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Abstract. The deceptively simple crystallographic structure of early transition metal oxide perovskites belies
the complexity and variety of electronic, magnetic and structural phases that they display. Structural
defects, rotations, tilts, deformations of the oxygen-transition metal element octahedra help explain many
of these phenomena. Another key player is the orbital degree of freedom of the d-ion. It may lead to a
quantum entanglement of the materials electronic wavefunctions which promotes topological states in low
dimensional geometries. In this report we present a study of select topological properties at surfaces or
heterostructure interfaces of a subset of these perovskites when the orientation of the structure is along the
(001) or (111) direction. In contrast to the extensively studied classes of topological insulators, topology in
these systems is a characteristic property of the conducting regime, thus endowing the compounds with
potential spintronic and quantum computing functionalities. We conclude this communication with a
personal tribute to Gérard Toulouse (in French).

Résumé. En dépit de l’apparente simplicité de leur structure cristallographique, les perovskites de métaux
de transition présentent une grande richesse et complexité de phases électroniques, magnétiques et struc-
turales. L’existence de différents types de défauts, de rotations et déformations des octaèdres oxygène-ion
de transition expliquent en partie ce phénomène. De plus, le caractère d des fonctions d’ondes de l’ion de
transition introduit un degré de liberté supplémentaire, susceptible de mener à l’intrication des fonctions
d’onde du composé. Ceci confère à ces matériaux des propriétés topologiques en dimension réduite. Nous
présentons ici quelques unes des caractéristiques topologiques aux interfaces et surfaces d’hétérostructures
de certaines perovskites, lorsque la croissance est effectuée selon les orientations (001) et (111). Contraire-
ment au cas très étudié des isolants topologiques, la topologie se manifeste dans le régime métallique, avec
pour conséquence un réel potentiel sur le plan de l’ingénierie spintronique et du calcul quantique. Nous
concluons par un hommage personnel à la mémoire de Gérard Toulouse.
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1. Introduction

More than 50 years ago, in his Nobel address, Herbert Kroemer stated that “the interface is the de-
vice”. He was referring to the thin conducting channel confined near the interface of a semicon-
ducting heterostructure. In 2004, a bold experiment performed at Bell Labs [1] opened the door
to a potentially similar technological breakthrough, this time in a perovskite transition metal ox-
ide heterostructure. The chemical composition of a prototypic perovskite material is of the form
ABO3, where A is an alkaline or earth-alkaline element (e.g. K, Ba, Sr,..) and B is a early transition
metal ion (e.g. Ti, Cr, V, Ta, . . . ). In the undistorted structure, the d-ions sit at the center of an octa-
hedral cage of O ions. d-electron hops between neighboring d-sites involve an excursion onto the
intermediate O site. Valence (conduction) bands have a predominantly O (d-type) character and
the site energy difference between the the two types of elements is typically on the order of 3-4
eV. For these reasons, bulk SrTiO3 (STO) is a large gap band insulator. Remarkably, Ohtomo and
Hwang’s 2004 experiment demonstrated that upon growing a thin film of LaAlO3 (LAO) on top
of STO, both being robust paramagnetic insulators, one observed the appearance of a metallic
sheet close to the interface. In the following years, superconductivity [2] was evidenced, claims
of ferromagnetism within the metallic channel were made [3–8] and, most importantly, a large
spin-orbit energy was detected in this interfacial two-dimensional electron sheet (2DES) [9, 10].
All of these features can be broadly tuned with a gate voltage [11]. The LAO overlayer plays the
role of a gate dielectric and the few nanometer thin 2DES allows for an electric field to pene-
trate the conducting layer. The heterostructure is essentially a spintronic transistor [12–14]. Ap-
pealing features of the 2DES are a carrier concentration 2-3 orders of magnitude larger than for
conventional field effect transistors, little leakage current which is desirable for low power tech-
nologies [15, 16]. The value of the room temperature mobility still needs to be increased in or-
der to bring it closer to that of GaAs semiconductors. Significant advances in materials science
made it possible to grow heterostructures layer by layer in a controlled, almost defect-free fash-
ion [17, 18]. Further emergent phenomena at the interface, such as ferroelectricity, colossal mag-
netoresistance, multiferroelectricity, ferromagnetic polarization, can be imparted to the 2DES by
selecting an appropriate type of perovskite (e.g BaTiO3, KTaO3) [19] and capping layer (e.g Al,
Gd, GdTiO3, γ-aluminate, EuO, LaTiO3, SmTiO3) [20–22]. From an engineering perspective these
heterostructures have been appropriately branded functional oxides [23].

The mechanism underlying the formation of the 2DES is still being debated [24–28]. Two main
scenarios have been proposed and, based on the experimental data, it is plausible that both of
these are at play : electronic reconstruction (also referred to as polar catastrophe) and O vacancy.
In either case, there is an electron density build-up on the ABO3 side of the interface when the
capping film exceeds a critical thickness (four unit cells of LAO for the LAO-STO heterostructure).
Theoretical investigations of these systems are essentially based on either density functional
calculations [29–31] or tight-binding modeling which include Coulomb interactions [32], often
complemented by Poisson-Schroedinger algorithm [33]. In order to assign numerical values
to the relevant parameters, the electronic band structure derived from the latter approach is
compared to spectra obtained by Angle Resolved Photoemission Spectroscopy (ARPES)[34–37].
Relevant terms that need to be included in model hamiltonians are the crystal field splitting
of the d orbitals, the confinement energy which arises from the quantum well-type electronic
motion in the direction perpendicular to the interface, the kinetic energy of carriers within the
2DES, Coulomb interactions between electrons, the atomic spin-orbit energy (SOC) [38] of the
d ions and, last but not least, a crucial contribution named “orbital mixing” (OM) [39–42] which
stems from the breaking of inversion symmetry at the interface. The electric potential difference
across the interface and the steric constraint due to the difference in chemical formula cause a
rumpling of the boundary layers. Consequently, the B-O-B bond angle deviates from 180◦ such



Marc Gabay 305

that electron hops from one B site onto a neighboring one may involve two different d orbitals.
For the undistorted structure this would be forbidden by symmetry. The concomitant presence
of the OM and SOC interactions produces a surface spin-orbit contribution which is called the
Rashba spin orbit interaction [43]. The simplest linear form is α(k×σ) where k is the d electron
momentum parallel to the interface, σ its spin and α is the Rashba coefficient which depends
on the electric field and bond angle at the interface. The Rashba contribution entangles the
spin and the charge in the 2DES, which opens the perspective of spintronic transport within the
conducting sheet according to the so called Edelstein effect [44, 45]

