects between DCE and CPC while solving for the dynamics of the ring or
the mirror it is important to place a constraint by specifying a fixed total energy of the ring/mirror
– quantum field closed system.

Quantum Lenz Law

Given this condition we expect the central feature of backreaction of particle creation in DCE
would be similar qualitatively to that of backreaction in cosmological particle creation, namely,
obeying the “Lenz Law”, termed by the leading practitioners in 80s [68–71], which says that
the backreaction effect of particle creation on the drive (in cosmology it is the evolution of the
universe, in DCE, the external agent, but note the necessity of imposing the condition of constant
total energy) works in such a way as to resist the changes, i.e., a reduction in the production of
particles and a slowdown in the motion of the mirror. In the example of particle creation from a
conformal quantum scalar field in an anisotropically expanding universe or a universe with small
inhomogeneity, this means the universe would eventually (indeed very quickly near the Planck
time) become isotropic and homogeneous whence particle creation ceases.

Key Findings

Indeed this is what we found in the 3 + 1D case, for a conformal scalar field under periodic
boundary conditions in a rectangular box, with one face free to move determined only (no
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external agent) by the backreaction effects of particle creation. Note that particles are produced
both when the ring expands or contracts. Our backreaction results show that particle creation
diminishes and the mirror slows down in both cases. What is intriguing is backreaction effects in
the 1+1D case, where there is no particle creation and conformal anomaly is the only quantum
field process present. The static Casimir force in our setup is attractive thus there is already the
tendency for the ring to shrink. The rather curious result for the backreaction of trace anomaly is
that it accelerate the contraction – something interesting enough for further thoughts.

2. Backreaction in 1+1 dimension

In this section we work with a simple 1+1D geometry, in which the backreaction of a massless
conformal quantum field is due to the Casimir energy and the trace anomaly. In the next
section, we consider a 3+1D dimensional configuration and highlight the other important kind
of backreaction, due to particle creation.

For simplicity, let us consider a spacetime manifold with topology R × S1, that is a circular
one-dimensional ring S1, with circumference (coordinate length) l . We allow the physical
length L(t ) ≡ a(t )l of the ring to change in time with a time-dependent scale factor a(t ). This
configuration is the same as the setup of two points 4 separated by a distance l , one fixed and the
other allowed to move, with periodic boundary conditions imposed on the field φ(x) =φ(x + l ).

The line element d s2 of this 1+1D spacetime is given by (c =ħ= 1):

d s2 ≡ gµνdxµdxν = dt 2 −a(t )2dx2, (1)

where gµν is the metric tensor. Let us consider a massive m conformally-coupled scalar field
whose action, S f [φ, gµν], has the form:

S f
[
φ, gµν

]= ∫
dt

∫ l

0
dx |g |1/2 1

2

[
gµν

(
∂µφ

)(
∂νφ

)−m2φ2
]

. (2)

Here, g ≡ det[gµν] =−a2, while gµν is the inverse metric tensor: gµαgαν = δµν .
Our objective is to compare how the scale factor changes with time in the two cases: 1) Due

solely to the Casimir effect (no backreaction), 2) due to the combination of Casimir effect and
backreaction from the trace anomaly of the conformal field. Note that, in the first case, the
size of the ring decreases due to the attractive Casimir force. We thus want to find out how the
backreaction of quantum field in the form of the trace anomaly may affect the rate of change of
the radius – does it slow down the shrinkage or speed it up?

To this end, we derive in what follows an effective action for the dynamics of the ring, where
the energy density of the field enters in the form of extra kinetic and potential terms. As usual,
in quantum field theory, the bare energy density suffers from ultraviolet divergences due to
the presence of zero-point fluctuations, which needs to be regularized or renormalized (if the
divergences can be put in the form of covariant geometric quantities) in order to obtain a finite
physical energy density. We perform this task in the next section.

4Here we want to add a note of caution in the physical difference between a periodic boundary condition and
a reflecting boundary condition as emphasized by an anonymous referee: “periodic boundary conditions allow the
presence of a wave that is propagating in a single direction, and when it reaches one edge (or “mirror”), it reappears
instantaneously at the other.” This is different from the reflective boundary condition as actuated by a perfect mirror.
Mathematically, the quantitative difference between a periodic boundary condition and a reflective boundary condition
is not so great: i) The range of summation over field modes differ: the periodic boundary condition gives a summation
from −∞ to +∞, while the Dirichlet condition afforded by a perfectly reflecting mirror gives a summation from 1 to ∞.
The normalization of modes also differs by a factor of

p
2. So, in terms of actual results, these two boundary conditions

only differ by a nonessential overall factor.
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2.1. Adiabatic Vacuum and Regularization

There are many ways to first identify and then subtract out the ultraviolet divergences. For time-
dependent configurations as the one we are considering, adiabatic regularization is probably
the most intuitive and easy to use. At the time when the original papers [72–74] introducing
this method were written (see also the related n-wave regularization [75] and iterative-time [76]
methods) there was no knowledge of the existence of the trace anomaly [77, 78]. It was derived
later for scalar fields in Bianchi type I [79] and Robertson–Walker spacetimes by Hu [80], who
pointed out the trace anomaly appears only when one works with a massive field and after all
the calculations are done, at the end, set mass to zero. The remainders in the reduction of the
integrals for higher order divergences to a lower order add up to the expression of the trace
anomaly. Anderson & Parker [81] pointed out the correct measure to use for closed Robertson–
Walker spacetimes. Later, Navarro-Salas and co-workers [82–84] systematically derived the trace
anomalies for Fermi, Dirac and Yukawa fields, and Chu & Koyama for gauge fields [85], to name a
few representative work. Here, to get the trace anomaly we follow Hu’s dictum in first calculating
the energy-momentum tensor of massive fields and only at the end set the mass equal to zero.

