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Abstract. This work provides a surprisingly simple demonstration that the quantized Hall conductivity of
correlated insulators is given by the many-body Chern number, a topological invariant defined in the
space of twisted boundary conditions. In contrast to conventional proofs, generally based on the Kubo
formula, our approach entirely relies on combining Kramers–Kronig relations and Fermi’s golden rule
within a circular-dichroism framework. This pedagogical derivation illustrates how the Hall conductivity
of correlated insulators can be determined by monitoring single-particle excitations upon a circular drive, a
conceptually simple picture with direct implications for quantum-engineered systems, where excitation rates
can be directly monitored.

Résumé. Ce travail présente une démonstration simple et originale du lien qui relie la conductivité de Hall
quantifiée des isolants corrélés au nombre de Chern du problème à N corps, un invariant topologique défini
dans l’espace des conditions aux bords généralisées. Contrairement aux démonstrations conventionnelles,
qui sont généralement basées sur la formule de Kubo, cette approche s’appuie entièrement sur les relations
de Kramers-Kronig et la règle d’or de Fermi, dans le cadre du dichroisme circulaire. Cette dérivation pédago-
gique illustre un fait remarquable, à savoir que la conductivité de Hall des isolants corrélés peut être détermi-
née en mesurant des excitations à un corps sous l’effet d’une force circulaire. Cette observation est particu-
lièrement pertinente pour les systèmes quantiques topologiques pour lesquels les taux d’excitation peuvent
être directement mesurés au laboratoire.
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quantized responses, circular dichroism, many-body Chern number, correlated topological insulators.
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1. Introduction

The integer and fractional quantum Hall effects were discovered in the early 1980’s [1, 2], by
investigating the Hall conductivity of two-dimensional electron gases subjected to a strong
magnetic field. The quantum Hall effects refer to the remarkable quantization of the Hall
conductivity observed in these settings: σH /σ0=ν, where ν is an integer or a fractional number,
and where σ0 = e2/h is the quantum of conductance. Soon after these discoveries, it became
clear that the quantization of the Hall conductivity was deeply rooted in the topological nature
of the underlying many-body quantum state [3–5]. Since then, the study of topological quantum
matter has become an important subject in condensed matter physics [6–10], but also in other
fields, such as photonics [11] and ultracold quantum gases [12].

Both integer and fractional quantum Hall states can be characterized by a topological in-
variant, known as the many-body Chern number [13–15]. This topological invariant is con-
structed from the many-body ground state, as defined over an abstract parameter space associ-
ated with generalized (twisted) boundary conditions. Generally, the relation between the quan-
tized Hall conductivity and the many-body Chern number is obtained using linear-response the-
ory, through the Kubo formula [13–15]. Although the derivation based on Kubo’s formula is well
established, the importance of this topological phenomenon may warrant an alternative look
from a different angle.

For the integer quantum Hall effect, the relation between the Hall conductivity and the Chern
number can be derived through the Streda formula [16]. However, a generalization of this Streda
approach to correlated insulators, such as fractional quantum Hall states, remains elusive. We
note that the Hall conductivity of correlated insulators can be related to another many-body
invariant, known as the Ishikawa–Matsuyama invariant [17–23], using the Streda formula [24].
However, to the best of our knowledge, a formal relation between the Ishikawa–Matsuyama
invariant and the many-body Chern number of fractional quantum Hall states is lacking.

In this work, we provide a surprisingly simple demonstration of the relation between the
quantized Hall conductivity and the many-body Chern number of correlated insulators, which
entirely relies on combining Kramers–Kronig relations and Fermi’s golden rule. Kramers–Kronig
relations relate a DC (Hall) conductivity to an optical (dissipative) response. In the context of
circular dichroism, this relation allows one to express the Hall conductivity in terms of excitation
rates upon a circular drive defined in the space of twisted boundary conditions (or flux space).
This alternative approach, which is described in detail in the following Sections, is inspired from
a series of theoretical and experimental works on topological circular-dichroic responses [25–40].

The organization of this work is as follows. In Sec. 2, we define the many-body Chern number
in a general setting. In Sec. 3, we define the many-body Chern number in twist-angle (or flux)
space. Readers who are familiar with these notions can skip Secs. 2 and 3, and directly go to Sec. 4,
where we relate the many-body Chern number to a circular-dichroic response using Fermi’s
golden rule. In Sec. 5, using the Kramers–Kronig relation, we relate the circular-dichroic response
to the Hall conductivity, thus establishing the connection between the many-body Chern number
and the Hall conductivity. We provide concluding remarks in Sec. 6.
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2. The many-body Chern number

We first consider a generic system described by a Hamiltonian Ĥ(λ) over a two-dimensional
parameter space, λ = (λ1,λ2) ∈ M . The local eigenstates are defined from the eigenvalue
problem:

Ĥ(λ)|Ψn(λ)〉 = En(λ)|Ψn(λ)〉. (1)

The energy eigenvalues En(λ) form the band structure, whereas the λ-dependence of the eigen-
vector |Ψn(λ)〉 determines the geometric properties of the band. This general setting is schemat-
ically illustrated in Fig. 1.