In the absence of defects (charge or spin), the band structure of the 2DES is characterized by
Bloch states. Yet, as the eigenvectors in k space have several components because of spin and/or
of a multi-orbital band structure, the phase of the wavefunctions may become singular within the
Brillouin zone (BZ). This is a quantum geometric effect which gives rise to a (quantum) metric
contribution and possibly also to a Berry phase. It is akin to the magnetic-like flux picked up by
the electronic wavefunction in momentum space, in the presence of real space defects. While
Hall effects were manifestations of topology in solid state matter subjected to a magnetic field,
time reversal symmetric topological quantum matter in the context of Bloch bands emerged in
the early years 2000, first in the form of topological insulators and topological superconductors
(there is a similarity between their hamiltonians) [46–50] then of topological semimetals (Dirac,
Weyl) [51, 52]. The emergence of topology in quantum materials is linked to the symmetries
of the hamiltonian. The most common are time reversal, inversion, parity. Early examples of
topological insulators involve a band inversion process. Chemical substitution or spin orbit
tuning produce a band inversion between the top of the valence band and the bottom of the
conduction band and a symmetry breaking term opens up a gap. The parity of the states is
usually even for the bonding (valence) levels and odd for the antibonding (conduction) levels.
Hence, there is a region in k space in both the valence and conduction bands where the parity is
opposite to that of the rest of the band and the gap protects the states in that region against mixing
with the other states. If the chemical potential falls within the gap, the material is insulating,
but its edges are “metallic”, due to the appearance of edge states. When no bias voltage is
applied to the material, the total electric current at the edge is zero but a chiral spin current
propagates (spin Hall effect). This is the signature of a stable topological state characterized
by a discrete index Z2 = x + 1 [53–55] (A system which is invariant under time reversal and k
space inversion operations does not sustain a Berry curvature). A Weyl semimetal is an extension
of the topological insulator such that, in the topological regime, the gap closes at two- or two
pairs- of points depending on whether either time reversal or inversion symmetries or both, are
broken. These nodes are sources of Berry monopoles. On the surface of the Weyl semimetal,
there exists a Fermi arc ending at two- (or two pairs-) of points – the projections of the nodes
onto the surface. The Dirac semimetal is the limit of the Weyl semimetal when the nodes (or
pairs of nodes) coalesce into a single (or double) Dirac point.

In the above examples, the states that are considered belong to valence and conduction bands.
In this report, we underscore the role of topology in situations when only the conduction bands
are involved, i.e. in the metallic regime of the 2DES. In Section 2 we discuss the occurrence of
Dirac points within the conduction band of (001) oriented STO and LAO/STO. We further high-
light the presence of topological textures (spin, orbital) in these same systems and indicate that
they lead to spintronic manifestations [56]. Section 3 discusses select topological properties of
the (111) oriented structures and present several new results pertaining to that orientation. Much
effort has also been devoted to extending these analyses to the case of interacting systems [57].
Strong interactions tend to localize charge carriers in real space. The theoretical framework that
we discussed so far is developed in k space. Working out the balance between these seemingly
competing effects is not a trivial problem and we will not consider this situation in our report.
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We conclude the paper with a personal tribute to Gérard Toulouse. The central role of topology
that he advocated for condensed matter systems in real space has a counterpart in momentum
space.

2. Topology in the (001) orientation

In this section, we show that the 2DES located on the STO side of the interface with a thin film of
LAO or Al, Gd, . . . hosts topological states. As we discussed in the introduction, we first construct
a tight binding hamiltonian the parameters of which yield a spectrum quantitatively matching
the ARPES bands [41, 42, 58]. Owing to the local octahedral symmetry of the Ti ions and to
the directional character of the Ti - O bonds, d orbitals are split into an eg doublet and a t2g

triplet separated by a 2.5 eV gap. Relevant states of the 2DES involve the t2g states dx y ,dy z ,dxz .
Quantization of the motion perpendicular to the interface implies that the energies at Γ (the
center of the BZ) form a discrete sequence of levels. Based on ARPES data, the first two levels
have a dx y character, the next ones a dy z or dxz character [34, 59, 60]. Symmetry requires that
hops from one Ti site onto a neighboring one preserve the orbital character of the electron
wavefunction. These hops involve an intermediate excursion onto an O site; for a dx y orbital,
the Ti-O overlaps in the x and y directions give a hopping amplitude t ∼ 0.388 eV. For the dy z or
dxz orbitals hops along the y (x) direction involve an amplitude t but along x (y) the overlap with
the O site gives zero. However, due to residual direct Ti-Ti hopping, there is still a small th ∼ 0.031
eV contribution. 

ϵdx y1 = 2t (2−coskx −cosky )+ϵ1

ϵdx y2 = 2t (2−coskx −cosky )+ϵp1

ϵdy z = 2t (1−cosky )+2th(1−coskx )+ϵ2

ϵdxz = 2t (1−coskx )+2th(1−cosky )+ϵ2

(1)

where the in-plane wave-vector components kx and ky are dimensionless (momenta times a, the
lattice parameter). For the STO/Al interface, ϵ1 ∼−0.205 eV, ϵp1 ∼−0.105 eV, ϵ2 ∼−0.0544 eV are
the values of the energies of the quantized levels at Γ. For bulk states, the three t2g energies would
be equal at Γ. Figure 1 shows that along the [100] direction of the BZ, the dy z band intersects both
dx y bands. Along the [110] direction dy z and dxz branches are degenerate so that all three dx y ,
dy z , dxz bands intersect at finite values of the momenta. In the vicinity of this crossing point, the
dispersion is linear in k, such that we have a “triple” Dirac point. This special point plays the role
of an effective Γ point and we label it ΓDP. Due to the C4 rotational symmetry, there are four such
ΓDP points in the BZ, two along the [110] direction and two along the [1̄10] direction. As seen in
Figure 1 the lowest energy crossing involves the dx y2 band.

For STO, the SOC energy scale is λ∼ 25 meV

HSOC =λ̂⃗L · ̂⃗σ (2)̂⃗σ are the Pauli matrices and the angular momentum operator L⃗ is expressed in t2g orbital space.
Lx , Ly and Lz are three of the eight Gell-Mann matrices which represent the SU(3) group. They
describe an L = 1 angular momentum.