By minimizing the action in Eq. (2) with respect to the field’s variations: δS/δφ = 0, and by
using the metric in Eq. (1), we obtain the equation of motion of the field in the form:

∂2
tφ

(
ȧ

a

)
∂tφ− 1

a2 ∂
2
xφ+m2φ= 0. (3)

For brevity, we drop in what follows the explicit time-dependence in the the scale factor. Since
the system at hand is invariant upon translations, the wave vector k is conserved and the general
solution to Eq. (3) can be taken in the form:

φ=∑
k

1p
2l a

e i kx fk (t ). (4)

Note that, under the specified spacetime topology, the wave vectors kn that satisfy periodic
boundary conditions form a discrete set kn = 2πn/l , with n = 0,±1,±2, · · · (we drop the subscript
n for brevity, in what follows). By inserting Eq. (4) into Eq. (3), we obtain that the time-dependent
component of the eigenmode solution satisfies the following harmonic oscillator equation:

f̈k +w2
k (t ) fk = 0, (5)

where the frequency wk (t ) depends on time according to:

w2
k (t ) =ω2

k (t )+σ(t ), (6)

with

ω2
k (t ) = k2

a2 +m2, σ(t ) =−1

2

(
ä

a
− ȧ2

2a2

)
. (7)

First, the vacuum of a quantum field in a static spacetime need be replaced by one suitable
for fields in a dynamical setting. The adiabatic vacuum of a certain order can be defined by
performing an adiabatic expansion (i.e., WKB approximation) of the eigenmodes up to that order
and requiring that each mode has only a positive frequency component. To this end, we insert in
Eq. (5) the ansatz

fk (t ) = 1√
Wk (t )

exp

[
−i

∫ t
dt ′Wk (t ′)

]
, (8)

obtaining the approximated solution for Wk (t ), in the form:

W 2
k =ω2

k −
1

2

(
Ẅk

Wk
− 3

2

Ẇ 2
k

W 2
k

)
. (9)
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Physically, loosely speaking, an adiabatic vacuum of a certain order is defined under the assump-
tion of sufficiently slow time variation of the scale factor a(t ) compared to the characteristic fre-
quency of the mode, to ensure there is minimal particle creation in that mode to that order. A
(long) time scale T can be introduced to provide a measure of how fast each mode changes with
time.

In the present setting of a ring geometry an adiabatic vacuum of the second order is sufficient
for treating all the UV divergences. By pursuing a perturbative expansion with respect to the small
dimensionless parameter ϵ≡ (ωk T )−1, we obtain:

Wk (t ) =ωk −
1

4ωk

(
ω̈k

ωk
− 3

2

ω̇2
k

ω2
k

−2σ

)
+O (ϵ4) (10)

Together with Eq. (8), the expression for Wk (t ) here obtained defines the adiabatic expansion of
the field’s modes up to second order. By using these modes as the basis, the field operator φ̂(x, t )
can then be decomposed as:

φ̂(x, t ) = 1p
l a

+∞∑
k=−∞

[
Âk fk (t )e i kx + Â†

k f ∗
k (t )e−i kx

]
. (11)

The ladder operators Âk , Â†
k annihilate and create a particle with wave vector k, and define the

adiabatic vacuum state of the field as: Âk |0A〉 = 0,∀ k.

2.2. Regularized Energy Density

The energy density of a massive conformal scalar field in 1+1D spacetime with metric Eq. (1), is
given by:

ρ(x) ≡ T00 = 1

2

[(
∂tφ

)2 + 1

a2

(
∂xφ

)2 +m2φ2
]

. (12)

Here, the continuum limit l → ∞ is taken by turning the sum over wave-vectors into the
corresponding integrals according to the standard prescription:

∑
k → (l /2π)

∫
dk. By using the

adiabatic expansion for the modes previously introduced, the energy density can be expanded
up to second order in the adiabatic parameter ϵ, as ρ(x) = ∫ ∞

−∞ dk [ρ(0)
k +ρ(2)

k +O (ϵ4)], where:

ρ(0)
k = ωk

4πa
, (13)

ρ(2)
k = 1

8πa

[(
ȧ

2a

)2 1

ωk
+ ȧ

2a

ω̇k

ω2
k

+ 1

4

ω̇2
k

ω3
k

]
. (14)

Here, we have indicated by ρ(n)
k the contribution to the energy density of order n in the adiabatic

expansion. Denote ρ(0),ρ(2) as the corresponding expressions integrated over all k. The energy
density is regularized by subtracting ρ(0) and ρ(2) from the exact expression for the energy density
ρex = ∑+∞

k=0ωk /(a2l ) which can be readily calculated for a conformally-invariant scalar field and
for arbitrary time dependence of the scale factor, namely, ρreg = ρex −ρ(0) −ρ(2).