Figure 1. Sketch of the general setting, illustrating eigenvectors |Ψn(λ)〉 and energies En(λ)
over a 2D parameter space M .

If the ground-state band E0(λ) is well isolated by a spectral gap (non-degenerate case) and M

is closed, then one can define the Chern number of the ground-state band as

νCh = 1

2π

∫
M

F12(λ)d2λ ∈Z,

(2)

where

F12(λ) = i

(〈
∂Ψ0

∂λ1

∣∣∣∣ ∂Ψ0

∂λ2

〉
−

〈
∂Ψ0

∂λ2

∣∣∣∣ ∂Ψ0

∂λ1

〉)
, (3)

is the Berry curvature. Here we assume that the state is normalized, 〈Ψ0|Ψ0〉 = 1.
For later convenience, we now derive an alternative expression for the Berry curvature, which

does not involve derivatives of the states. Taking the derivative of Eq. (1) for the ground state with
respect to a parameter λi , we obtain

∂Ĥ

∂λi
|Ψ0〉+ Ĥ

∣∣∣∣∂Ψ0

∂λi

〉
= ∂E0

∂λi
|Ψ0〉+E0

∣∣∣∣∂Ψ0

∂λi

〉
. (4)

Acting with a state 〈Ψn |, which is different from the ground state, from the left, we obtain

〈Ψn | ∂Ĥ

∂λi
|Ψ0〉 = (E0 −En)〈Ψn

∣∣∣∣∂Ψ0

∂λi

〉
. (5)

Using the identity 1 = |Ψ0〉〈Ψ0|+∑
n ̸=0 |Ψn〉〈Ψn |, the Berry curvature (3) can be rewritten as

F12(λ) = i
∑

n, ̸=,0

(〈
∂Ψ0

∂λ1

∣∣∣∣Ψn

〉〈
Ψn

∣∣∣∣ ∂Ψ0

∂λ2

〉
−

〈
∂Ψ0

∂λ2

∣∣∣∣Ψn

〉〈
Ψn

∣∣∣∣ ∂Ψ0

∂λ1

〉)

= i
∑

n ̸=0

1

(En −E0)2

(〈
Ψ0

∣∣∣∣ ∂Ĥ

∂λ1

∣∣∣∣Ψn

〉〈
Ψn

∣∣∣∣ ∂Ĥ

∂λ2

∣∣∣∣Ψ0

〉〈
Ψ0

∣∣∣∣ ∂Ĥ

∂λ2

∣∣∣∣Ψn

〉〈
Ψn

∣∣∣∣ ∂Ĥ

∂λ1

∣∣∣∣Ψ0

〉)
.

(6)

The final expression involves the derivative of the Hamiltonian with respect to the parameters,
but not the derivatives of the states. We will use this expression in the next Sections to connect
the circular-dichroic response and the many-body Berry curvature.
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In the case of a degenerate ground-state manifold, (relevant for topologically-ordered ground
states), one deals with a ground-state multiplet [41]

ΨGS =
(|Ψ1〉, |Ψ2〉, . . . |Ψq 〉

)
. (7)

In this framework, we assume that the ground-state manifold is well separated from higher-
energy states by a spectral gap. The components of the non-Abelian Berry connection (a q × q
matrix) are then given by (

Aµ

)
i j = i

〈
Ψi

∣∣∂λµΨ j
〉

. (8)

It is convenient to introduce the averaged Berry connection over the ground-state manifold,

Aµ = (1/q)
q∑

i=1

(
Aµ

)
i i , (9)

from which one builds the Berry curvature of the ground-state multiplet

F12 = ∂λ1A2 −∂λ2A1. (10)

The corresponding many-body Chern number is defined by

νMB
Ch = 1

2π

∫
M

F12(λ)d2λ ∈Q. (11)

This topological invariant can be a fractional number when q>1, due to the (1/q) factor in Eq. (9).
The goal of the present work is to relate the Hall conductivity of insulating states of matter

to the many-body Chern number νMB
Ch , as defined in the parameter space of twisted-boundary

conditions. The next Sec. 3 introduces this topological invariant and the related physical setting.