Lx =
0 0 0

0 0 i
0 −i 0

 Ly =
0 0 −i

0 0 0
i 0 0

 Lz =
 0 i 0
−i 0 0
0 0 0

 (3)

The size of the OM term is γOM ∼ 20 meV (∼ 5 meV) for the dx y1 (dx y2) band [61]. With our
choice of parameters, we get a very good agreement between the tight binding and ARPES band
structures [62].
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Figure 1. Band dispersions for zero OM and SOC along (a) [100] and (b) [110]. Horizontal
scale, kx (case (a)) and k=kx=ky (case (b)). Blue : lowest energy dx y band. Orange : second
lowest energy dx y band. Red : dy z band. Green : dxz band. The lowest energy of a three
band crossing corresponds to the intersection of the second lowest energy dx y band with
the dy z and dxz bands (black dot in (b)). The chemical potential µ= 0 [41].

When spin orbit and orbital mixing terms are included, the “triple” Dirac point evolves into
a regular Dirac point at ΓDP and a split off branch. We show a zoom of the bands in the first
quadrant of the BZ, in the vicinity of ΓDP, along [110] Figure 2(a) and along ∆, the axis parallel to
[1̄10] passing through ΓDP Figure 2(b). We notice the tilting of the axis and the evolution of the
angle of the cone between [110] and ∆. Figure 2(b) clearly shows the band inversion occurring in
the vicinity of ΓDP. The energy at ΓDP is a fraction of a meV below the Fermi energy. Figure 2(b)
then suggests that the chemical potential falls within the gap of the inverted bands. Its magnitude
varies as one moves around ΓDP, but it was shown that a stable topological state is present.

As we indicated previously, a second quartet of tilted Dirac points is found at higher band
filling due to the crossing of the dx y1 band with dy z , dxz along [110] and [1̄10].

Topological manifestations are the occurrence of spin winding around Fermi energy con-
tours [6, 62–64]. In practice, one may take advantage of this winding to generate an Inverse Edel-
stein, spin to charge current density response. The efficiency of the process for the 2DES is eval-
uated by measuring the ratio between the charge current in response to a spin density. This ratio,
λI EE has the dimension of a length. At low temperature, the conversion between spin density and
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Figure 2. Zoom of the band structure with SOC and OM near ΓDP along (a) [110] and (b)
along ∆, the direction parallel to [1̄10] passing through ΓDP. The red dot corresponds to
ΓDP and the red dashed circle or ellipse highlights the band geometry in its vicinity. µ= -
0.0007 eV; the filling is 1014 cm−2 [41].

charge current for STO [62, 65] is at least three times larger than that observed in other studied
systems, as shown in Table 1 [12, 66].

Table 1. Efficiency of the spin to charge conversion.

Compound | W | Pt | Ag/Bi | α-Sn | HgTe | LAO/STO | STO

λI EE (nm) | <1 | <1 | 0.08 | 2.1 | 2 | 6 | ± 20

Once again, this winding is the result of the combined SOC and OM parts of the hamiltonian.
It produces an Edelstein effect when a charge current flows through a sample. The spin current
may be converted back to a charge current in a non local Hall bar setup. The Edelstein tensor καβ
is the spin density response along the β axis to an electric field applied along the α axis. In the
following κx y represents the Edelstein coefficient [42].

κx y (µ) = e

Nk a2

∑
k,ν
τν(k)vνx (k)

〈
Sy

〉
ν

(k)δ
(
Eν(k)−µ)

(4)

The summation is over the band index ν, and k the wavevector. 1
Nk

is a normalization factor

which depends on the k-mesh 1
Nk a2

∑
k
≈ Î

B Z

d2k
4π2 . For band ν, τν is the scattering time, vνx the

velocity along the x axis, 〈Sy 〉ν the expectation value of the dimensionless spin operator along
the y axis and Eν is the energy. A priori these quantities depend on ν and k. We relax the
constraint on the scattering time and assume that it is a constant τν(k) = τ0. This expression
holds for zero temperature but it is readily extended to non-zero temperature by replacing the δ
function with a thermally broadened version. We transform Eq. 4 into a Fermi surface integral
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Figure 3. Spin winding at the Fermi energy for the Al/STO interface [62].

κx y (µ) = ∑
ν

∫ d 2k
4π2 Fν(k)δ(Eν(k)−µ) with Fν(k) = τ0〈vx〉ν(k)〈Sy 〉ν(k). Using the symmetries of the

system and Stokes theorem, the Edelstein coefficient κ is expressed as

κ(µ) = eτ0

2πħ
∑
ν

Ï
B Z

d2k fνk (µ)
(⃗∇k ×〈S⃗〉ν

) · z⃗ (5)

( fνk = 1
exp{(Eν(k)−µ)/kB T } is the Fermi distribution of band ν). Eq. (5) highlights the deep connec-

tion between spin winding (spin textures) and the Edelstein effect [42]. The existence of the OM

term enhances the response. Indeed, close to Γ, HOM = 2γOM a(̂⃗L×k⃗)· z⃗ which is a linear Rashba-

like form for ̂⃗L (a is the lattice parameter). These spintronic effects have been experimentally ob-
served in Al/STO and LAO/STO heterostructures [62, 65]. A further manifestation of topology is
the existence of a spin Hall current driven by a charge current, and flowing in the in-plane direc-
tion perpendicular to the applied charge current [67, 68]. The Rashba-like form of the OM term
close to Γ suggest that orbital winding is also present. We will return to this remark in the next
section where we investigate the (111) geometry [66, 69].

3. Topology in the (111) orientation

When the heterostructure is grown along the (111) orientation, the stacking on the STO side con-
sists of alternating Ti and SrO3 planes. Figure 4 shows consecutive (111) Ti planes. Considering
only Ti planes, viewed from the [111] direction, it is easy to see that there are three different types
of Ti ions, “red” in the first layer, “blue” in the second, and green in the third. Then, the sequence
repeats itself in the fourth and subsequent layers. A two-dimensional projection of the stacking,
shown in the right panel of Figure 4, evidences a face centered honeycomb lattice. Experimental
studies of this interface reveals the existence of a few nanometers thin, confined 2DES, on the
STO side of the interface such that carriers move in an atomic honeycomb background [70–72].