Let us examine the terms in ρ(n)
k separately: The first term ρ(0)

k diverges at high momenta,
∼ k2, thus requires regularization. We use the simple cutoff function regularization method.
The regularized expression yields the static Casimir energy density ρCas, responsible for the
appearance of the Casimir force. The second term is where the trace anomaly arises.
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Introducing a cutoff function into the diverging series and integral, which can be cleanly
removed at the end of the calculations, followed by taking the massless limit m → 0, we obtain
the Casimir energy in the standard form:

ρCas ≡ ρex −ρ(0)

= lim
λ→0

1

al

[+∞∑
k=0

ωk

a
exp(−λωk /a)− 1

2π

∫ +∞

0
dk

ωk

a
exp(−λωk /a)

]
=− π

6a2l 2 .

(15)

The second term in the adiabatic expansion of the energy density converges to the finite value

ρ(2) =
∫ ∞

−∞
dk ρ(2)

k = 1

24π

ȧ2

a2 . (16)

The trace anomaly arises from taking the trace of the regularized stress energy tensor. Thus this
term is to be subtracted, irrespective of whether it is finite or divergent, from the energy density
in the full expression of the stress energy tensor.

With this, the expression for the regularized energy density of the massless field is given by:

ρreg =− π

6a2l 2 − 1

24π

ȧ2

a2 . (17)

Finally, the total energy of the field is obtained by integrating the energy density over all space:

H =
∫ l

0

√
−gxx dx2 ρreg =− 1

24π

L̇2

L
− π

6L
, (18)

where we restored the physical length L(t ) = a(t )l of the ring.

2.3. Effective Action and the Equations of Motion

The effective action for the ring is constructed by incorporating the energy H of the field into the
action of the movable mirror, which we take as a non-relativistic particle of mass M . Specifically,
we add the term in Eq. (18) involving time derivatives as a kinetic term, whose physical meaning is
a ring’s size dependent renormalization of the bare mass M , and the Casimir energy as a potential
term:

Seff =
∫

dt

[
1

2
ML̇2 − 1

24π

L̇2

L
+ π

6L

]
. (19)

As described at the beginning of this section, the backreaction effect of quantum field under
study is highlighted by comparing the present action containing backreaction effects with the
action that yields the motion of the ring only under static Casimir force, namely, by dropping the
second term in Eq. (19).

SCas =
∫

dt

[
1

2
ML̇2 + π

6L

]
. (20)

Assuming the ring is a classical object (no quantum fluctuation), we obtain the equation of
motion as the Euler–Lagrangian equation corresponding to the actions:(

M − 1

12πL

)
L̈ =− π

6L2 − 1

24π

L̇2

L2 (with bkr), (21)

ML̈ =− π

6L2 (no bkr). (22)

Notice that, in the first equation, part of the effects of backreaction can be understood as inducing
a change in the mass of the ring to a lesser effective mass which depends on the length of the ring
itself: the smaller the ring, the more significant the effective mass reduction. The second effect
of the backreaction is conveyed by the last term on the RHS, which results proportional to the
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Figure 1. Plot of ring’s size and velocity vs. time. The solid represents the motion of
the mirror under static Casimir force plus dynamics-induced force, and the dashed line
represents the mirror’s motion only under static Casimir force.

square of the ring velocity. Both the equations of motion (21) and (22) are numerically solved for
M = 1. The results are shown in Fig. 1.

We can see that the backreaction effect of quantum field due to the trace anomaly accelerates
the collapse of the ring, regardless of the sign of the velocity of the ring L̇. This means that the
backreaction cannot be understood in terms of a frictional force acting on the ring. Physically,
this is due to the absence energy injected into the field due to particle production, which is absent
in the 1+1D configuration here considered. As shown in the next section, this physical picture
dramatically changes upon considering a more general 3+1 geometry.

3. Backreaction in 3+1 dimension

In this section we consider a massless conformal quantum field in an expanding rectangular box
formed by imposing periodic boundary conditions on the field at both ends of each of the three
sides, allowing two transverse directions to be fixed with equal length and the length of the third
side (longitudinal direction) to change with time. A rapid change will engender particle creation
from vacuum fluctuations, which is the more prominent quantum field process in dynamical
Casimir effect we wish to focus on here 5. We are interested in the backreaction effect of particle

5This may be a good place to bring out a subtle point, raised by the same anonymous referee, that of spatial
homogeneity, in establishing the analogue between particle creation in DCE and in homogeneous cosmology. The
periodic boundary condition we assume for a system exhibiting DCE preserves spatial homogeneity, which facilitates
direct correspondence with homogeneous cosmology. However, in DCE it is expected that particle creation would be
most pronounced in the spatial region closest to the moving mirror as that is the region where the vacuum fluctuations
are parametrically amplified the strongest. To draw a closer analogy with homogeneous cosmology cases we need to add
this homogeneity assumption for DCE. Doing so is not too contrived when the external drive is periodic (the billow or
breathing dynamics), or at times long compared to the transient after a rapid expansion of the space. The field in this
space can be considered as homogenized enough to be effectively described by the cosmological analogues we used.
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creation on the expansion rate of this box. Specifically, as explained in the Introduction, we
want to see if the quantum Lenz law, which we systematized from the backreaction results of
cosmological particle creation, applies to the backreaction effect in the present setup, namely,
the backreaction will act in such a way as to resist further changes, meaning, whether particle
creation will slow down the expansion or contraction of the box, and at what rate.

