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Abstract. This paper presents some metamodeling techniques to analyze the variability of the performances
of an inductive power transfer (IPT) system, considering the sources of uncertainty (misalignment between
the coils, the variation in air gap, and the rotation on the receiver). For IPT systems, one of the key
issues is transmission efficiency, which is greatly influenced by many sources of uncertainty. So, it is
meaningful to find a metamodeling technique to quickly evaluate the system’s performances. According
to the comparison of Support Vector Regression, Multigene Genetic Programming Algorithm, and sparse
Polynomial Chaos Expansions (PCE), sparse PCE is recommended for the analysis due to the tradeoffbetween
the computational time and the accuracy of the metamodel.
Résumé. Ce papier présente différentes techniques de métamodélisation afin d’analyser la variabilité des
performances d’un système de transfert de puissance par induction (IPT), en tenant compte des sources d’in-
certitude (décentrage des bobines, la variation de l’entrefer et la rotation du récepteur). Pour les systèmes IPT,
l’une des questions clés est l’efficacité de la transmission, qui est fortement influencée par les nombreuses
sources d’incertitude. Il est donc important de déterminer une technique de métamodélisation susceptible
d’évaluer rapidement les performances du système. Trois techniques de métamodélisation sont comparées :
la régression à vecteurs de support, l’algorithme de programmation génétique multigénique et les dévelop-
pements du chaos polynomial (PCE), il ressort que la technique PCE est recommandée pour une telle analyse
en raison du compromis entre le temps de calcul et la précision du métamodèle.

Keywords. Wireless power transfer, Metamodels, Polynomial chaos expansions, Support vector regression,
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1. Introduction

Around 800 million vehicles with internal combustion engines (ICEs) are used worldwide [1].
These vehicles are a major source of greenhouse gases, especially CO2. Thus, a practical way of
dealing with the global warming problem is to replace ICE-powered vehicles with electric vehicles
(EVs) [1–3]. The use of electric cars also improves the quality of air around major cities. To
replace ICEs, many vehicle companies are developing “plug-in” EVs, which use lithium-ion (or
polymer) batteries that can be recharged at home or at charging stations [2,3]. But the promotion
and adoption of plug-in EVs raise many questions. First, the cost of lithium batteries is high.
Second, the batteries are heavy. Third, to decrease the charging time for the battery, it requires an
expensive infrastructure for charging stations [2–7]. Finally, mishandling the high-power cables
will lead to security problems [3, 4, 8, 9]. So, due to these problems, inductive power transfer
(IPT) has been introduced as an alternative technology, allowing power flow in a contactless
manner. Using a resonant IPT system seems to be an effective technology for the growth of the
EVs market [10]. Moreover, its application for the charge during the vehicle’s motion is promising
to overcome the barriers of heavy onboard battery storage and the long recharging time [3,4,8,9].
IPT is essentially based on the resonance of two magnetically coupled inductors (constituting the
coupler): the transmitter, placed on the ground, and the receiver, placed under the vehicle floor.

In a real IPT system scenario, various receiver positions may happen during the park or
driving [9]. A careful design process of IPT systems requires considering multiple parameters
(misalignment, relative rotation of the receiver, air gap, etc.). So, when using simulation tools,
multiple 3D numerical computations are needed to assess the performance of the IPT system
when these situations happen. Nevertheless, using complex simulation tools (such as the finite
element method) leads to high computational costs for wide parametric analysis. In this case,
a standard Monte Carlo (MC) analysis becomes challenging regarding computer resources and
simulation time [11, 12].