In order to study the topological properties of this (111) interface, we construct the model tight
binding hamiltonian which includes the appropriate energy terms [73–75]. Since carriers move
between Ti sites, we hereafter focus on Ti layers. Hops between neighboring Ti have the largest
amplitude, denoted by t (∼ 1.6 eV) and they involve two consecutive layers. Figure 5 compares
the electronic energies of the 2DES when we take into account all three layers of the stacking
sequence or simply include two.
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Figure 4. STO side, just below the (111) LAO/STO interface. Left: cubic lattice cell the
corners of which are occupied by Ti4+ ions. The gray areas indicate planes normal to the
[111] direction. Right: projection onto (111) planes. Two layers of Ti4+ ions (blue and red)
form a honeycomb lattice, where the two triangular sublattices are displaced by the vector
a⃗0. (aSTO = 3.905Å and a0 = p

2/3aSTO). Hopping amplitudes between Ti sites belonging
to two consecutive layers are t for nearest neighbors and td for next nearest neighbors
(represented by a dashed line). tp is the hopping between Ti sites belonging to the same
layer.

Figure 5. Comparison between the bilayer (left) and trilayer (right) tight-binding mod-
els [76].
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In the former case, we have bonding, non bonding and antibonding bands. Bonding and
antibonding states stem from hops between two consecutive Ti planes, say red and blue, non
bonding states from hops between the first and third layer, say red and green. In the latter case,
we only get bonding and antibonding bands. In either case, the energy separation between two
consecutive groupings is several eV. ARPES studies indicate that the Fermi energy lies very close to
the bottom of the lowest grouping, i.e within the bonding bands. Consequently we only consider
two layers to describe the carrier motion parallel to the interface. This does not mean that the
2DES is confined to two layers. As explained previously, motion in the direction perpendicular
to the interface is quantized. The extension of the wavefunction along [111] is on the order of
3 nm and this value gives an estimate of the thickness of the 2DES [72]. We also note that, along
[111], confinement affects the three t2g orbitals equally, so that the bonding and antibonding
bands would both be energy degenerate at Γ if only kinetic terms were present. This property
differentiates the (001) and (111) interfaces. Due to the directional character of the t2g orbitals,
Ti-Ti hopping amplitudes along the sides of the hexagons in Figure 4 (right panel) depend on
the nature of the orbital. We introduce a t2g basis |d i

ασ >. i = 1,2 labels the Ti layer (red, blue),
α = 1,2,3 identifies the orbital (1 ≡ y z, 2 ≡ xz, 3 ≡ x y) and σ =↑,↓ denotes the spin. The kinetic
part is block diagonal in spin and orbital subspaces. The structure of the blocks in layer subspace
|d 1
ασ >, |d 2

ασ > is given by

Hkinασ =
(

0 εασ
ε∗ασ 0

)
(6)

where 

ε1σ =−t
{

exp
(
i ky

)+exp
[

i
(p

3
2 kx − 1

2 ky

)}
−td exp

[
− i

(p
3

2 kx + 1
2 ky

)]
ε2σ =−t

{
exp

(
i ky

)+exp
[
− i

(p
3

2 kx + 1
2 ky

)}
−td exp

[
i
(p

3
2 kx − 1

2 ky

)]
ε3σ =−t exp

(
− i

2 ky

)
×2cos

(p
3

2 kx

)
− td exp

(
i ky

)
(7)

A good fit to the ARPES data is obtained for t = 1.6 eV, tp = 0 and td = 0.07 eV (see right side of
Figure 4). kx , ky are dimensionless quantities (momentum ×a0) and x, y refer to the [1̄10] and
[1̄1̄2] directions respectively. Note that we chose the origin of the coordinate system at Γ and that
the ε coefficients are spin independent.

While the crystal symmetry of STO is cubic in the bulk, it is trigonal at the interface. This
produces an extra crystal field splitting affecting the t2g orbitals. For this particular interface, the
a1g state is lower in energy than the e±g ones. The corresponding hamiltonian is diagonal in layer
and spin subspaces. In orbital subspace |d i

1σ >, |d i
2σ >, |d i

3σ >, it reads

Htrigiσ = d

0 1 1
1 0 1
1 1 0

 , (8)

where d=−3 meV [77]. In order to account for the different value of the electrostatic potential in
layers 1 and 2, we assign a spin independent site energy -V to layer 1, +V to layer 2 (V=50 meV) to
all three Ti orbitals.

A crucial contribution to the tight binding hamiltonian comes from the OM term. We dis-
cussed its origin in Section 1 and saw its relevance for the topological properties of the (001) ori-
ented interface. For the (111) interface, this OM term plays an important role as well. It is spin
independent and it results from electron hops between nearest neighbor Ti sites such that the
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orbital character at the starting point is different from that at the end point. The two orbitals that
are coupled belong to two different layers. Its expression is

HOMσ = γ
 0 i∆k −i Ak

−i∆k 0 i Bk

i Ak −i Bk 0

 , (9)

where γ = 40 meV. The left panel of Figure 4 shows that the symmetry operations consist of a
rotation about the [111] axis of the cube such that 1 → 3, 2 → 1, 3 → 2 (for theα index) and a (110)
mirror plane which exchanges 1 and 2. The counterpart in (kx , ky , kz (≡ [111])) space is a 2π

3
rotation about the center of the hexagon and a mirror plane ([111], [1̄1̄2]) which changes kx into
-kx and leaves ky invariant. Performing these symmetry operations gives Ak (−kx ) = −Bk (kx ),

∆k (−kx ) = −∆k (kx ), ∆(k′) = Ak (k), A(k′) = Bk (k), B(k′) = ∆k (k), where k ′
x = − 1

2 kx −
p

3
2 ky and

k ′
y =

p
3

2 kx − 1
2 ky . Symmetry requires that Ak ,Bk ,∆k go linearly to zero in k at Γ and at the three

M points. This allows one to unambiguously determine the expressions of Ak ,Bk ,∆k .
Ak = sin

(p
3

2 kx + 3
2 ky

)
Bk = sin

(p
3

2 kx − 3
2 ky

)
∆k =−sin

(p
3kx

) (10)

In the small k limit, HOMσ = γ(⃗L× k⃗) · u⃗111. u⃗111 is the unit vector in the [111] direction and L⃗
is the angular momentum operator in t2g orbital space (see Eq. (3)). This form evokes an “orbital”
Rashba interface hamiltonian (see section 1).