3.1. Expanding rectangular box and its cosmological analog

The rectangular box configuration with time dependent sizes mimics that of a symmetric Bianchi
type-I universe (with periodic conditions imposed) with line element

d s2 ≡ gµνd xµd xν = dt 2 − [
a2

1(t )dx2 +a2
2(t )dy2 +a2

3(t )dz2], (23)

where ai are the scale factors in the three directions. We consider the case with a2 = a3 = 1,
a1 = a(t ), i.e., with only one side moving, in the ±x direction. Imposing periodic boundary
conditions at both ends of each of the three sides, i.e., between x, y, z = 0 and x, y, z = l , where
l is the length would turn this into a “box universe” with topology R×T 3 where R refers to the
time direction and T denotes a torus. Our present set up has l fixed in the y, z directions, but
allow the scale factor in the x direction to change in time.

Consider a massless conformal scalar field φ (the corresponding massless conformal vector
field would describe a photon field) in this box “universe” with action

S f =
1

2

∫
d x4

√|g |
[

gµν∂µφ∂νφ− 1

6
Rφ2

]
(24)

obeying the Klein–Gordon equation:

□φ+ 1

6
Rφ= 0, (25)

⇒ ∂2
tφ+ ȧ

a
φ̇−∑

i

∂2
i φ

a2
i

+ 1

6
Rφ= 0, (26)

where R is the scalar curvature of spacetime 6

The energy-momentum tensor of this scalar field is given by

Tµν ≡ 2√|g |
δS

δgµν
= (∂µφ)(∂νφ)− 1

2
gµνgλσ(∂λφ)(∂σφ)

− 1

6

[
∇µ∂ν(φ2)− gµνgλσ∇λ∂σ(φ2)+φ2Gµν

]
, (27)

where Gµν ≡ Rµν− (1/2)gµνR is the Einstein tensor. We are interested in the energy density

T00 = 1

2
(φ̇)2 + 1

3

ȧ

a
φφ̇+ 1

6

∑
i

(
∂iφ

ai

)2

− 1

3

∑
i

(
φ∂2

i φ

a2
i

)
− 1

6
G00φ

2, (28)

where an overdot indicates differentiation with respect to t .
Let us introduce a new field variable χ and a conformal time variable η:

χ= a1/3φ, dη= a−1/3dt . (29)

The conditions for and the effects of particle creation in both situations (rapidly moving boundary and expanding
spacetime) are the same. It is expected that after the initial transient has past, the field would approach a steady state and
become spatially homogeneous on average albeit temporally remain in a nonequilibrium condition. Detailed studies of
both DCE and CPC would require nonequilibrium quantum field theory considerations. (See, e.g., [86])

6Note that since the space is flat, there is no intrinsic curvature, but with a time dependent scale factor the extrinsic
curvature which measures the expansion or contraction rates of space is nonzero. Regarding this space as “curved” is no
different from calling the spatially-flat Robertson–Walker universe as a “curved” spacetime.
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In these variables one gets a conformally-flat metric when the spacetime is isotropic. By substi-
tuting

φ̇= a−2/3
[
χ′− 1

3

a′

a
χ

]
(30)

(where a prime indicates differentiation respect to η) into the above equation for the energy
density, we have

T00 = a−2/3

[
1

2
a−2/3(χ′)2 + 1

6

∑
i

(
∂iχ

ai

)2

− 1

3

∑
i

(
χ∂2

i χ

a2
i

)
− 1

2
a−2/3Qχ2

]
, (31)

where Q is defined as

Q = 1

18

∑
i < j

(
a′

i

ai
−

a′
j

a j

)2

= 1

9

(
a′

a

)2

(32)

representing the degree of anisotropy. Now the scalar field equation becomes

χ′′−a2/3
∑

i

2∂2
i χ

a2
i

+Qχ= 0 (33)

Although this spacetime is anisotropic, it remains homogeneous. Under the periodic condition
imposed at the boundaries we can perform the following mode decomposition:

χ= l−3/2
∑

k

[
Ak⃗χk⃗ (η)e i k⃗ ·⃗x + A†

k⃗
χ∗

k⃗
(η)e−i k⃗ ·⃗x

]
(34)

with the compact notation ∑
k
=

3∏
i=1

∑
ni

where ki = 2πni /l , ni = 0,±1,±2± ·· · . The Fourier modes χk⃗ satisfy the parametric oscillator
equation:

χ′′
k⃗
+ (Ω2

k⃗
+Q)χk⃗ = 0 (35)

with time-dependent frequency

Ω2
k⃗
= (

a1/3ωk⃗

)2 = a2/3

(∑
i

k2
i

a2
i

+m2

)
= a2/3

(
k2

x

a2 +k2
y +k2

z +m2
)
. (36)

Let |0A〉 be the vacuum state defined by Ak⃗ . The vacuum expectation value of the 00 compo-
nent of the stress-energy tensor

〈0A |T00|0A〉 = 1

2l 3 a−4/3
∑

k

[∣∣∣χ′
k⃗

∣∣∣2 + (Ω2
k⃗
−Q)

∣∣χk⃗

∣∣2
]

(37)

gives the sought energy density. However, the above expression of energy density diverges due to
high frequency (UV) contributions. One can remove the divergences by adiabatic regularization
procedures described in [74] which we adopt in what follows (subscript k onΩ are dropped). 7