To solve this problem, “metamodeling techniques” for the parametric and statistical analysis
in complex nonlinear problems have been developed. These approaches can reduce the com-
putational cost by substituting an expensive computational model with a so-called metamodel,
an analytical approximation of the original model that is much faster to evaluate [11–15]. The
metamodels are constructed by learning the varying trend from input parameters and their cor-
responding model responses, for example, generated from running 3D FEM computations. Be-
cause it is faster to evaluate, a metamodel allows more sophisticated analyses, such as sensi-
tivity analysis [16, 17]. In recent literature, several metamodeling techniques have been applied
to generate some metamodels trained with a limited set of simulation results, such as Support
Vector Regression (SVR) [18], Multigene Genetic Programming Algorithm (MGPA) [19], Polyno-
mial Chaos Expansions (PCE) [20], and so on. Reference [14] focuses on applying the SVR with
polynomial kernels to the uncertainty quantification and the parametric modeling of structures.
Then, references [14,15] compare the accuracy and robustness to noise among the SVR, the least
squares SVR [21], and the sparse PCE. In the domain of inductive power transfer, a MGPA meta-
model is investigated to express the self-inductance and the mutual inductance of the IPT system
versus geometrical parameters of the ferrite and coils, so new equations are proposed for evaluat-
ing these values of the inductances [22–24]. In [25], sources of uncertainties have been analyzed
with different shapes of small-scale couplers by the sparse PCE. Reference [26] has compared the
MGPA and sparse PCE metamodeling techniques for the design of IPT systems. Since the design
of realistic IPT systems involves complex configurations including many parameters, choosing a
fast metamodel is a key point. Comparing different metamodeling techniques in the real-scale
couplers for IPT systems is required, and it is important to prove the efficiency in a realistic ex-
periment.
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Figure 1. Block diagram of an IPT system.

Therefore, the paper aims to compare several metamodeling techniques for analyzing the
mutual inductance of IPT systems, considering the sources of uncertainty (misalignment along
the X /Y -axis, variation in air gap, and receiver rotation). First, in Section 2, a 3D model of
a practical IPT system is built and numerical predictions related to the electrical parameters
and stray magnetic field are validated against experimental measurements. Then, different
metamodeling techniques about SVR with the Gaussian radial base function (RBF) kernel, MGPA,
and PCE are introduced in Section 3. After, in Section 4, a comparison is presented among these
different metamodels for the analysis of square couplers, considering the sources of uncertainty.
Finally, the conclusion is given in Section 5.

2. IPT system

2.1. IPT system introduction

Figure 1 shows the block diagram of an IPT system for EVs. The system consists of a transmit-
ter, a receiver, converters, and compensation networks for the transmitter and the receiver. The
electrical network provides a voltage through the AC/DC converter. The magnetic field produced
by the transmitter induces an alternating magnetic field in the receiver. The converters then rec-
tify the AC power to charge the battery. Due to the dimensions of the coils, the parasitic capaci-
tance is insufficient to ensure the resonance in the operational frequency range. Consequently,
compensation networks (such as capacitors) are connected to the transmitter and receiver (the
self-inductance of the transmitter and the receiver) to adjust the operational frequency and cre-
ate the resonant state [3,4,8,9,27–30]. It minimizes the reactive power supply and improves both
the transmission efficiency and the power transfer capability.

In the system, the magnetic coupler (indicated in the red line frame) is the key part, which
normally includes a pair of coils, ferrite plates, and shielding [3, 4, 8, 9, 27–30]. The geometry and
configuration of the coils are crucial for determining the magnetic field of the IPT system and
its efficiency. The ferrite plates influence the efficiency and prevent magnetic flux leakage. The
shielding is used to prevent magnetic flux leakage, which is usually placed above the receiver to
minimize the flux leakage around the system. Some of the IPT systems take the vehicle chassis
as conductive material for shielding [31]. For the IPT system transmission efficiency, circuit
models with lumped parameters are often used, and the compensation networks are designed
to minimize the reactive component of the power supply. Following [3, 4, 8, 9, 27, 29–34], the
series–series (SS) compensation network is taken into account to analyze the power transmission
efficiency of the system, as shown in Figure 2. Indeed, according to [3, 4, 8, 9, 27, 29–34], it is
suitable for the IPT systems, and the condition of resonance in the SS compensation remains
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Figure 2. Equivalent electrical circuit in the SS compensation topology [3,4,8,9,27,29–34].