3. Many-body Chern number defined in the space of twisted boundary phases

We now consider a generic N -body Hamiltonian in 2D space (size Lx ×Ly )

Ĥ =
N∑

a=1

([
p̂a −A(̂ra)

]2

2m
+V (̂ra)

)
+ Ĥ int ({̂ra}) , (12)

where r̂a and p̂a are the position and momentum operators for the ath particle with mass m. The
Hamiltonian also contains the magnetic vector potential A(̂ra), the one-body potential V (̂ra) and
the inter-particle interaction Ĥ int({̂ra}).

For convenience, and without loss of generality, we now take the position representation so
that the position operator r̂a is given by the position of the ath particle ra , and the momentum
operator is p̂a = −iħ∇∇∇a . The wavefunction ψ({ra}) then depends on coordinates of N particles.
This wavefunction ψ({ra}) can generally be a spinor with multiple internal degrees of freedom,
such as spins or different layers for multi-layer systems.

We now introduce generalized (twisted) boundary conditions [13–15, 42]. To begin with, we
clarify the boundary conditions without a twist. In the presence of non-zero magnetic field, the
magnetic vector potential A(r) cannot be made periodic. Instead, the magnetic vector potential
can obey the boundary conditions [43]

Ax
(
x, y +Ly

)= Ax (x, y)+ħ∂yφx (x, y)

Ay
(
x +Lx , y

)= Ay (x, y)+ħ∂xφy (x, y),
(13)

where the scalar functions φx (r) and φy (r) are known as transition functions. The lengths of the
system in the x and y directions are denoted by Lx and Ly , respectively. For certain lattice models,
these transition functions can be chosen trivial, even in the presence of a net magnetic flux,
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but this is not possible in general. In terms of these transition functions, the periodic boundary
conditions correspond to imposing the following:

T̂ a′
(
Lx 1x )ψ({ra}

)= e iφx (ra′ )ψ({ra}),

T̂ a′
(
Ly 1y

)
ψ({ra}) = e iφy (ra′ )ψ({ra}), ∀ a′,

(14)

where the translation operator T̂ a′ (r0) translates the position of the a′ th particle by the amount r0.
Here, 1x and 1y are the unit vectors in the x-direction and y-direction, respectively. The condition
in Eq. (14) describes the fact that the wavefunction should come back to its original value as one
goes around the system, up to the factor due to the non-periodic nature of the magnetic vector
potential, Eq. (13).

Twisted boundary conditions are a generalization of Eq. (14), which correspond to setting [13–
15]

T̂ a′ (Lx 1x )ψ({ra}) = e i(φx (ra′ )+θx )ψ({ra}),

T̂ a′ (Ly 1y )ψ({ra}) = e i(φy (ra′ )+θy )ψ({ra}),
(15)

where θx and θy are the twist boundary phases that we additionally impose.
We now aim to define the many-body Chern number in the parameter space of twist phases,

(θx ,θy ) ∈ T2. However, at this stage, these phases appear in the boundary conditions and not
in the Hamiltonian [see Sec. 2]. We can instead move the phases (θx ,θy ) from the boundary
conditions to the Hamiltonian by a gauge transformation. Defining the gauge-transformed
wavefunction by

ψ′({ra}) ≡ e−iθx
∑

a xa /Lx−iθy
∑

a ya /Lyψ({ra}), (16)

one obtains the gauge-transformed Hamiltonian:

Ĥ ′ ≡ e−iθx
∑

a xa /Lx−iθy
∑

a ya /Ly Ĥe iθx
∑

a xa /Lx+iθy
∑

a ya /Ly . (17)

The Hamiltonian in this new gauge, Ĥ ′, is nothing but the original Hamiltonian Ĥ in Eq. (12) with
the magnetic vector potential replaced by

Ax −→ Ax −θx /Lx , Ay −→ Ay −θy /Ly . (18)

The boundary conditions for the gauge-transformed wavefunction ψ′({ra}) then reduces to the
original periodic boundary condition in Eq. (14). Thus, the gauge transformation brings us back
to a standard torus geometry, with usual periodic boundary conditions, but now introduces θx,y

as fluxes going through the torus [13–15]; see Eq. (18) and Fig. 2. We hereby denote Ĥ(θx ,θy ),
the Hamiltonian describing our original system in the presence of these additional fluxes, i.e. the
original Hamiltonian Ĥ in Eq. (12) with the magnetic vector potential replaced by θx,y -dependent
factors as in Eq. (18).