Next, we have the atomic spin-orbit term. Its expression was given in Eq. (2). Lastly we
include Hubbard terms describing electron-electron interactions. When we discussed the kinetic
terms pertaining to the (111) oriented 2DES we pointed out that the band structure of the 2DES
describes the motion of the carriers parallel to the interface and that the motion perpendicular
to the interface is quantized in the form of sub-band levels. The sequence of levels describes
electrons with average vertical positions further and further removed from the interface. The
effective Hubbard energy pertaining to carriers located a depth z is ∼ Uψ(z)4 where U is the
value at the interface and ψ(z) is the z-dependent part of the eigenfunction of the quantized
level. This function decays exponentially with z. Experiments performed on the (111) LAO/STO
heterostructure evidence a group of bands close to the interface. Given the energy resolution of
the technique (electron holography) one should also include a second group, very close to the
Fermi level. The Hubbard interaction of the former group is denoted U1, that of the latter group
U2. There is also an interaction U ′ between the two group akin to the inter-orbital term that is
used in the Kanamori hamiltonian [78] which implements Hund’s rules.

We now turn to a discussion of the topological properties of the (111) oriented interface, in the
metallic regime [79]. Generically, there are four time reversal symmetry invariant points in the
hexagonal BZ. One is Γ and the other three are the M points, since 2

−→
kM =−→

0 modulo a reciprocal
lattice vector. Hence the eigenfunctions of the hamiltonian are real at these point. Furthermore
if we exchange the red and blue Ti sites, i.e layers 1 and 2, we observe that, for the bonding bands
of interest, the sign is unchanged (reversed) at Γ (at M). So we have an even parity at Γ and an
odd parity at M . The spin-orbit interaction opens up a gap at M which protects the odd parity
states. We note that the OM term is strictly zero at Γ and M . We expect a non trivialZ2 topological
index. This is indeed borne out in the computation of the eigenstates for strips that are infinite
along x and finite in the y direction. They reveal the presence of edge states near M , as can be
seen in Figure 6 which shows an array of extended bands. The array is due to the finite extent in
the y direction which leads to a quantization of the energy levels. The conduction band states,
which are relevant to the interface span an energy range ∼ 3.25−7.25 eV. We note the presence of
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two particular bands in the spectrum, shown in red color. These bands touch the top and bottom
boundaries of the array then, at the K points, split from the group of conduction bands and span
the gap. These are the edge states that stem from the parity inversion. We plot the amplitude of
the edge state wavefunction in the y direction at M first, then at K (Figure 7). It is apparent that
the edge state is strongly localized near the boundary of the strip at M and that it is extended and
has merged with conduction band states at K .

Figure 6. Band dispersion for a L ×∞ strip along a path Γ→ K → M → K ′ → Γ. Bands
drawn in black color represent extended states, in red color, edge states. The conduction
band extends between 3.25 and 7.25 eV [79].

From an experimental perspective the chemical potential that one can tune with gating
remains relatively close to the Γ point, so that it is not clear that one can reach this topological
region.

A second instance leading to the emergence of a topological regime for this interface is
when one applies a gate voltage. The influence of the Hubbard term can be qualitatively
assessed within a Hartree-Fock (mean field) approach. In the framework of this approximation,
the energies of the interacting system are given by the non-interacting single particle energies
augmented by a factor U<n> (<n> is the expectation value of the site occupancy). This leads to
a (rigid) upward energy shift of the band structure. By contrast for these interfaces, it is found
that the existence of U and of a field dependent dielectric constant result in a downward shift of
the second group of quantized levels and an upward shift of the first group, as the carrier density
is increased. Such behavior underscores the lack of rigid band shifts for these 2DES [32, 80–82].
This leads to the configuration shown in Figure 8.

This situation is similar to the scenario that we discussed for the (001) interface. Here too, the
topological crossing occurs within the conduction band and its manifestations are limited to a
very narrow range of values of the chemical potential.
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Figure 7. (a) Amplitude of the edge state wavefunction versus y at an M point (indicated
by the red vertical bar in the energy diagram at top). (b), Amplitude of the edge state
wavefunction versus y at a K point (indicated by the red vertical bar in the energy diagram
at top). The dimensionless strip width is L = 20. Zero corresponds to the edge of the strip,
twenty to the opposite edge. Adapted from [79].

While the two cases that we just discussed involve finite values of the momenta, we now unveil
the topological states that are present near Γ and argue that they have spintronic consequences.
Our tight binding modeling of the (111) 2DES is such that that each quantized group of bands
contains twelve dispersions, six bonding and six antibonding, separated in energy by several eV.
Experimentally, only the bonding bands are partially filled so we hereafter focus on that sub-
space. At Γ, the OM term is zero and we have three doubly degenerate energy levels (due to
time reversal symmetry). The energy separation between the two lowest levels is ∼ 8 meV and the
chemical potential that is extracted from transport measurements falls within the gap. The area of
the BZ that pertains to the (111) interface is such that |kx |, |ky | ≤ 0.5. We proceed to demonstrate
that the interplay of multi-orbital kinetic terms, of angular momentum and spin-orbit interaction
leads to Berry curvature and quantum metric effects in the (111) 2DES.

3.1. Fermi surface anisotropy driven Berry curvature

As a preliminary step, we give a simple example showing how a Fermi surface anisotropy can be
the source of a Berry curvature. We consider a two-orbital problem, where orbitals are denoted
by 1 and 2. We introduce Pauli matrices τx ,τy ,τz in orbital space such that 1(2) corresponds to
the +1 (−1) eigenstate of τz . In k space, the kinetic energy of an electron occupying orbital 1 is
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Figure 8. Momentum dispersion curve at the Fermi energy for the first two sets of quan-
tized bands. In blue and red, first set (only two bands are shown for clarity), in black the
lowest energy band of the second quantized group. Red and black bands touch at the Fermi
level. kx and ky are dimensionless quantities (momentum×a0).

e1 = ak2
x +bk2

y and that of an electron occupying orbital 2 e2 = bk2
x +ak2

y . An orbital mixing term
promotes hops between orbitals 1 and 2. The hamiltonian of this model reads

H=
(

e1 −iα
(
kx − i ky

)
iα

(
kx + i ky

)
e2

)
, (11)

If we define e0 = 1
2 (e1 +e2), g (k) = 1

2 (e1 −e2) and τ0 as the unit matrix, we express H as

H= e0τ0 −αuz · (τττ×k)+ g (k)τz

= e0τ0 +d(k) ·τττ (12)

This 2×2 hamiltonian gives rise to two bands e+ and e−. Their Berry curvatureΩ points along
uz and is given by

Ωz
± =∓1

2
α2 g (k)

(g (k)2 +α2k2)3/2
(13)