Table 1. Parameters of the magnetic coupler

Parameter Value (Unit)
Exterior length of the coils lex 468 (mm)
Interior length of the coils lin 442 (mm)

Coil thickness dc 13 (mm)
Ferrite length l f 600 (mm)
Ferrite width w f 500 (mm)

Ferrite thickness t f 2 (mm)
Distance between the coils and the ferrite 8 (mm)

Ferrite relative permeability µr 2000
Cross-sectional area of the wires S 9.82 (mm2)

Air gap 150 (mm)

constant, independently of the variations of the mutual inductance and the load RL . L1 and
L2 represent the self-inductances of the transmitter and the receiver, respectively; R1 and R2

represent the resistances of the transmitter and the receiver, respectively; C1 and C2 are the
resonant capacitors; M is the mutual inductance between the transmitter and the receiver.

So, the equation to calculate the maximum transmission efficiency ηmax of the system in
Figure 2 can be achieved as below when the transmitter and the receiver are identical [32–34]:

ηmax ≈ 1− 2

kQ
= 1− 2

p
R1R2

w0M
= 1− R1

π f0M
(1)

where the coupling coefficient k = M/
p

L1L2; the system quality factor Q = 2π f0
p

L1L2/R1R2 [35–
37]; f0 is the resonant frequency.

2.2. IPT system experimental validation

In this work, a square coupler was built in the GeePs laboratory, and shown in Figure 3. The
square shape is proven in [33,34] to be well-suited for IPT systems. The parameters of the coupler
are summarized in Table 1 [33,34]. The square coupler has six turns arranged in two layers. These
turns are made with litz wires composed of 1250 strands, and the strand’s diameter is 0.1 mm, so
it is smaller than the skin depth at the operating frequency [34]. The operating frequency of the
IPT system is around 85 kHz [33–36, 38].

Then, the magnetic parameters of the square coupler are simulated in COMSOL 6.1 [39]
and measured by a RLC meter (Wayne Kerr 4300), and the results are given in Table 2. The
relative errors between the measurement and the simulation are around 10%, which may be
caused by the real coil shape that is not exactly the same as defined in the simulation. Also,
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Figure 3. Simulation model and experimental model of the square magnetic coupler.

Table 2. Comparison of the magnetic parameters in the simulation and the measurement

Frequency = 85 (kHz) Self-inductance L
(µH)

Mutual inductance
M (µH)

Coupling
coefficient k

Simulation 63.7 13.4 0.21
Measurement 58.5 12.1 0.20

Relative error of the experiment (%) 8.1% 9.7% 4.8%

some uncertainty exists about the winding arrangement in the real coil, which may not be well
positioned in two layers.

The magnetic flux density distribution is measured at 150 mm above the receiver as shown in
Figure 4. The method to do the measurement in the near-field test bench is presented in [34].
The magnetic probe measures the magnetic field and the robot moves the magnetic probe
automatically for different measurement positions.

Figure 5 compares the measured and simulated Bnorm (the norm of the magnetic flux density)
on the measurement line as depicted in Figure 4. The relative error between the measured and
simulated Bnorm is around 10%. There exist differences in the position and the amplitude of the
magnetic flux density, probably because the coils of the coupler are made by hand. Hence, they
are not exactly the same as those defined in the simulation. Moreover, the ferrite plate in the
experiment is not as flat as it is in the simulation. Consequently, the magnetic flux density values
of the measurement line are not the same as those in the simulation.
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Figure 4. Measurement line of the magnetic flux density above the receiver.

Figure 5. Comparison of the magnetic flux density Bnorm obtained by the simulation and
measurement.

From the results presented above, the reliability of the 3D coupler model has been confirmed
through the comparison between the simulated values and the measurement values both for the
mutual inductance and the magnetic flux density.

2.3. Uncertain parameters in the IPT System

To investigate the efficiency of the IPT system, it is mandatory to consider the sources of
uncertainty, such as variations in the misalignment of the receiver due to imperfect parking
alignment and variations in the air gap due to loading or unloading the vehicle. Figure 6 shows
the rotation angle along the Z -axis α, the misalignment along the X -axis ∆x, the misalignment
along the Y -axis ∆y , and the air gap between two coils ∆z for the couplers.

Before performing the uncertainty analysis, it is necessary to assume a probability distribution
for the sources of uncertainty. Here, a Gaussian distribution is chosen for these influencing
factors, which conforms to the probability that may happen in reality. The statistical parameters
of the influencing factors are displayed in Table 3. The range of the air gap and the rotation angle
along the Z -axis are referred to [38]. Meanwhile, the range for the misalignment along the X /Y -
axis is considered reasonable due to the size of the parking space and the size of the EV chassis.