In this work, we are interested in characterizing gapped many-body ground states, with
possible q-fold degeneracy. In the present setting, where the Hamiltonian is parametrized as
Ĥ(θx ,θy ), the relevant parameter space is θ≡ (θx ,θy )∈T2. Hence, the ground states of interest
are defined over the two-dimensional “flux” space, i.e. Ψi ({ra},θ), with i = 1, . . . , q . In terms of
these many-body ground states, we define the many-body Chern number [Eq. (11)]

νMB
Ch = 1

2π

∫
T2

Fx y (θ)d2θ ∈Q,

where

Fx y (θ) = ∂θx Ay (θ)−∂θy Ax (θ), (19)

Aµ(θ) = i

q

q∑
i=1

〈
Ψi (θ)

∣∣∣∂θµΨi (θ)
〉

, (20)
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are, respectively, the many-body Berry curvature and the Berry connection defined over the
twist-angle space; see Eqs. (8)-(11). Here we introduced back the “ket” notation |Ψn(θ)〉, whose
position-basis representation is the many-body wavefunction 〈{ra}|Ψn(θ)〉 =Ψn({ra},θ).

4. Relating the many-body Chern number to a circular-dichroic response: Using
Fermi’s Golden rule

We now relate the many-body Chern number to a relevant physical observable: excitation rates
upon a circular drive in twist-angle (or flux) space. The Hamiltonian in Eq. (12) is now defined
on a regular torus, with periodic boundary conditions [Eq. (14)], and we hereby set Lx,y =L. Let
us prepare the system in the gapped ground state |Ψ0〉, in the absence of flux θx,y . (If the ground
state is degenerate, we consider one of the ground states at a time.) We then study its response to
a circular electric field:

E±(ω) = 2E [cos(ωt ),±sin(ωt )] =−∂t A. (21)

The upper (lower) sign corresponds to the right (left) circularly polarized field. In terms of the
magnetic vector potential, this perturbing driving field corresponds to adding the following terms
to its components:

Ax −→ Ax − (2E /ω)sin(ωt ), Ay −→ Ay ± (2E /ω)cos(ωt ).

It is insightful to interpret these additional terms in the magnetic vector potential using the twist-
angle picture [Eq. (18)]: this corresponds to preparing the system in the state |Ψ0(θ = 0)〉 and to
evolve this state according to the time-dependent Hamiltonian Ĥ(θx (t ),θy (t )), where

θx (t ) = (2E L/ω)sin(ωt ),

θy (t ) =∓(2E L/ω)cos(ωt )
(22)

are interpreted as time-dependent fluxes; see Fig. 2 for an illustration of this setting.

Figure 2. Circular dichroism as induced by time-dependent fluxes through the torus: The
excitation rate (and hence, the absorbed energy) depends on the sign (∓) of the perturbing
fields.
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Assuming a weak field such that the final excited fraction is small, we calculate the excited
fraction using the Fermi’s golden rule, i.e. using lowest-order time-dependent perturbation
theory [44]. Here, the perturbation takes the form

δĤ = Ĥ
(
θx ,θy

)∣∣
(θx ,θy )=((2E L/ω)sin(ωt ),∓(2E L/ω)cos(ωt )) − Ĥ(0,0)

=2E L

ω

[
∂Ĥ(θ)

∂θx

∣∣∣∣
θ=0

sin(ωt )∓ ∂Ĥ(θ)

∂θy

∣∣∣∣
θ=0

cos(ωt )

]
+O (E 2)

=E L

ω

(
1

i

∂Ĥ(θ)

∂θx
∓ ∂Ĥ(θ)

∂θy

)∣∣∣∣
θ=0

e iωt + c.c.+O (E 2),

(23)

where the Taylor expansion is allowed due to the weakness of the perturbation; we note that the
relevant frequencies ω are bounded from below, ω≳ ∆, where ∆ denotes the finite many-body
gap over the (gapped) ground state of interest. Then, the transition probability at time t from the
original state to any of the excited states can be calculated from Fermi’s golden rule [44],

n±
ex(t ) = 2πt

ħ
∑

n ̸=0

∣∣∣∣E L

ħω
〈
Ψn

∣∣∣∣1

i

∂Ĥ

∂θx
∓ ∂Ĥ

∂θy

∣∣∣∣Ψ0

〉∣∣∣∣2

θ=0

·δ(t ) (En −E0 −ħω) , (24)

where the function δ(t )(ε) ≡ (2ħ/πt )sin2(εt/2ħ)/ε2 approaches the delta function in the long
time limit: δ(t )(ε) → δ(ε) as t →∞. We assume that this latter limit is reached, by considering
observation times t ≫1/ω, or equivalently, t ≫1/∆ in terms of the finite many-body gap. Besides,
time-dependent perturbation theory requires that

t ≪ħ
/∣∣∣∣E L

ħω
〈
Ψn

∣∣∣∣1

i

∂Ĥ

∂θx
∓ ∂Ĥ

∂θy

∣∣∣∣Ψ0

〉∣∣∣∣ ∀ n,ω. (25)

This is guaranteed by assuming a weak perturbation satisfying E ≪∆/L, since ħω is bounded by
the many-body gap.