ρdiv ≡ 〈T00〉div =
1

32π3a4/3

∫
d 3kΩ−1

{
2Ω2 +

[
1

4

(
Ω′

Ω

)2

−Q

]

−1

8

(
Ω′

Ω

)2

ϵ2(2) + 1

4

Ω′

Ω
ϵ′2(3) +

1

4
Ω2ϵ2

2(2) +
1

2
Qϵ2(2)

}
, (38)

7Due to the imposition of boundary conditions the global topology of our setup is not the same as the Bianchi type-I
Universe. However, UV divergence is a local property not affected by the global topology of spacetime.
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where the ϵn functions are called adiabatic frequency corrections – the subscript n indicates the
adiabatic order (in this case, second order) and the number in the parentheses indicate the order
of time derivatives. With the definition X =Ω2 they are given by:

ϵ2(2)=−1

4
X −2X ′′+ 5

16
X −3(X ′)2 +X −1Q, (39)

ϵ′2(3)=−1

4
X −2X ′′′+ 9

8
X −3X ′′X ′− 15

16
X −4(X ′)3 +X −1Q ′−X −2X ′Q, (40)

Note that the first term in (38) represents divergence already present in flat space and need be
subtracted out in all circumstances. The regularized energy density from particle creation is
obtained by subtracting Eq. (38) from Eq. (37)

ρreg ≡ 〈T00〉reg =
1

2l 3 a−4/3
∑

k

[∣∣∣χ′
k⃗

∣∣∣2 + (Ω2 −Q)
∣∣χk⃗

∣∣2
]
− 1

32π3a4/3

∫
d 3kΩ−1

{
2Ω2+

[
1

4

(
Ω′

Ω

)2

−Q

]

− 1

8

(
Ω′

Ω

)2

ϵ2(2) + 1

4

Ω′

Ω
ϵ′2(3) +

1

4
Ω2ϵ2

2(2) +
1

2
Qϵ2(2)

}
. (41)

3.2. Regularized Energy Density

The expression of energy density obtained in the previous section can be divided into three parts:

ρreg = ρcreation +ρmatter +ρCasimir, (42)

where ρcreate refers to the contribution from freshly created particles at the instant and vacuum
polarization effects induced by spacetime dynamics, ρmatter from accumulated created particles
in the past forming a relativistic fluid of conformal matter (like photons), and ρCasimir from the
static Casimir energy density because of the boundary conditions we imposed. If we assume the
initial state is the vacuum state, the matter contribution to the energy density is initially zero.
As time evolves and particle creation occurs, the effervescent creation component will continue
to flow into the matter contribution. This division is inspired by the cosmological backreaction
considerations in [60, 61]. There, the quantum effects of particle creation was found to dominate
over all other contributions to the total energy density. We expect a similar situation in the present
problem.

To find the backreaction of particle creation, we shall focus on the creation component
contribution to energy density ρcreation. We shall give an estimate of the matter component,
which indeed turns out to be orders of magnitude weaker. We shall also ignore the Casimir
contribution. This can be done by taking the limit l →∞ in Eq. (41), resulting in

ρcreation +ρmatter = 1

16π3a4/3

∫
d 3k

[∣∣∣χ′
k⃗

∣∣∣2 + (Ω2 −Q)
∣∣χk⃗

∣∣2
]
− 1

32π3a4/3

∫
d 3kΩ−1

{
2Ω2

+
[

1

4

(
Ω′

Ω

)2

−Q

]
− 1

8

(
Ω′

Ω

)2

ϵ2(2) + 1

4

Ω′

Ω
ϵ′2(3) +

1

4
Ω2ϵ2

2(2) +
1

2
Qϵ2(2)

}
. (43)

To select out the creation contribution to the energy density we need to identify the region in
k-space which yields the most particle production. They are the modes which are subjected to
strong nonadiabatic parametric amplification. For each k mode one can use the nonadiabaticity
parameter introduced in [76] (Eq. 73-74): Ω̄≡Ω′

k/Ω2
k in conformal time, or ω̄≡ ω̇k/ω2

k in cosmic
time (Minkowski time here) to measure how rapidly it changes in response to the changing
background through the scale factor a(η) or a(t ). Those fulfilling the condition Ω̄ ≫ 1 in
conformal time, or ω̄ ≫ 1 in cosmic time, are the modes which contribute most to particle
creation. Integrating over these highly non-adiabatic modes in Eq. (43) will capture the dominant
contribution to the energy density due to particle creation.
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Examining this condition further, we see that

ω̇k

ω2
k

≫ 1 ⇒ ∂ωk

ωk
≫ωk∂t ⇒ dimensionless quantity ≫ωkt . (44)

The Eq. (44) says that the nonadiabaticity condition is satisfied by the approximation that ωkt ≪
1. This corresponds to an ellipsoid region in k-space which we denote by R(t ).

3.3. Particles created from nonadiabatically amplified modes

Now, within the region R(t ), the equation of χk (35) can be solved under the low-k or early-t
approximation [60, 61, 75]. (See also [87]).