A parametric sweep for all these influencing factors is very time-consuming. So, it is relevant
to build a metamodel using the COMSOl simulation results, which will help save computational
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Figure 6. Influencing factors for the square couplers.

Table 3. Properties of the influencing factors

Parameters Symbol Distribution Mean value Standard deviation
Misalignment along X -axis (mm) ∆x Gaussian 0 150
Misalignment along Y -axis (mm) ∆y Gaussian 0 150
Air gap between two coils (mm) ∆z Gaussian 150 20

Rotation angle along Z -axis (deg) α Gaussian 0 3

time. The following section presents a detailed study of the metamodels of the mutual inductance
M , considering sources of uncertainty.

3. Metamodeling techniques introduction

This section provides an overview of the mathematical framework behind three metamodeling
techniques:

• Support Vector Regression (SVR) with RBF kernel;
• Multigene Genetic Programming Algorithm (MGPA);
• Sparse Polynomial Chaos Expansions (sparse PCE).

They are considered promising techniques which allow building metamodels for the nonlinear
system responses with several variables [14, 15, 20–26].

3.1. Support vector regression metamodeling

Support vector regression (SVR) is a metamodeling technique approximating an unknown or
expensive-to-evaluate model. It represents a class of learning techniques for regression tasks
developed by Vapnik [40]. This method provides significant generalization capabilities, thus
making it less likely to overfit data.

SVR attempts to approximate the relationship between the input variables x = [x1, . . . , xd ] ∈
Rd and the output y ∈ R given a training data set of N samples {(xi , yi )}N

i=1 (y = M(x) is the
model response of the system supposed to be a scalar quantity with a finite variance, where
M is a numerical model presenting the observed phenomenon). It achieves this through the
equation [14, 18, 21]:

M SVR(x) = wTΦ(x)+b (2)

where Φ(x) = [φ1(x), . . . ,φD (x)] is a nonlinear mapping function Φ(·): Rd → RD which maps the
parameter space of dimension d into the corresponding feature space of dimension D ; w ∈RD is
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Figure 7. (a) Only the vectors outside the ε -insensitive tube (dotted line area) are penal-
ized; (b) Penalization of deviations larger than ε for L ε loss function [14, 15, 18].

a vector collecting the unknown coefficients of the nonlinear regression; b ∈R is a bias term that
is retrieved as a by-product of the solution in [14, 15, 18]; wTΦ(x) is defined as the inner product
in RD [18]. The dimensionality of the feature space D is defined by the nonlinear mapΦ(x).

Assuming that we can tolerate a deviation of at most ε between M SVR(x) and y , so only
when the absolute value of the difference between M SVR(x) and y is greater than ε, it needs to
reduce this deviation. Then, the SVR model expression can be formalized to find w following the
minimization equation [18]:

min
w

1

2
∥w∥2 +C

N∑
i=1

L ε(M SVR(xi ), yi ) (3)

where C ∈ R+ is a regularization parameter, chosen by cross-validation, which provides a trade-
off between the accuracy of the model on the training data set and its flatness to avoid overfitting
leading to an oscillating behavior [18]; L ε is the ε-insensitive loss function, which is most widely
used as follows (called: L1-penalization) [14, 15, 18]:

L ε
1 (x; y) =

{
0 if |M SVR(x)− y | < ε,

(|M SVR(x)− y |−ε) otherwise.
(4)

A nonlinear regressor considering this loss function is illustrated in Figure 7(a). Any point
that is outside the ε-insensitive tube needs to be penalized, illustrated in Figure 7(b). The best
combination of the parameters (w,b) minimizes the deviation of the model predictions from the
training samples outside the ε-intensive zone.

The parameters for building an SVR metamodel in this chapter are shown below, implemented
within UQLAB version 2.0 [18, 41], which is fully compatible with the MATLAB environment.
UQLAB is a general purpose Uncertainty Quantification framework developed at ETH Zurich
(Switzerland), which is made of open-source scientific modules.