A priori, the sum in Eq. (24) is performed over all many-body excited states. However, we point
out that this excited fraction only involves single-particle excitations of the many-body ground
state, since the operators ∂θi Ĥ are single-particle operators.

Defining the excitation rates Γ± = n±
ex(t )/t , one finds [25, 29]

∆Γint =1

2

∫ ∞

0
Γ+(ω)−Γ−(ω)dω

= ∑
n ̸=0

E 2L2π

ħ2(En −E0)2

{∣∣∣∣〈Ψn

∣∣∣∣1

i

∂Ĥ

∂θx
− ∂Ĥ

∂θy

∣∣∣∣Ψ0

〉∣∣∣∣2

θ=0

−
∣∣∣∣〈Ψn

∣∣∣∣1

i

∂Ĥ

∂θx
+ ∂Ĥ

∂θy

∣∣∣∣Ψ0

〉∣∣∣∣2

θ=0

}

= ∑
n ̸=0

E 2L22πi

ħ2(En −E0)2

(〈
Ψ0

∣∣∣∣ ∂Ĥ

∂θx

∣∣∣∣Ψn

〉〈
Ψn

∣∣∣∣ ∂Ĥ

∂θy

∣∣∣∣Ψ0

〉 〈
Ψ0

∣∣∣∣ ∂Ĥ

∂θy

∣∣∣∣Ψn

〉〈
Ψn

∣∣∣∣ ∂Ĥ

∂θx

∣∣∣∣Ψ0

〉)∣∣∣∣
θ=0

=
(
E 2L2

ħ2

)
×2πFx y (θ = 0),

(26)

where we used the expression for the Berry curvature in Eq. (6) at the final step. Hence, we
obtained that the dichroic response yields the Berry curvature at the origin of flux space (i.e. in
the absence of flux/twist).

In the thermodynamic limit, any θ-dependence (boundary effects) vanishes [45], hence one
obtains a relation between the Berry curvature and the many-body Chern number:

2πFx y (θ = 0) −→ 2π〈Fx y 〉θ = 2π× 1

(2π)2

∫
T2

Fx y (θ)d2θ = νMB
Ch .

Consequently, one obtains from Eq. (26) that

∆Γint/A = (E /ħ)2 ×νMB
Ch , (27)
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is a (quantized) topological response, where A ≡ L2 is the area of the system. This result illustrates
how the many-body Chern number of correlated insulators can be determined by monitoring
single-particle excitations upon a circular drive, within a Fermi-golden rule framework. This
conceptually simple picture has practical implications for quantum-engineered systems, where
excitation rates can be directly monitored [28, 32, 33, 39].

For a Chern insulator (non-interacting fermions):

νMB
Ch = νCh = 1

2π

∫
FBZ

F (k)d2k ∈Z,

such that ∆Γint is quantized to an integer, where F (k) is the Berry curvature in momentum
space, and νCh is the momentum-space Chern number of the occupied Bloch band. In Appendix,
we provide a derivation of the relation νMB

Ch =νCh, hence connecting the momentum-space and
twist-angle formulations in this non-interacting case. The relation between the dichroic response
and the Chern number for non-interacting fermions was experimentally measured in ultracold
atomic gases in Hamburg [28].

For a fractional Chern insulator:

νMB
Ch ∈Q−→∆Γint is fractionally quantized!

This was numerically demonstrated in Ref. [30].
At a more fundamental level, it is intriguing to note that the (quantized) circular-dichroic

response in Eq. (27) reveals the chirality inherent to the bulk of a quantum Hall state, i.e. an
insulating state that results from an explicit breaking of time-reversal symmetry. This latter
observation was made evident in Ref. [27] for the case of Landau-level states, which satisfy strict
selection rules under circular driving (i.e. angular-momentum injection). Indeed, the bulk of a
quantum Hall droplet only reacts to a specific driving orientation, i.e. it only absorbs angular
momentum of specific sign [27, 46]. It is remarkable that the quantization of the circular dichroic
response in Eq. (27) is universal, i.e. satisfied for any (fractional) Chern insulating state [25,
30]. Finally, while the present derivation was performed using a torus geometry, we note
that similar relations can be obtained for the edge dichroic response of confined systems with
boundaries [47].