First, one reduces Eq. (35) into two first-order differential equations by the introduction of two
arbitrary functions αk and βk :

χk⃗ = (2Ωk )−1/2
[
αk e−i

∫ η
Ωk dη′ +βk e i

∫ η
Ωk dη′

]
, (45)

χ′
k⃗
=−i (Ωk /2)1/2

[
αk e−i

∫ η
Ωk dη′ −βk e i

∫ η
Ωk dη′

]
. (46)

The Wronskian condition χ′∗k χk −χ∗kχ′k = i becomes∣∣αk (η)
∣∣2 − ∣∣βk (η)

∣∣2 = 1. (47)

Combining Eq. (35), (45) and (46), we obtain two first-order ODE derived from the second order
Eq. (35).

α′ = 1

2

(
Ω′

Ω
− i

Q

Ω

)
βe2i

∫ η
η0
Ωdη′ − i

Q

2Ω
α, (48)

and

β′ = 1

2

(
Ω′

Ω
+ i

Q

Ω

)
αe−2i

∫ η
η0
Ωdη′ + i

Q

2Ω
β. (49)

Under the low-frequency and early time approximation ωkt < 1, an integral like
∫ η
η0
Ωdη′ can be

approximated to 0. Thereby we can find the general solutions of α and β:

α= c1

(
Ω1/2 − iΩ−1/2

∫ η

η0

Qdη′
)
+ c2Ω

−1/2, (50)

β= c1

(
Ω1/2 + iΩ−1/2

∫ η

η0

Qdη′
)
− c2Ω

−1/2, (51)

where c1(k) and c2(k) are complex numbers satisfying

c1c∗2 + c2c∗1 = 1

2
(52)

under the normalization condition. With this, the integrand in the first integral in Eq. (43) can be
solved for χk :∣∣∣χ′

k⃗

∣∣∣2 + (
Ω2 −Q

)∣∣χk⃗

∣∣2 =

2|c1|2
[(
Ω2 −Q

)+(∫ η

η0

Qdη′
)2]

+2|c2|2 +2i
(
c∗1 c2 − c1c∗2

)(∫ η

η0

Qdη′
)
. (53)

Regarding the initial conditions, by choosing the state which corresponds to the absence of
particles at time t0, we can impose the initial condition

αk (t0) = 1, βk (t0) = 0, (54)

the values of c1 and c2 are uniquely determined:

c1 = 1

2
Ω−1/2

0 , c2 = 1

2
Ω1/2

0 (55)

whereΩ0 is the value ofΩk at t0.
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3.4. Energy density from particle creation

We obtain an expression of ρcreation in term of a:

ρcreation = 1

8π3a4/3

∫
R(t )

d 3k


(
Ω2 −Q

)
Ω0

+
(∫ η
η0

Qdη′
)2

Ω0

+Ω0

−ρdiv (56)

Notice that the divergent part of the energy density Eq. (38) obtained from adiabatic regular-
ization should apply to the whole k-space. However, to obtain the ρcreation, we need only con-
sider the region R(t ) in k-space. This low frequency / short time regime is opposite to the regime
where UV divergences arise and where regularization schemes are designed for their removal. For
this reason there is no need to subtract out more divergent terms than those which are required
for field theories in Minkowski space, namely, the 2Ωk term. Otherwise, one would get negative
contributions because in R(t ) there wasn’t any high frequency mode contributions to the energy
density to begin with.

Also, examining the term containing Q integrated over time, the range of integration is
suppressed if we only consider early time behavior of the system, and it is further suppressed
by squaring it, this term can be neglected.

3.4.1. ρcreation is the dominant contribution

With these considerations we get an expression for ρcreation:

ρcreation = 1

8π3a4/3

∫
R(t )

d 3k

{(
Ω2 −Q

)
Ω0

+Ω0 −2Ω

}
(57)

This integration can be explicitly carried out. We first define ky z =
√

k2
y +k2

z , and set a(t0) = 1.
The domain of integration R(t ) is an ellipse in k space:

(ky z t )2 + (kx t/a)2 ≤ 1 (58)

⇒ k2
y z +

(
kx

a

)2

≤ 1

t 2 . (59)

Recognizing the axial symmetry in the problem, we employ cylindrical coordinates and find:

ρcreation = (
576π2a10/3t 4)−1

[
9a4 −36a10/3 +18a8/3P +9a2P −4a′2P t 3

]
, (60)

where

P =


sin−1

(p
a−2−1a

)
p

a−2−1
a < 1,

log
((p

1−a−2+1
)
a
)

p
1−a−2

a > 1,

1 a = 1.

We can construct an action for the dynamics of this moving mirror system by placing the
ρcreation and ρmatter as the kinetic terms, and ρCasimir as a potential term:

S =
∫

dt

1

2
mL̇2 +

∫
box

d 3x
[
ρcreation +ρmatter −ρCasimir

] (61)

=
∫

dt

{
1

2
mL̇2 +Ll 2[ρcreation +ρmatter −ρCasimir

]}
(62)

=
∫

dt

{
1

2
mL̇2 +Ecreation +Ematter −ECasimir

}
(63)

where L ≡ al is the time-dependent longitudinal length of the box.
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3.4.2. ρCasimir and ρmatter contributions are much weaker

We know that ρCasimir generates an attractive force and only depends on the side length of the
box. The explicit form of ρCasimir is given in e.g., [88]. Although ρCasimir has an effect over time,
it is not significant enough to impact the dynamics of the box in a short amount of time. So we
shall ignore it in our present consideration.

As for ρmatter, one may expect its contribution acts like radiation pressure. So let us make an
estimate of its effect.