• Loss function: L1 ε-insensitive.
• Kernel function: Gaussian radial basis function (RBF)

kGaussian(xi ,x j ) = exp

(
−∥xi −x j ∥2

2σ2

)
(5)

where ∥xi −x j ∥ is the Euclidean distance between xi and x j . The larger this distance, the
smaller the value of RBF. σ > 0 is the width of the RBF. The smoothness of the Gaussian
RBF is controlled by the magnitude of σ (the higher σ, the smoother the Gaussian RBF).
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3.2. Multigene genetic programming algorithm metamodeling

In MGPA, each prediction M MGPA of the model output is formed by the weighted output of the
genes plus a bias term. Each gene is a function of the d input variables x = {x1, . . . , xd } of the
system. Given a training data set of N samples {(xi , yi )}N

i=1 (y = M(x) is the model response of
the system supposed to be a scalar quantity with a finite variance, where M is a numerical model
presenting the observed phenomenon), the MGPA metamodel can be expressed as [19]:

M MGPA(x) = d0 +d1 ×gene 1+·· ·+dQ ×gene Q

= d0 +d1 × +d2 × +·· ·+dQ ×

(6)

where d0 is the bias term, d1, . . . ,dQ are the gene weights and Q is the number of genes. The
weights d(d = [d0d1 · · ·dQ ]) for the genes are automatically determined by using an ordinary least
square method to regress the genes against a training data set [19]. Each gene combines a set of
elementary functions with the input variables (such as sum, multiplication, division, logarithm,
arctangent, hyperbolic tangent, sine, exponential, power function, etc.), and the gene depth is
the number of levels in the gene structure. The expression of the MGPA metamodel is evolved
automatically by using the training data set [19, 22, 23].

The process of building a metamodel with the MGPA method is [19]:

(1) Load the training data set (a set of existing input values and corresponding model
response values);

(2) The genetic algorithm works on a population of metamodels, each one representing a
potential solution for expressing the relationship between the input variables and the
model response. The initial population of the metamodels is evolved automatically by
using the training data set. During its evolution, this algorithm transforms the current
population of metamodels into a new population by applying the classical genetic oper-
ations (selections, cross over, mutation, etc.) [42]. When it achieves the maximum gener-
ation, the MGPA metamodel will be picked out in terms of high coefficient of determina-
tion (R2) and low model complexity [19]. The model complexity is computed as the sim-
ple sum of the number of nodes (the number of elementary functions plus the number of
occurrences of the input variables) inside its constituent genes [43], and R2 is calculated
as below [19]:

R2 = 1−
∑N

i=1(M(xi )−M MGPA(xi ))2∑N
i=1

(
M(xi )− 1

N

∑N
i=1M(xi )

)2 (7)

where M(xi ) is the i th value from the studied system, M MGPA(xi ) is the predicted value
on the MGPA metamodel, and N is the number of samples in the training data set. This
value ranges from 0 to 1.

The MGPA toolbox is provided by GPTIPS, which is a free, open-source MATLAB-based software
platform [19]. It can automatically evolve both the structure and the parameters of the mathe-
matical model from the training data set. However, how to appropriately define the maximum
number of genes and the maximum gene depth for an accurate MGPA metamodel needs to be
carefully considered.
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3.3. Sparse polynomial chaos expansions metamodeling

Polynomial Chaos Expansions (PCE) is a metamodeling technique that provides a functional
approximation for the relationship between the input variables and model output in a non-
intrusive way [20, 44]. It means that it focuses only on the one-to-one mapping relationship
between input and output. Furthermore, the post-process of the PCE metamodel can also help
to find the most influential input variable to the model output.

It starts by considering the vector x ∈ Rd collecting d independent input variables {x1, . . . , xd }
with a joint probability density function (PDF) fX (x), representing the input variables of the
physic system. Given a training data set of N samples {(xi , yi )}N

i=1 (y = M(x) is the model response
of the system supposed to be a scalar quantity with a finite variance, where M is a numerical
model presenting the observed phenomenon), the PCE metamodel is established to simulate the
varying trend of the model response [20, 44]:

M PCE(x) = ∑
α∈Nd

ĉαΦα(x) (8)

where ĉα are the unknown deterministic coefficients, and Φα(x) are multivariate polynomials
basis functions which are orthonormal with respect to the joint PDF fx(x). α ∈ Nd is a multi-
index that identifies the components of the multivariate polynomials Φα. If the input variables
have a uniform distribution, the orthogonal polynomial is Legendre; while if the input variables
have a Gaussian distribution, the orthogonal polynomial is Hermite [44].