5. Relating the dichroic response to the Hall conductivity: Using Kramers–Kronig
relations

Now we relate the Hall conductivity σH to the dichroic response, and thus to the many-body
Chern number νMB

Ch .
We previously found, using Fermi’s golden rule,

∆Γint/A = 1

2A

∫ ∞

0
Γ+(ω)−Γ−(ω)dω= (E /ħ)2 ×νMB

Ch .

The excitation rate Γ±(ω) under the circular electric field can be written in terms of the
absorption power P±(ω) as

P±(ω) =ħωΓ±(ω). (28)

On the other hand, the power absorbed upon the circular electric field is related to the conduc-
tivity tensor; this was shown in Ref. [48], and we briefly reproduce this result here. The circular
electric field that we apply in Eq. (21) can be written as

E±(ω) = E
(
1x ∓ i 1y

)
e iωt + c.c. (29)
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The linear coefficient of the current Ji in the i -direction in response to the electric field E j e iωt in
the j -direction is nothing but the conductivityσi j . Therefore, the current induced by this electric
field is

J±(ω) = [
σxx (ω)∓ iσx y (ω),σy x (ω)∓ iσy y (ω)

]
E e iωt + c.c.

The absorbed power per volume caused by this electric field is then given by

P±(ω)/A = J±(ω) ·E±(ω)

≈ {(
σxx (ω)∓ iσx y (ω)

)± i
(
σy x (ω)∓ iσy y (ω)

)}
E 2 + c.c.

= {
2Re

[
σxx (ω)+σy y (ω)

]±4Im
[
σx y (ω)

]}
E 2,

(30)

where at the second line we ignored terms that oscillate as e±2iωt because these terms average
to zero over long time. At the third line, we also used σy x (ω) = −σx y (ω), which holds when the
material possesses the rotational symmetry; we note that the result readily generalizes to non-
isotropic situations. Combining Eq. (28) and Eq. (30), we obtain

P±(ω) =ħω×Γ±(ω)

= 4AE 2 {
Re

[
σxx (ω)+σy y (ω)

]
/2± Im

[
σx y (ω)

]}
.

(31)

Hence, the dissipative optical conductivity, Im[σi j (ω)], relates to the difference in the excita-
tion rate ∆Γ(ω) ≡ Γ+(ω)−Γ−(ω) according to

Im[σx y (ω)] =ħω∆Γ(ω)/8AE 2. (32)

Besides, we have the sum rule provided by Kramers–Kronig relations [25, 48–53]

σH = lim
ω→0

Re
[
σx y (ω)

]= 2

π

∫ ∞

0

Im
[
σx y (ω̃)

]
ω̃

dω̃, (33)

where σH is the Hall conductivity. Then, dividing both sides of Eq. (32) by ω and integrating over
ω, and using the sum rule in Eq. (33), we obtain a relation between the absorption rates and the
Hall conductivity

∆Γint/A = 1

2A

∫ ∞

0
∆Γ(ω)dω= (

2πE 2/ħ)
σH. (34)

Finally, using the main result of the previous Section, Eq. (27), one obtains [25, 30]

σH/σ0 = νMB
Ch , (35)

where σ0=(1/h) is the quantum of conductance (e = 1). Equation (35) is the quantization of the
Hall conductivity according to the many-body Chern number, valid for any 2D gapped system.

Summarizing, the key relation in Eq. (35) can be derived using two different approaches: (i)
by analyzing the Hall transport generated by a constant electric field, which is the conventional
Kubo-type approach based on linear-response theory [13, 54]; (ii) through circular dichroism,
i.e. a dissipative response upon a circular drive [Fig. 2]. We note that both approaches rely on
the assumption, E ≪ ∆/L, where E is the strength of the perturbing field, L is a relevant length
scale (e.g. the size of the quantum Hall droplet) and ∆ is the many-body gap. In the conven-
tional linear-response approach, this condition guarantees adiabaticity upon transport [54]: the
quantized Hall conductivity and its related Chern number are ground-state properties, i.e. single-
band properties in the flux-space representation. In the present dissipative (circular-dichroism)
approach, this same condition ensures the validity of Fermi’s golden rule; see Eq. (25).
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6. Some concluding remarks

Here we summarize the take-home messages of this work.