So the anisotropy of the bands, characterized by g (k) and the orbital mixing, by −αuz · (τττ×k)
produce a finite Berry curvature.
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3.2. Orbital textures as a source of Berry curvature

Here, we undercore the fact that the interplay of the trigonal crystal field Eq. (8), of the OM
part Eq. (9) and of the kinetic terms Eq. (6) also gives rise to topological effects. The layer
potential energy V only shifts the spectrum rigidly, so that we omit it in the present discussion.
A convenient orbital basis is one which diagonalizes the trigonal crystal field hamiltonian. The
rotation matrix connecting the orbital and trigonal bases is

P =

−
1p
2
− 1p

6
1p
3

1p
2

− 1p
6

1p
3

0 2p
6

1p
3

 (14)

In terms of Gell-Mann matrices,
Htrig = dΛ8 (15)

We pointed out that the bonding bands were relevant to the experimental situation which
simplifies the tight binding modeling of the (111) interface. So we project the kinetic part of the
hamiltonian onto the bonding sub-space. Since we are considering here the impact of topology
on the orbital states, we turn off spin-orbit and omit the spin index. In the trigonal basis Eq. (14)
The kinetic hamiltonian (see Eq. (7)) is

Hkin = ε1 +ε2 +ε3

3
I3 + ε1 +ε2 −2ε3

6
Λ3 + ε1 −ε2

2
p

3
Λ1 − ε1 −ε2

2
p

6
Λ4 − ε1 +ε2 −2ε3

3
p

2
Λ6 (16)

Lastly, the OM part takes the form

HOM = B ′
k Lx + A′

k Ly +∆′
k Lz (17)

where the angular momentum matrices Lx , Ly , Lz have the same expression in the trigonal basis
as in the orbital basis (see Eq. (3)) and

A′ =− 1p
6

(
A+B −2 ∆

)
B ′ = 1p

2

(
A−B

)
∆′ = 1p

3

(
A+B +∆)

.

(18)

where A, B , ∆ have been defined in Eq. 10. The full hamiltonian (6×6 matrix) is

H=
(

H0trig Hkin+HOM
H*kin+HOM H0trig

)
, (19)

where H0trig is the trigonal crystal field matrix expressed in the trigonal basis (hence diagonal,
with entries d , d , −2d).

The Berry curvature is obtained once we know the eigenvalues and eigenfunctions of H

Ωz
ν(k) =−2Im

[ ∑
χ ̸=ν

〈
νk |v̂ x (k)|χk

〉〈
χk

∣∣v̂ y (k)
∣∣νk

〉(
Eν(k)−Eχ(k)

)2

]
(20)

Where |νk〉, |χk〉 are eigenvectors of the hamiltonian. The velocity operators are given by
v̂β(k) = ∂kβH(k). The numerical solution of Eq. (20) gives a finite value of the Berry curvature
near Γ. Figure 9, which pertains to the lowest energy bonding band, shows thatΩz

ν(k) is odd in kx

and even in ky . In the small k limit, the Fermi contours are circles, such that the angular average
ofΩz

ν(k) over these contours is zero.
Inspection of the terms in the sum contributing to the Berry curvature, for the lowest energy

band, reveals that the dominant ones come from interband virtual transitions within the bonding
group. Indeed, the gap in that group is on the order of 3d ∼ 10 meV whereas the bonding-
antibonding gap is ∼ 4t . We note however that the Berry curvature can only be non zero if
the OM term is present. But we further observe that we only get a finite value if at least one
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Figure 9. Berry curvature of lowest energy bonding band in a small range of values of k
near Γ. kx and ky are dimensionless quantities (momentum×a0).

of the following two conditions is met (i) the chemical potential is such that the band structure is
anisotropic in k space or/and (ii) the eigenfunctions of H(k) are linear superpositions of a1g and
e±g wavefunctions which include both bonding and antibonding groups. One may understand
(ii) as due to the fact that the anomalous part of the velocity operator mixes the two groups, more
precisely the parity of the state, since the bonding bands have even parity and the antibonding
bands have odd parity. Close to Γ, the band dispersions are isotropic in k space, but nevertheless
criterion (ii) is satisfied. If we project H onto the bonding space, its eigenfunctions will only
contain components of the same parity and the Berry curvature will be zero. So, while the low
energy modeling captures most of the physics, it falls short of describing Berry curvature effects.

As we pointed out in Section 2, the finite value of the Berry curvature signals the existence of
orbital textures. Close enough to Γ, the Fermi contour of the lowest bonding energy branch in the
BZ is a circle, but as discussed in the previous paragraph wavefunctions are linear combinations
of bonding and antibonding eigenstates. We plot the expectation value over the lowest energy
wavefunction of the two dimensional vector

−→
L in =(Lx , Ly ) around the Fermi contour as well as

the sign of the expectation value of Lz over the lowest energy wavefunction. This is shown in
Figure 10.−→

L in winds around the Fermi contour, similarly to what is found in a (spin) Rashba case and
gives a +1 winding number. Remarkably, the sign of Lz alternates around the Fermi circle.
The amplitude (not shown) also varies and goes to zero at the boundary between positive and
negative regions (“domain walls”).

Note that we chose a range of values of momenta such that the Fermi contours are circles,
meaning that the dispersion is isotropic in k space. The topological properties derive from the
entanglement of the orbital components of the wavefunction.

We may repeat the analysis for the experimentally relevant area of the BZ (|kF x |, |kF y | ∼ 0.3).
The Berry curvature and orbital textures are the combined result of the Fermi surface anisotropy
and of the orbital entanglement (Figure 11).

We noted above that the Berry curvature is odd in kx and even in ky , implying that the integral

of Ωz
ν(k) over an area of the BZ centered at Γ gives zero, but the integral of

∂Ωz
ν(k)
∂kx

is finite, giving
rise to a Berry curvature dipole D parallel to kx (BCD) [83–85].
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Figure 10. Left in-plane vector plot of the expectation value of (Lx , Ly ) over the Fermi circle,
close to Γ. Right sign of out-of-plane expectation value of Lz over the Fermi circle. Blue is
positive, orange is negative. Note the C3 symmetry. kx and ky are dimensionless quantities
(momentum×a0).

Figure 11. Left in-plane vector plot of the expectation value of (Lx , Ly ) over the Fermi
contour for the experimentally relevant value of the chemical potential (100 meV). Right
sign of out-of-plane expectation value of Lz over the Fermi contour. Blue is positive, orange
is negative. Note the C3 symmetry. kx and ky are dimensionless quantities (mo-
mentum×a0).