The coefficients ĉα are obtained by post-processing the experimental design {(xi , yi )}N
i=1, a

training data set consisting of N samples of the input variables and the corresponding model
responses y . From the set of model responses, the coefficients can be estimated by the ordinary
least square regression method [16, 20, 44]. For this, the infinite series in Equation (9) has to be
truncated. Choosing a maximum polynomial degree p, the usual truncation scheme preserves
all polynomials associated with the set [16, 20, 44]:

A d ,p =
{
α ∈Nd : ∥α∥1 =

d∑
i=1

αi ≤ p

}
. (9)

Thus, the cardinal of the set A d ,p denoted L = (d +p)!/d !p ! increases quickly with the number
of input variables d and the degree p of the polynomials [16, 20]. This leads that the size of the
PCE retained in the set A d ,p will be too large when dealing with high-dimensional problems.

In order to overcome this limitation, a hyperbolic truncation strategy A
d ,p
q based on the total

degree p and a parameter q , with 0 < q < 1, allowing for reduction of the size of the PCE basis is
then defined as follows [16, 20, 44]:

A
d ,p
q =

{
α ∈Nd : ∥α∥q =

(
d∑

i=1
α

q
i

)1/q

≤ p

}
. (10)

This favors the most relevant effects and low-order interactions, which are known to have
the largest impact on the variability of the model response according to the sparsity-of-effects
principle [44]. It is important to point out that lower values of q imply a larger number of
neglected high-rank interactions. In addition, when q = 1, this scheme is equivalent to the
standard PCE. When q < 1, the retained terms of the polynomial basis can be substantially
reduced [20, 44].
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3.4. Error estimates of a metamodel

After the metamodel is constructed, its accuracy can be quantified by estimating the Root Mean
Square Error (RMSE) obtained with the metamodel on the training data set. It is defined as:

εRMSE =
√∑N

i=1(M metamodel(xi )−M(xi ))2

N
(11)

where M(xi ) is the model response of the training data set, M metamodel(xi ) is the prediction value
from the metamodels above, and N is the number of samples in the training data set.

Except for the training data set used to construct the metamodel, a test data set different from
the training samples, can be used to validate the predictive performance. The test error between
the test data set and the predictive values on the metamodel can also be calculated by RMSE.

4. Metamodeling techniques for square couplers taking into account sources of
uncertainty

Here, the SVR with RBF kernel, MGPA, and the sparse PCE metamodeling techniques are imple-
mented to build a metamodel for small-scale square couplers and are compared below. The re-
sults given in this section were done with a XEON E5-1620, 8-core processor, working at 3.70 GHz.
The 3D model of the couplers is obtained by COMSOL 5.6, and the SVR and PCE metamodels are
calculated in MATLAB 2019b with the UQLAB Framework, while the MGPA metamodel is calcu-
lated in MATLAB 2017b due to the limitation of the GPTIPS toolbox functions.

The SVR with RBF kernel, MGPA, and the sparse PCE methods have been adopted to quantify
the impact of these uncertainty parameters on the mutual inductance M of small-scale square
couplers. In addition, the parameters on MGPA and sparse PCE methods are chosen considering
the metamodel accuracy and the computational time to build an accurate metamodel. The
SVR with RBF kernel builds a metamodel in light of the L1 ε-insensitive loss function. The
MGPA metamodel is performed with the following settings: Population size = 300, Number of
generations = 100, Maximum number of genes = 6, and Maximum gene depth = 4. The sparse
PCE metamodel is constructed by the adaptive degree method [20, 44], in which the degree of
PCE metamodel varies from 3 to 15 to select the most accurate one. The hyperbolic scheme in
Equation (10) is set to q = 0.75 to reduce the size of the polynomial basis.