As explained earlier, particle creation is the strongest in those (fast changing) modes which
are subjected to nonadiabatic parametric amplification. The remaining modes in the k-space
are only weakly excited and can be described by using an adiabatic approximation. The ρmatter

term actually contains both particles in these adiabatic modes which are exponentially small as
well as the already created particles being red (blue) shifted as the box expands (contracts). These
two components comprise a classical relativistic fluid. Their cosmological backreaction effects
have been studied by Lukash and Starobinsky [89]. The overall effect is much weaker than particle
creation from the vacuum, understandably so, as the latter is of nonadiabatic origin.

The energy density attributed to classical matter under these assumptions is given partially by

ρmatter-adiabatic =
1

(2π)3a

∫
C

d 3k ωk
∣∣βk

∣∣2 (64)

where C denotes the complement of R in k-space, referring to the frequency domain without
much particle creation (adiabatic), plus modes where particles were created at an earlier time,
now red-shifted by the expansion of the universe. Since the domain of C changes over time and
the weights of different contributions also change accordingly, even the above equation which
contains only partial contribution is not easy to solve. Thus we resort to a different route to get
an estimate of the overall ρmatter contribution.

Assuming the full energy contents (of particles and field) in the box do not change with time,
then the total derivative of energy with respect to time is equal to 0. The total energy of the system
(neglecting the static Casimir effect) is given by

E = 1

2
mL̇2 +Ecreation +Ematter. (65)

By requiring the conservation of energy in the backreaction process, we get

dE

dt
= 0 =

{
mL̇L̈+ dEcreation

dt
+ dEmatter

dt

}
(66)

= mL̇L̈+ l 2L̇ρcreation + l 2L
dρcreation

dt
+ dEmatter

dt
. (67)

Using the expression of ρcreation, one could solve for the dEmatter/dt in term of a, ȧ, ä,m, and l :

dEmatter

dt
=−mL̇L̈− l 2L̇ρcreation − l 2L

dρcreation

dt
. (68)

Near t = 0 we expect there is only Ecreation with no matter present, thus we can take the values
of a, ȧ, ä near t = 0 with our choice of m and l and solve for the value of dEmatter/dt near t = 0.
We expect this value to be the maximum value of dEmatter/dt during evolution, since later on the
mirror slows down and particle reaction will diminish. Multiplying this by t we can get an upper
bound8 of Ematter at t , whose value is one order of magnitude smaller at t = 1 compared to the
other forms of energy present, therefore it is safe to neglect it.

8Note this is a huge overestimate, since when the system becomes nearly adiabatic, particle production is strongly
suppressed to nearly 0.
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Figure 2. Plot of mirror’s position and velocity vs. time. Left figure for L̇(t0) = −0.5, right
figure for L̇(t0) = 0.5.

3.4.3. Results: Quantum Lenz Law Observed

S =
∫

dt

{
1

2
mL̇2 +Ecreation

}
(69)

Assuming that the moving mirror is a classical object, taking the functional variation of the action
in Eq. (69) gives the Euler–Lagrange equation for the dynamics of the mirror. We do not provide
the explicit expression for this equation, since it is particularly complicated. It is numerically
solved for cases when the mirror initially is left moving (expanding box) and ii) when the mirror
is initially right moving (shrinking box). We chose parameters l = 50 and m = 10. The results are
shown in Fig. 2.

In summary, combining the results of the 1+1D case where the backreaction comes solely from
conformal anomaly and the 3+ 1D case where the backreaction comes primarily from particle
creation, we can make these observations:

(1) Backreaction from particle creation (from our 3+ 1D results) obeys quantum Lenz law.
This complies with the results from many studies of backreaction effects in cosmological
particle creation.

(2) Backreaction effects due to the trace anomaly seem to be very different from that due
to particle creation. This is not surprising because a marked difference also shows up
in the cosmological setting if we compare the effect of the trace anomaly in [58] with
that of particle creation in [62]. One can attribute this to the difference between effects
originating correspondingly from vacuum polarizations versus vacuum fluctuations,
interesting thoughts for further investigations.

4. Related Problems for Further Development

To conclude, we take a broader perspective and ask how backreaction from quantum processes
in dynamical Casimir effect and the like bear on bigger or deeper issues in problems involving
quantum fields interacting with mechanical systems. We mention two below.
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(i) The present work is a prelude to a more complex problem using a more thorough ap-
proach to quantum optomechanics. One such model proposed by Galley et al., the so-
called mirror-oscillator-field (MOF) model [90], considers the mirror’s internal degree
of freedom (modeled by a harmonic oscillator) as a dynamical variable interacting with
a quantum field. (See also [91, 92].) This provides a microphysics basis for producing
different transparencies of the mirror and for a better analysis of mirror-field entangle-
ment [93]. The mirror’s external or mechanical degree of freedom (dof), i.e., the mirror’s
position, where the field configuration takes on its value, is also a dynamical variable.
With this one can tackle problems involving moving atoms and mirrors and investigate
fundamental issues like the Unruh effect and the mirror analog of Hawking effect. The
interplay of these three dynamical variables: the internal dof of the mirror described by
an oscillator, the mirror’s position, and the quantum field, takes into account the action
and backreaction of one variable on another. Solving these interlinked equations of mo-
tions self-consistently, no doubt a demanding task, gives a more complete quantum de-
scription of the optomechanical system. A master equation for the MOF model has been
recently derived [43] which, together with results in a recent paper for two mirrors based
on quantum Brownian motion with nonlinear coupling [94], would provide further and
better theoretical tools to facilitate more direct applications to problems in quantum op-
tics and nanomechanics.