Marc Gabay 319

Dνx = 3
p

3

8π2

∫
d2k

∂Ωz
ν(k)

∂kx
fνk (21)

For (111) LaO/STO, with the tight binding parameters that we used, we find Dx ∼ 0.02a0. Note
that we obtain a finite value even for the C3 and time reversal symmetric case, but only if the 6
antibonding bands of our 12 band model are included. In Ref. [84], the existence of an applied
driving current still breaks the above symmetries and for small values ofσS , the BCD is very small
(∼ 1 nm) but non-zero. In our model, only the lowest band is occupied, which corresponds to
a range of fillings such that σS ∼ 1 mS, which has previously been explored [80, 81, 86]. If we
increase the filling, more bands will get populated. When the bands that are 8meV higher in
energy at Γ start getting occupied, the BCD reaches a value Dx ∼ −1.6a0, i.e is 80 times larger
than that pertaining to the lowest energy band. Then, if we keep increasing the filling we find
that the absolute value of Dx drops sharply. This evolution and the magnitude of the variation
are clearly consistent with Lesne’s et al. data [84].

Several experimental implications of these properties pertain to spintronic transport [66, 87].

• An orbital Edelstein effect is expected, similar to the one that we introduced previously
in Eq. (4). The expectation value < Sy >ν is replaced by < Ly >ν. The relaxation time, τν
is not the same as that pertaining to the spin case. Transport of angular momentum is a
priori more sensitive to disorder (non magnetic impurities cause scattering). This could
lead to an angular momentum accumulation at the edge of a Hall bar, detectable by Kerr
effect.

• An orbital Hall conductivity, which is the counterpart of the spin Hall conductivity [67]
discussed in Section 2. The intrinsic part of the orbital Hall conductivity is defined via
the so-called orbital curvature (a variant of the Berry curvature):

ωz
ν(k) =−2Im

[ ∑
χ ̸=ν

〈
νk

∣∣v̂ z
x (k)

∣∣χk
〉〈
χk

∣∣v̂ y (k)
∣∣νk

〉(
Eν(k)−Eχ(k)

)2

]
(22)

where the orbital velocity is v̂ z
x = {v̂ x , L̂z }.

The above form stems from the Kubo formalism in combination with the Streda
formula. The total response of the model is then obtained by summing over all occupied
states; the intrinsic part of the orbital Hall conductivity reads

σz
x y (µ) = e

ħ
3
p

3

8π2

∑
ν

∫
d2k fνkω

z
ν(k) (23)

• A non-linear second harmonic Hall current due to the DC and AC part of the driving
electric field respectively (see the experimental study by G. Tuvia et al. [88]).

j0y = 1

ħ2

e3τ

2
−→z ×−→

E∗(Dx .Ex )

jy = 1

ħ2

e3τ

2(1+ iωτ)
−→z ×−→

E (Dx .Ex ) (24)

These manifestations pertain to the orbital degree of freedom. When we “turn on” the atomic
spin-orbit, there is an additional spin contribution to the previous quantities. However, since
the angular momentum quantum number is L = 1, we expect the orbital part to produce larger
effects.

3.3. Spin textures

When we include the atomic spin-orbit term (Eq. (2)) our tight-binding hamiltonian is a 12×12
matrix. Spin is no longer a conserved quantum number, but owing to time reversal symmetry,
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bands split into Kramers doublets ± such that E+(k) = E−(−k). In addition to the previously
described orbital textures, we also get spin textures. In particular, the out of plane winding that
we find nicely matches the experimental one, both for LAO/STO(111) [89] and for KTO(111) [90].

Figure 12. Sign of the out-of-plane expectation value of Sz over the Fermi contour for the
experimentally relevant value of the chemical potential (100 meV) and for the first three
energy bands. Blue is positive, orange is negative. Note the C3 symmetry. See Figure 11.

The energy difference of the lowest band at Γ, when spin-orbit is included and when it is
not, yields an estimate of the out-of-plane texture strength. We find that it is ∼ 1 meV. Similarly,
the shift of the energy minimum provides a determination of the in-plane Rashba spin textures
energy scale, ∼ 5 meV.

3.4. Superconductivity and topology

In this section, we discuss two implications of the band topology pertaining to the superconduct-
ing instability of the (111) interface [76]. One relates to the Berry curvature that we obtained and
one to the quantum metric which we introduce below. It has been shown that the Berry curva-
ture reduces the pairing strength and transition temperature of a multiband system described by
isotropic band dispersions [91]. This is a generic finding for a BCS type of instability with a pure,
even or odd parity of the order parameter. The Berry curvature dipole, on the other hand, only
affects the superconducting instability if the pairing potential has a mixed even-odd symmetry.
For the situation that we are describing, the Fermi contour is anisotropic so that the above con-
clusions do not necessarily apply. Qualitatively, one may nevertheless surmise that they remain
valid, since the dispersion is isotropic whenever the chemical potential is close to the lowest en-
ergy band bottom. Anisotropy sets in upon increasing the Fermi energy so that an adiabatic con-
tinuation is a plausible assumption. A second manifestation of the band topology on the super-
conducting instability involves the quantum metric g , the real part of the quantum geometric
tensor Q [92–94].

Qn
αβ = 〈∂αn| (1−|n〉〈n|) ∣∣∂βn

〉= g n
αβ−

i

2
Ωn
αβ, (25)

(α, β are the k space coordinates and n denotes a band eigenvector). In two dimensions
one obtains the expression of the superconducting transition temperature from the Berezinskii
Kosterlitz Thouless (BKT) theory. It is linearly related to the superconducting carrier density, the
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latter consisting of the sum of a conventional and a geometric contribution [95]. For a parabolic
band and an s-wave BCS superconductor the conventional part at T = 0 is directly proportional
to the chemical potential µ (which is much larger than the superconducting gap). The geometric
part involves an integral where the integrand contains g n

αβ
. Transport measurements of the 2DES

in LAO/STO (111) indicate that µ is close to the energy of the lowest band bottom. Owing to the
Rashba-type two-fold degeneracy of that band at Γ, g n

αβ
is sharply peaked in a very narrow range

of the BZ around Γ
The implication of this fact is that for increasing values of µ the conventional part of the

“superfluid” density tends to dominate. The influence of the geometric part is only felt for small
values of µ. This is in contrast to the case of twisted bilayer graphene or several transition metal
dichalcogenides where the presence of flat bands quenches the conventional part and only leaves
the geometric one [96]. Figure 13 shows the evolution of the conventional and geometric “TBK T ”
versus µ. “T conv

BK T ” is obtained when we only consider the conventional superfluid weight and
“T g eom

BK T ” when we only consider the geometric superfluid weight [94, 95]. For µ > 0.5 meV, the
conventional contribution dominates.