1000 samples are chosen by the Latin hypercube sampling (LHS) method [45] and formed
as the database. All metamodels have been trained from the same training dataset containing
around one-third of the samples of the database. This data set results from COMSOL simulations
with a computational cost of 6 h (one simulation with the full solver takes about 50 s). To inves-
tigate the performance of the obtained metamodels, their predictions are then compared with
a test data set containing the remaining database samples. Table 4 provides a detailed compar-
ison of the accuracy and the computational cost of the proposed metamodeling techniques by
collecting the RMSE on the training data set and the test data set, along with the corresponding
computational time ttraining and the predictive time tpredictive (to predict one output) respectively.
It also shows that the sparse PCE metamodel turns out to use the least computational time and
to be the most accurate metamodel with a training RMSE and a test RMSE, which is better than
the accuracies obtained by the SVR and MPGA metamodels.

Furthermore, another 1000 samples selected by the MC method are computed in COMSOL to
form a new data set. Figure 8 provides the scatter plots for the metamodels of the mutual induc-
tance on the SVR, MGPA, and sparse PCE methods. These plots emphasize a good agreement
between these metamodels and this data set because the samples are very close to the solid lines.
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Figure 8. Scatter plots of the mutual inductance providing a comparison among the pre-
dictions of the SVR metamodel with RBF kernel (red marker in (a)), the MGPA metamodel
(black marker in (b)), the sparse PCE metamodel (blue marker in (c)) and the results of
COMSOL computations.

Table 4. Comparison of the accuracy and the computational cost of the SVM, MPGA, and
PCE metamodels computed for the square couplers

Method Training RMSE Test RMSE ttraining tpredictive

COMSOL computations - - 6.45 h 60 s
SVR (RBF) 0.0266 0.0420 2.48 s <1 s

MGPA 0.0233 0.0475 313.54 s <1 s
Sparse PCE 0.0158 0.0270 0.357 s <1 s

Then, the impact of the influencing factors on the mutual inductance is illustrated in Figure 9,
where the probability density functions (PDFs) of the mutual inductance estimated via the SVR,
MGPA, and sparse PCE metamodels are compared with the PDF of the COMSOL computations.
It can be seen that the variability of the mutual inductance is well captured by these metamodels,
which confirms a good estimation of the PDF of the mutual inductance with these metamodels
and highlights a similar level of accuracy. In terms of computational cost, this data set, including
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Figure 9. PDFs of the mutual inductance obtained from the SVR (solid red curve), MGPA
(solid black curve) and sparse PCE metamodels (solid blue curve) compared with the PDF
of COMSOL computations (solid magenta curve).

1000 samples, required about 14 h to compute in COMSOL, while the metamodels on the SVR,
MGPA, and sparse PCE need less than 1 minute. It is worth noting that this computational cost
does not include the time to generate the training samples from LHS in COMSOL, which were
needed for constructing the metamodels.

Compared to the other metamodeling techniques based on the same dataset, the sparse PCE
metamodeling technique uses less time to build a metamodel and provides more accurate results.
So, it is meaningful to choose such an approach to analyse the performances of the coupler,
taking into account the sources of uncertainty.

5. Conclusion

This paper provides an overview of SVR with RBF kernel, MGPA, and PCE metamodeling tech-
niques and their application in case of analyzing an IPT system. When the metamodels are built
by these techniques, the ways to evaluate the accuracy and build the PDF are also summarized.
Some metamodeling techniques (SVR with RBF kernel, MGPA, and sparse PCE) are built and
compared for analyzing the mutual inductance M of the magnetic couplers considering sources
of uncertainty. Due to the tradeoffbetween the computational time and the accuracy of the meta-
model, the sparse PCE metamodeling technique appears to be a very useful tool in the analysis of
IPT systems. Then, it will be used in the next step to address the magnetic and thermal coupled
field analysis. Indeed, when a high-power IPT system works for a long time, the heating of the
magnetic coupler brings adverse effects on the efficiency and stability of the system. An accurate
prediction of such a phenomenon will improve the assessment of IPT performances.
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[35] R. Bosshard, J. Mühlethaler, J. W. Kolar, I. Stevanović, “Optimized magnetic design for inductive power transfer coils”,
in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA,
USA, March, 2013, p. 1812-1819.
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