(ii) In addition to the quantum field and quantum information theoretical aspects men-
tioned above, backreaction studies of quantum field processes on mechanical systems
also have important quantum thermodynamic implications. Related to the theme of this
work one can ask whether a fluctuation-dissipation relation (FDR) exists in DCE [95].
There is hope for this, because such a relation has been found in the more complicated
problem of the backreaction of cosmological particle creation [64, 65, 96]. It conveys the
balance between the total energy of particles created from the vacuum fluctuations of
the field and the anisotropy dissipation power integrated over the whole effective period
of particle production. When one applies an open system viewpoint toward these prob-
lems, FDRs are fundamental relations as they serve as a check on the self-consistency
of the backreaction problem under study. It is more involved on two counts: a) it is not
the FDR in quantum fields alone, where the causal and Hadamard Green functions are
simply related. Rather, what is in analogy with the FDR in cosmological particle creation
is a hybrid relation between the parametrically amplified quantum fluctuations in the
field and the dissipation in the geometrodynamics (the moving ring or plates in DCE, the
anisotropy or inhomogeneities of the universe). Earlier work on FDR in DCE (e.g. [97]) is
incomplete in the treatment of noise. b) one needs to check whether at late times there is
a stationary state. For more sophisticated treatments of FDRs in the field (environment)
and FDRs in the atom (system) in nonequilibrium steady state setups, see, e.g., [98]. We
hope to tackle this problem soon [99].

Appendix A. Calculation of trace anomaly in 1+1D

In this appendix, we present an alternative derivation of the equation of motion for the ring in
the 1+1D case, which has the advantage of showing explicitly how the contribution due to the
trace anomaly appears. This information is hidden in the effective action we derived in the main
text, in Eq. (19). To this end, we start from the action for the field-ring system:
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S = Sa +S f =
∫

dt
M

2
ȧ2l 2 +

∫
dt

∫ l

0
dx

1

2
|g |1/2

[
gµν

(
∂µφ

)(
∂νφ

)−m2φ2
]

(70)

=
∫

dt
M

2
ȧ2l 2 +

∫
dt

∫ l

0
dx

a

2

[(
∂tφ

)2 − 1

a2

(
∂xφ

)2 −m2φ2
]

. (71)

In the second line, we used the metric for the time-dependent ring, as introduced in Eq. (1).
The equations of motion for the ring can readily be obtained by minimizing this action with
respect to variations in the expansion parameter a: δS/δa = 0. By following this procedure, and
remembering the formal definition of the energy-momentum tensor of the field

Tµν ≡
(
∂µφ

)(
∂νφ

)− 1

2
gµν

(
∂ρφ

)(
∂ρφ

)+ 1

2
gµνm2φ2, (72)

we obtain the Euler–Lagrange equation for the expansion parameter in the form:

M äd =−1

l

∫ l

0
dx p (x) =−1

l

∫ l

0
dx T 1

1 (x) = 1

l

∫ l

0
dx

[
T00 −T ρ

ρ

]
. (73)

Notice that the momentum density of the field p(x) ≡ T 1
1 (x) plays the role of a force acting on

the ring, and can be written in terms of the energy density T00 and the trace T ρ
ρ . These quantities

are the expectation values calculated respect to the quantum state of the field. At this stage, in
Eq. (73), both bare energy density and classical trace appear. They need to be regularized, only
their finite values are physical. We performed this task for the energy density in the main text,
and obtained the regularized expression ρreg ≡ 〈T00〉reg =−π/(6a2l 2)− ȧ2/(24πa2) (see Eq. (17)).
We now need to regularize the trace T ρ

ρ . Using the WKB mode function in Eq. (8), we can get the
expectation value of the trace at the second-adiabatic order. By subtracting this from the bare
(divergent) value of the trace, we obtain:

〈
T ρ
ρ

〉
reg

= m2

4πa

∫ +∞

−∞
dk

[
1

Wk
−

(
1

Wk

)(0)

−
(

1

Wk

)(2)
]

= m2〈φ2〉
reg +

m2

4πa

∫ +∞

−∞
dk

W (2)
k

ω4
k

= m2〈φ2〉
reg +

m2

16πa

∫ +∞

−∞
dk

1

ω3
k

(
3

2

ω̇2
k

ω2
k

− ω̈k

ωk
− 1

2

(
ä

a
− ȧ2

2a2

))
.

(74)

Taking the massless limit m → 0 of this expression, and by noting that the integral in the second
term of (74) does not depend on the value of m [this can be seen by changing the variable of
integral to k/(ma)], the trace anomaly takes the simple form:〈

T ρ
ρ

〉
reg

=− 1

12π

ä

a
. (75)

This result confirms that the physical value of the trace is equal to
〈

T ρ
ρ

〉
phy

= R/(24π), with R the
scalar curvature of the ring, a geometric invariant, as expected. Substituting the expressions for
the regularized energy density and the trace obtained here into Eq. (73), we get the equation of
motion of the ring: (

M − 1

12πL

)
L̈ =− π

6L2 − 1

24π

L̇2

L2 , (76)

which is the same as the one we obtained in the main text, Eq. (19), by using the effective action
method.
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