Figure 13. The conventional (orange) and geometric (blue) contributions to TBK T ver-
sus µ.

For a rigid band dispersive system, an increase in the carrier concentration n generically
leads to an increase in the chemical potential (for a 2D parabolic band, the two quantities
are linearly related). For perovskite based interfaces, the situation is more complicated. The
experimental technique that is used to change the carrier concentration is gating. Doing so
modifies the electric field profile at the interfaces which in turn impacts the dielectric constant
and the mobility. The magnitude of these effects depends on the location of the carriers relative
to the interface. Their average position is different for each quantized level of the 2DES and for
the various eigenstate of a given sub-band. As one gates the heterostructure, the positions of
the bands shift relative to one another. Coulomb interactions also modify the relative positions
between bands. This is because Hubbard interactions are largest for sub-bands positioned close
to the interface and between quantized levels that have smaller energy separations. It has also
been argued that the anisotropic shape of the Fermi contours may impact the determination
of n since the Hall number no longer gives access to n in the low magnetic field limit. So the
correspondence between the applied gate voltage Vg , the carrier concentration and µ is not a
simple one.

In order to record a reproducible evolution of physical quantities with gating, experimental
plots use the sheet conductance as the tuning parameter. Analysis of transport data for the



322 Marc Gabay

LAO/STO (111) interface indicate that the dependence of µ on the sheet conductance σ shows
a non monotonic behavior (Figure 14).

Figure 14. Sketch of the µ versus σ profile.

At the lower end of the conductance range where superconductivity is observed, µ is on the
order of 1 meV, i.e the instability is dominated by the conventional contribution. As σ increases,
so does µ up to a maximum value which also corresponds to the maximum superconducting
TBK T . Beyond the maximum, µ decreases as σ is further increased. TBK T follows the same
trend. However, for µ ∼ 0.5 meV, the geometric contribution dominates and the observed
TBK T presents an upturn. Eventually, at very low µ, TBK T goes down again. This leads us to
propose a theoretical phase diagram giving TBK T versus σ, displaying two regimes, one where
the conventional response dominates (up to the so called optimal doping) and one where the
geometric response is at play [76]. Each of these exhibits a dome, as is depicted in Figure 15 [80,
86, 97].

Figure 15. Plot of TBK T versus Vg . The dome at lower (higher) values of Vg pertains to the
conventional (geometric) regime [76].
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4. Outlook

In this report, we showcased the relevance of topology concepts for perovskite oxide heterostruc-
tures. We gave a brief overview of the significant body of work devoted to this topic and we pre-
sented results of our recent research on the LAO/STO (111) interface. These underscore the fact
that orbital entanglement occurs whenever the energies of the three t2g states are degenerate. For
(001) interfaces, confinement impacts the out-of-plane orbitals more than the dx y one. Bands
have an almost pure orbital character and the dx y ones are lower in energy at Γ. Thus, the degen-
eracy occurs away from Γ and above the energy of the so-called Lifshitz transition (when the dxz

and dy z bands become occupied). The crossing is of “Dirac type” (linear in-k energy dispersion
in the vicinity of that point). For (111) interfaces, confinement impacts all three t2g states equally.
Consequently entanglement is present near Γ and the energy dispersion is quadratic in k. There
are several aspects which we did not cover here. We summarily described a few spintronic impli-
cations, but left out aspects pertaining to the experimental setups allowing one to take advantage
of these properties. While we showed that topological textures are hallmarks of these interfaces,
we did not emphasize their impact on the symmetry of the superconducting order parameter.
A fact that stands out is that the topological properties of the normal state drive a topological
regime in the superconducting phase, with potential implications in terms on quantum com-
puting. We indicated that confinement causes a quantized differentiation of the energy bands.
This produces band crossings (avoided or not) upon gating, introducing further opportunities of
getting topological textures. We limited the scope of our presentation to the LAO/STO (001) and
(111) interfaces but the (110) case also deserves attention. Other types of perovskites, such as
LaTiO3 (a Mott insulator in the absence of doping) or KTaO3 (which has a very large spin-orbit in-
teraction energy) are clearly promising candidates. Lastly, we did not consider the late transition
metal oxide perovskites, nickelates or cuprates, where the physics pertains to the eg levels

5. A tribute to Gérard Toulouse

J’ai bien connu Gérard, pendant la période où il effectuait ses travaux de recherche au Laboratoire
de Physique des Solides d’Orsay (LPS). Je démarrais alors une « thèse théorique de 3ème cycle »
et j’étais intimidé et admiratif devant son attitude réservée, son savoir encyclopédique (au sens
XVIIIème siècle du terme) et son humour « pince-sans-rire ». Il était une présence forte au sein
du groupe théoriciens du laboratoire. Avec Pierre Pfeuty, il venait de publier une monographie
sur la méthode du groupe de renormalisation qui était très en vogue à cette période. Il l’avait no-
tamment appliquée à l’analyse du problème de l’impureté Kondo dans les métaux, donnant une
description transparente de la physique de ce système. Un des axes de recherche majeur au LPS
concernait alors le magnétisme des matériaux et leurs défauts, liés au désordre ou à la géométrie.
Porté par une intuition « Toulousienne », Gérard s’était intéressé à une classification des défauts
topologiques si bien qu’il produisit dans ce domaine des contributions majeures, appliquant ces
concepts au domaine de la frustration et des verres de spins. Ma thèse d’état portant précisement
sur les verres de spin, nous avons été amenés à interagir sur leur description thermodynamique.
Gérard a quitté Orsay pour s’installer à l’ENS et je l’ai rejoint pour un semestre, en 1981, avant
mon départ en post-doc à Berkeley. Je partageais alors un bureau avec Rammal.

J’ai toujours admiré chez Gérard sa capacité à sentir en amont les problèmes appelés à devenir
« chauds », à les aborder par des approches transverses et à les résoudre de façon si élégante.
Gérard avait en plus une qualité pédagogique remarquable. Il savait extraire l’essentiel des idées,
en tirer le meilleur parti et les expliquer de façon claire. J’ajoute avoir eu le plaisir de partager
quelques moments de convivialité avec lui, à son domicile, et également à la réception organisée
à l’occasion de mon mariage !
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