Take-home message 1: The dichroic response offers a probe for the Hall response, which does
not rely on any transport experiment [25, 35, 36]

∆Γint/A = (
2πE 2/ħ)

σH,

as explored in the ultracold gas experiment in Hamburg [28]. This relation is essentially a
consequence of Kramers–Kronig relations [25, 48–53]. We note that another alternative to
transport is provided by the Streda-formula approach: a density response to an external magnetic
field also provides the quantized Hall response of correlated insulators [24, 55, 56].

Take-home message 2: The dichroic response reflects the many-body Chern number

∆Γint/A = (E /ħ)2 ×νMB
Ch .

This result follows from Fermi’s golden rule. In particular, circular dichroism offers a topological
signature for FQH states [30, 47], where νMB

Ch becomes fractional, which is particularly appealing
for recent cold-atom realizations [56].

Take-home message 3: Combining the above two relations, we obtain the relation connecting
the quantized Hall conductivity to the many-body Chern number

σH/σ0 = νMB
Ch ∈Q, (in gapped 2D system),

previously derived using the Kubo formula [13–15].
We point out that the key relation in Eq. (35) also connects two topological invariants of

different nature. Indeed, it was recently demonstrated that the Hall conductivity of correlated
insulators is quantized according to the so-called Ishikawa–Matsuyama invariant, σH/σ0 = N3,
whenever Luttinger’s theorem is satisfied [24]. Under this condition, Eq. (35) then formally
connects the Ishikawa–Matsuyama invariant to the many-body Chern number, νMB

Ch = N3. It
is interesting to note that the invariant N3, which is entirely expressed in terms of the single-
particle Green’s function [17–23], can be equally expressed in terms of excitation rates upon flux
modulations [Eqs. (22)-(27)].

We believe that the derivation and the viewpoint presented in this work offer a fresh interpre-
tation to the well-established relation between the Hall conductivity and the many-body Chern
number, and that they will further motivate the search for fundamental relations between topo-
logical invariants and physical response functions.

Appendix A. Relation between the many-body Chern number and the momentum-
space Chern number for noninteracting fermions

Here we provide a brief proof that the many-body Chern numberνMB
Ch reduces to the conventional

momentum-space Chern number [3] – the integral of the momentum-space Berry curvature over
the first Brillouin zone – in the case of a non-interacting Chern insulator, i.e. a filled band of non-
interacting fermions.

Let us first define the momentum-space Chern number. We consider the N -body Hamiltonian
introduced in Eq. (12) without the interaction term, namely

Ĥ =
N∑

a=1

([
p̂a −A(̂ra)

]2

2m
+V (̂ra)

)
. (36)

We denote the corresponding single-particle Hamiltonian as

Ĥ (1) =
[
p̂−A(̂r)

]2

2m
+V (̂r). (37)
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Assuming a periodic lattice structure, the Bloch theorem indicates that the eigenvalues and
eigenstates are labeled by the band index n and the quasimomentum k = (kx ,ky ):

Ĥ (1)|χn,k〉 = εn(k)|χn,k〉, (38)

where the Bloch wavefunction |χn,k〉 can be written, in position representation, as χn,k(r) ≡
〈r|χn,k〉 = e i k·run,k(r) with un,k(r) obeying the periodicity of the original lattice (or a generalized
‘magnetic’ periodicity if a nonzero magnetic flux is present).

We consider that the first band n=1 is fully filled by non-interacting fermions. In this case, the
many-body Chern number νMB

Ch reduces to the momentum-space Chern number introduced by
TKNN [3], as we now explain.

The topological properties of the first Bloch band are defined with respect to the cell-periodic
part of the Bloch wavefunction, u1,k(r). We note that the cell-periodic part of the Bloch wave-
function is an eigenstate of the k-space Hamiltonian defined by

Ĥ(k) ≡ e−i k·r̂Ĥ (1)e i k·r̂ =
[
p̂−A(̂r)+k

]2

2m
+V (̂r); (39)

Ĥ(k)|un,k〉 = εn(k)|un,k〉, (40)

where we have introduced the “ket” notation, un,k(r) = 〈r|un(k)〉 for the cell-periodic part of the
Bloch wavefunction.

Following Eqs. (3) and (6), the Berry curvature in the first band, defined over k-space, can be
written as

F12(k)

= i

(〈
∂u1,k

∂kx

∣∣∣∣ ∂u1,k

∂ky

〉
−

〈
∂u1,k

∂ky

∣∣∣∣ ∂u1,k

∂kx

〉)
= i

∑
n ̸=1

1

(εn(k)−ε1(k))2

·
(〈

u1,k

∣∣∣∣∂Ĥ(k)

∂kx

∣∣∣∣un,k

〉〈
un,k

∣∣∣∣∂Ĥ(k)

∂ky

∣∣∣∣u1,k

〉
−

〈
u1,k

∣∣∣∣∂Ĥ(k)

∂ky

∣∣∣∣un,k

〉〈
un,k

∣∣∣∣∂Ĥ(k)

∂kx

∣∣∣∣u1,k

〉)
.

(41)

The momentum-space Chern number νCh is then defined in terms of F12(k) as

νCh = 1

2π

∫
d 2k F12(k). (42)

We will now relate the many-body Berry curvature F MB
12 defined over the space of twisted

boundary conditions to the k-space Berry curvature F12(k). The many-body Berry curvature
is twist-angle space reads

F MB
12 (θ) = i

∑
N ̸=0

1

(EN −E0)2 ·
(〈
Ψ0

∣∣∣∣∂Ĥ MB(θ)

∂θx

∣∣∣∣ΨN

〉〈
ΨN

∣∣∣∣∂Ĥ MB(θ)

∂θy

∣∣∣∣Ψ0

〉
−

〈
Ψ0

∣∣∣∣∂Ĥ MB(θ)

∂θy

∣∣∣∣ΨN

〉〈
ΨN

∣∣∣∣∂Ĥ MB(θ)

∂θx

∣∣∣∣Ψ0

〉)
, (43)

where |Ψ0〉 is the many-body groundstate with energy E0, corresponding to the fully occupied
first Bloch band; |ΨN 〉 is any many-body eigenstate of Ĥ(θ) with energy EN , which is different
from |Ψ0〉. In this Appendix, we have added a superscript MB in the many-body Berry curvature
F MB

12 (θ) and the many-body Hamiltonian Ĥ MB(θ) to distinguish them from single particle ones.
The many-body Hamiltonian Ĥ MB(θ) is defined by

Ĥ MB(θ) =
N∑

a=1

([
p̂a −A(̂ra)+θ/L

]2

2m
+V (̂ra)

)
+ Ĥ int({ra}), (44)
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As previously noted, we have

∂Ĥ MB(θ)

∂θi
= 1

L

N∑
a=1

p̂a,i − Ai (̂ra)+θi /L

m
, (45)

which only involves single-particle operators; hence, matrix elements such as 〈ΨN |∂θi Ĥ MB

(θ)|Ψ0〉 are only nonzero for states |ΨN 〉 obtained by removing one particle from the occupied
band in |Ψ0〉 and placing one particle somewhere in the upper bands.

Let us consider a state |ΨN 〉, which is obtained by removing a particle from the state |χ1,k0〉
from the occupied band and adding a particle into the state |χn,k1〉. Then,〈

ΨN

∣∣∣∣∂Ĥ MB(θ)

∂θi

∣∣∣∣Ψ0

〉
= 1

L

〈
χn,k1

∣∣∣∣ p̂ i − Ai (̂r)+θi /L

m

∣∣∣∣χ1,k0

〉
= δk0,k1

L

〈
un,k0

∣∣∣∣ p̂ i − Ai (̂r)+θi /L+k0,i

m

∣∣∣∣u1,k0

〉
= δk0,k1

L

〈
un,k0

∣∣∣∣∂Ĥ(k)

∂ki

∣∣∣∣k=k0+θ/L

∣∣∣∣u1,k0

〉
.

(46)

Then, since EN − E0 = εn(k1)− ε1(k0), the many-body Berry curvature at θ = (0,0) is given by
[Eq. (43)]

F MB
12 (θ = 0)

= 1

L2 i
∑

n ̸=1

∑
k

1

(εn(k)−ε1(k))2

·
(〈

u1,k

∣∣∣∣∂Ĥ(k)

∂kx

∣∣∣∣un,k

〉〈
un,k

∣∣∣∣∂Ĥ(k)

∂ky

∣∣∣∣u1,k

〉
−

〈
u1,k

∣∣∣∣∂Ĥ(k)

∂ky

∣∣∣∣un,k

〉〈
un,k

∣∣∣∣∂Ĥ(k)

∂kx

∣∣∣∣u1,k

〉)
= 1

L2

∑
k

F12(k) = 1

(2π)2

∫
d 2k F12(k)

= 1

2π
νCh.

(47)

In the thermodynamic limit, the many-body Berry curvature converges to the Chern number [45],
2πF MB

12 (θ = 0) = νMB
Ch . Hence, this establishes that νMB

Ch = νCh for a Chern insulator, i.e. a filled
Bloch band of non-interacting fermions.
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